Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth
dc.contributor.author | Fan, Benjie | |
dc.contributor.author | Zhao, Xiaoyu | |
dc.contributor.author | Zhang, Jingqiong | |
dc.contributor.author | Sun, Yuechang | |
dc.contributor.author | Yang, Hongzhi | |
dc.contributor.author | Guo, L. Jay | |
dc.contributor.author | Zhou, Shengjun | |
dc.date.accessioned | 2023-04-04T17:39:05Z | |
dc.date.available | 2024-04-04 13:39:03 | en |
dc.date.available | 2023-04-04T17:39:05Z | |
dc.date.issued | 2023-03 | |
dc.identifier.citation | Fan, Benjie; Zhao, Xiaoyu; Zhang, Jingqiong; Sun, Yuechang; Yang, Hongzhi; Guo, L. Jay; Zhou, Shengjun (2023). "Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth." Laser & Photonics Reviews 17(3): n/a-n/a. | |
dc.identifier.issn | 1863-8880 | |
dc.identifier.issn | 1863-8899 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/176025 | |
dc.description.abstract | Great progress made by heteroepitaxial growth technology encourages rapid development of III-nitride heteroepitaxial structures and their applications in extensive fields. Particularly, innate bandgap tunability of III-nitride materials renders them attractive for white light-emitting diodes (WLEDs) that are considered as next-generation solid-state lighting sources. However, commercial phosphor-converted WLEDs suffer from poor color rendering index (CRI) and intense blue component, hard to fulfill demanding requirements simultaneously for energy efficiency and healthy lighting. Here, an efficient full-spectrum WLED excited by monolithically integrated III-nitride quantum structure is reported, in which trichromatic InGaN/GaN multiple quantum wells are constructed by bandgap engineering heteroepitaxy growth allowing flexible regulation of indium composition and quantum barrier thickness to manipulate carrier transport behavior. Furthermore, relationship between structural parameters and emission characteristics as well as their impact on white light performance is systematically demonstrated. Combined with commonly used green-red phosphor mixture, the fabricated full-spectrum warm/cold WLEDs can emit broadband and continuous spectra with low-ratio blue component, first exhibiting superior CRI (> 97/98), color fidelity (97/97), saturation (100/99), and luminous efficacy (>120/140 lm W−1). This work demonstrates the advantages of bandgap-engineered quantum structure applied in excitation source, and opens up new avenues for the exploration of high-quality solid-state lighting.This work reports efficient full-spectrum white light-emitting diodes (WLEDs) excited by monolithically integrated III-nitride structure, where trichromatic multiple quantum wells are constructed by bandgap engineering technique, allowing flexible manipulation of carrier transport. With commercial green-red phosphor mixture, the fabricated WLEDs achieve broadband spectra with low-ratio blue component, superior color rendering, and high luminous efficacy at different correlated color temperatures. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | full-spectrum white LED | |
dc.subject.other | trichromatic multiple quantum wells | |
dc.subject.other | color rendering | |
dc.subject.other | bandgap engineering heteroepitaxial growth | |
dc.subject.other | carrier distribution rearrangement | |
dc.title | Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Physics | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/176025/1/lpor202200455.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/176025/2/lpor202200455-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/176025/3/lpor202200455_am.pdf | |
dc.identifier.doi | 10.1002/lpor.202200455 | |
dc.identifier.source | Laser & Photonics Reviews | |
dc.identifier.citedreference | C. Li, M. Ronnier Luo, G. Cui, C. Li, Color. Technol. 2011, 127, 129. | |
