Show simple item record

Associations Among Hip Structure, Bone Mineral Density, and Strength Vary With External Bone Size in White Women

dc.contributor.authorJepsen, Karl J
dc.contributor.authorBigelow, Erin MR
dc.contributor.authorCasden, Michael A
dc.contributor.authorGoulet, Robert W
dc.contributor.authorKennedy, Kathryn
dc.contributor.authorHertz, Samantha
dc.contributor.authorKadur, Chandan
dc.contributor.authorNolan, Bonnie T
dc.contributor.authorRichards-Mccullough, Kerry
dc.contributor.authorMerillat, Steffenie
dc.contributor.authorKarvonen-Gutierrez, Carrie A
dc.contributor.authorClines, Gregory
dc.contributor.authorBredbenner, Todd L
dc.date.accessioned2023-04-04T17:39:19Z
dc.date.available2024-04-04 13:39:17en
dc.date.available2023-04-04T17:39:19Z
dc.date.issued2023-03
dc.identifier.citationJepsen, Karl J; Bigelow, Erin MR; Casden, Michael A; Goulet, Robert W; Kennedy, Kathryn; Hertz, Samantha; Kadur, Chandan; Nolan, Bonnie T; Richards-Mccullough, Kerry ; Merillat, Steffenie; Karvonen-Gutierrez, Carrie A ; Clines, Gregory; Bredbenner, Todd L (2023). "Associations Among Hip Structure, Bone Mineral Density, and Strength Vary With External Bone Size in White Women." JBMR Plus 7(3): n/a-n/a.
dc.identifier.issn2473-4039
dc.identifier.issn2473-4039
dc.identifier.urihttps://hdl.handle.net/2027.42/176030
dc.description.abstractBone mineral density (BMD) is heavily relied upon to reflect structural changes affecting hip strength and fracture risk. Strong correlations between BMD and strength are needed to provide confidence that structural changes are reflected in BMD and, in turn, strength. This study investigated how variation in bone structure gives rise to variation in BMD and strength and tested whether these associations differ with external bone size. Cadaveric proximal femurs (n = 30, White women, 36–89+ years) were imaged using nanocomputed tomography (nano-CT) and loaded in a sideways fall configuration to assess bone strength and brittleness. Bone voxels within the nano-CT images were projected onto a plane to create pseudo dual-energy X-ray absorptiometry (pseudo-DXA) images consistent with a clinical DXA scan. A validation study using 19 samples confirmed pseudo-DXA measures correlated significantly with those measured from a commercially available DXA system, including bone mineral content (BMC) (R2 = 0.95), area (R2 = 0.58), and BMD (R2 = 0.92). BMD–strength associations were conducted using multivariate linear regression analyses with the samples divided into narrow and wide groups by pseudo-DXA area. Nearly 80% of the variation in strength was explained by age, body weight, and pseudo-DXA BMD for the narrow subgroup. Including additional structural or density distribution information in regression models only modestly improved the correlations. In contrast, age, body weight, and pseudo-DXA BMD explained only half of the variation in strength for the wide subgroup. Including bone density distribution or structural details did not improve the correlations, but including post-yield deflection (PYD), a measure of bone material brittleness, did increase the coefficient of determination to more than 70% for the wide subgroup. This outcome suggested material level effects play an important role in the strength of wide femoral necks. Thus, the associations among structure, BMD, and strength differed with external bone size, providing evidence that structure–function relationships may be improved by judiciously sorting study cohorts into subgroups. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.Strength and the associated bone density distribution images vary widely for any given BMD value.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherPOPULATION HETEROGENEITY
dc.subject.otherBONE MINERAL DENSITY
dc.subject.otherEXTERNAL SIZE
dc.subject.otherPROXIMAL FEMUR
dc.subject.otherSTRENGTH
dc.subject.otherSTRUCTURE
dc.titleAssociations Among Hip Structure, Bone Mineral Density, and Strength Vary With External Bone Size in White Women
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeriatric Medicine
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176030/1