dc.identifier.citedreference | a) T. D. Moustakas, R. Paiella, Rep. Prog. Phys. 2017, 80, 106501; b) Y. Yu, T. Wang, X. Chen, L. Zhang, Y. Wang, Y. Niu, J. Yu, H. Ma, X. Li, F. Liu, G. Deng, Z. Shi, B. Zhang, X. Wang, Y. Zhang, Light: Sci. Appl. 2021, 10, 117; c) H. Hu, B. Tang, H. Wan, H. Sun, S. Zhou, J. Dai, C. Chen, S. Liu, L. J. Guo, Nano Energy 2020, 69, 104427; d) D. Wang, X. Liu, Y. Kang, X. Wang, Y. Wu, S. Fang, H. Yu, M. H. Memon, H. Zhang, W. Hu, Z. Mi, L. Fu, H. Sun, S. Long, Nat. Electron. 2021, 4, 645; e) S. Zhou, X. Liu, H. Yan, Z. Chen, Y. Liu, S. Liu, Opt. Express 2019, 27, A669; f) Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, Y. Hao, IEEE Electron Device Lett. 2018, 39, 811; g) X. Qiu, Y. Zhang, S. Hang, Y. Gao, Z. H. Zhang, Opt. Express 2020, 28, 18035. | |
dc.identifier.citedreference | a) D. Li, S. Liu, Z. Qian, Q. Liu, K. Zhou, D. Liu, S. Sheng, B. Sheng, F. Liu, Z. Chen, P. Wang, T. Wang, X. Rong, R. Tao, J. Kang, F. Chen, J. Kang, Y. Yuan, Q. Wang, M. Sun, W. Ge, B. Shen, P. Tian, X. Wang, Adv. Mater. 2022, 34, 2109765; b) Z. Liu, B. Liu, F. Ren, Y. Yin, S. Zhang, M. Liang, Z. Dou, Z. Liu, S. Yang, J. Yan, T. Wei, X. Yi, C. Wu, T. Guo, J. Wang, Y. Zhang, J. Li, P. Gao, Small 2022, 18, 2200057; c) X. M. Cai, Z. W. Zheng, H. Long, L. Y. Ying, B. P. Zhang, Appl. Phys. Lett. 2018, 112, 161102. | |
dc.identifier.citedreference | a) J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, Y. Zheng, J. Cryst. Growth 2002, 243, 151; b) H. Sun, K.-H. Li, C. G. T. Castanedo, S. Okur, G. S. Tompa, T. Salagaj, S. Lopatin, A. Genovese, X. Li, Cryst. Growth Des. 2018, 18, 2370; c) T. Zhang, Q. Cheng, Y. Li, Z. Hu, J. Ma, Y. Yao, Y. Zhang, Y. Zuo, Q. Feng, Y. Zhang, H. Zhou, J. Ning, C. Zhang, J. Zhang, Y. Hao, Scr. Mater. 2022, 213, 114623. | |
dc.identifier.citedreference | a) G. M. Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi, A. Radenovic, A. Kis, Nature 2020, 587, 72; b) W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao, L. Liu, T. Li, K. Wen, J. Wang, L. He, L. Sun, W. Li, H. Ning, N. Dai, F. Qin, X. Tu, D. Pan, S. He, D. Li, Y. Zheng, Y. Lu, B. Liu, R. Zhang, Y. Shi, X. Wang, Nat. Nanotechnol. 2021, 16, 1231; c) D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kümmell, G. Bacher, ACS Photonics 2019, 6, 1832; d) R. S. Lee, D. Kim, S. A. Pawar, T. Kim, J. C. Shin, S.-W. Kang, ACS Nano 2019, 13, 642; e) Q. Cheng, J. Pang, D. Sun, J. Wang, S. Zhang, F. Liu, Y. Chen, R. Yang, N. Liang, X. Lu, Y. Ji, J. Wang, C. Zhang, Y. Sang, H. Liu, W. Zhou, InfoMat 2020, 2, 656. | |
dc.identifier.citedreference | a) S. Zhou, X. Zhao, P. Du, Z. Zhang, X. Liu, S. Liu, L. J. Guo, Nanoscale 2022, 14, 4887; b) X. Zhao, B. Tang, L. Gong, J. Bai, J. Ping, S. Zhou, Appl. Phys. Lett. 2021, 118, 182102; c) D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, K. Ohkawa, Appl. Phys. Lett. 2020, 117, 172103. | |
dc.identifier.citedreference | a) S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 2006, 5, 810; b) E. F. Schubert, K. K. Jong, Science 2005, 308, 1274; c) M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028; d) J. Cho, J. H. Park, J. K. Kim, E. F. Schubert, Laser Photonics Rev. 2017, 11, 1600147. | |
dc.identifier.citedreference | a) Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, J. Phys. D: Appl. Phys. 2010, 43, 354002; b) J. J. Wierer Jr., J. Y. Tsao, D. S. Sizov, Laser Photonics Rev. 2013, 7, 963. | |
dc.identifier.citedreference | a) Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, X. Li, C. Shan, Adv. Mater. 2021, 33, 2001367; b) Y. Touitou, A. Reinberg, D. Touitou, Life Sci. 2017, 173, 94; c) L. Tähkämö, T. Partonen, A.-K. Pesonen, Chronobiol. Int. 2019, 36, 151. | |
dc.identifier.citedreference | a) S. Huang, M. Shang, Y. Yan, Y. Wang, P. Dang, J. Lin, Laser Photonics Rev. 2022, 10, 2200473; b) J. Hye Oh, S. Ji Yang, Y. Rag Do, Light: Sci. Appl. 2014, 3, e141; c) N. Zhang, Z. Wang, J. Zhao, D. Wang, X. Liu, Z. Yang, P. Li, ACS Appl. Electron. Mater. 2021, 3, 1115. | |
dc.identifier.citedreference | a) L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Light: Sci. Appl. 2016, 5, e16155; b) P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, W. Schnick, Nat. Mater. 2014, 13, 891; c) M. Zhao, H. Liao, L. Ning, Q. Zhang, Q. Liu, Z. Xia, Adv. Mater. 2018, 30, 1802489; d) H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, X. Chen, Nat. Commun. 2014, 5, 4312; e) Y. Wei, Z. Cheng, J. Lin, Chem. Soc. Rev. 2019, 48, 310; f) J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, T. Nann, Adv. Mater. 2008, 20, 4068; g) Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang, Laser Photonics Rev. 2021, 15, 2100278; h) S. Abe, J. J. Joos, L. I. D. J. Martin, Z. Hens, P. F. Smet, Light: Sci. Appl. 2017, 6, e16271; i) H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmüller, Nano Today 2011, 6, 632. | |
dc.identifier.citedreference | a) H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 1986, 48, 353; b) H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 1989, 28, L2112; c) S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 1994, 64, 1687. | |
dc.identifier.citedreference | a) R. Mirhosseini, M. F. Schubert, S. Chhajed, J. Cho, J. K. Kim, E. F. Schubert, Opt. Express 2009, 17, 10806; b) R. Charash, P. P. Maaskant, L. Lewis, C. McAleese, M. J. Kappers, C. J. Humphreys, B. Corbett, Appl. Phys. Lett. 2009, 95, 151103; c) J.-K. Sheu, F.-B. Chen, Y.-C. Wang, C.-C. Chang, S.-H. Huang, C.-N. Liu, M.-L. Lee, Opt. Express 2015, 23, A232; d) Q.-R. Yan, Y. Zhang, S.-T. Li, Q.-A. Yan, P.-P. Shi, Q.-L. Niu, M. He, G.-P. Li, J.-R. Li, Opt. Lett. 2012, 37, 1556; e) Q. Lv, J. Liu, C. Mo, J. Zhang, X. Wu, Q. Wu, F. Jiang, ACS Photonics 2019, 6, 130; f) D. S. Arteev, S. Y. Karpov, A. V. Sakharov, A. E. Nikolaev, S. O. Usov, W. V. Lundin, A. F. Tsatsulnikov, Semicond. Sci. Technol. 2020, 35, 045017. | |
dc.identifier.citedreference | a) S. Q. Zhou, M. F. Wu, L. N. Hou, S. D. Yao, H. J. Ma, R. Nie, Y. Z. Tong, Z. J. Yang, T. J. Yu, G. Y. Zhang, J. Cryst. Growth 2004, 263, 35; b) M. A. Moram, M. E. Vickers, Rep. Prog. Phys. 2009, 72, 036502. | |
dc.identifier.citedreference | a) J. Nishio, L. Sugiura, H. Fujimoto, Y. Kokubun, K. Itaya, Appl. Phys. Lett. 1997, 70, 3431; b) M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, C. J. Humphreys, J. Appl. Phys. 2003, 94, 1565; c) D. G. Zhao, D. S. Jiang, L. C. Le, L. L. Wu, L. Li, J. J. Zhu, H. Wang, Z. S. Liu, S. M. Zhang, Q. J. Jia, H. Yang, J. Alloys Compd. 2012, 540, 46; d) F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, J. Liu, Photon. Res. 2019, 7, 144. | |
dc.identifier.citedreference | J. H. Park, D. Y. Kim, E. F. Schubert, J. Cho, J. K. Kim, ACS Energy Lett. 2018, 3, 655. | |
dc.identifier.citedreference | A. G. Bispo-Jr, L. F. Saraiva, S. A. M. Lima, A. M. Pires, M. R. Davolos, J. Lumin. 2021, 237, 118167. | |
dc.identifier.citedreference | Y. N. Ahn, K. D. Kim, G. Anoop, G. S. Kim, J. S. Yoo, Sci. Rep. 2019, 9, 16848. | |
dc.identifier.citedreference | A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, M. Shur, Opt. Express 2012, 20, 5356. | |
dc.identifier.citedreference | a) I. TM, The Illuminating Engineering Society of North America, New York 2015, p. 26; b) I. ANSI, The Illuminating Engineering Society of North America, New York 2018. | |
dc.identifier.citedreference | H. C. Yoon, J. H. Oh, S. Lee, J. B. Park, Y. R. Do, Sci. Rep. 2017, 7, 2808. | |
dc.identifier.citedreference | a) G. Tao, X. Zhao, S. Zhou, Opt. Lett. 2021, 46, 4593; b) C. Chu, D. Zhang, H. Shao, J. Che, K. Tian, Y. Zhang, Z.-H. Zhang, Opt. Mater. Express 2021, 11, 1713. | |
dc.identifier.citedreference | I. E. Titkov, A. Yadav, S. Y. Karpov, A. V. Sakharov, A. F. Tsatsulnikov, T. J. Slight, A. Gorodetsky, E. U. Rafailov, Laser Photonics Rev. 2016, 10, 1031. | |
dc.identifier.citedreference | J. He, H. Zhao, X. Hu, Z. Fang, J. Wang, R. Zhang, G. Zheng, B. Zhou, F. Long, J. Phys. Chem. C 2021, 125, 22898. | |
dc.identifier.citedreference | Y. Huang, T. A. Cohen, C. K. Luscombe, Adv. Sustainable Syst. 2022, 6, 2000300. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.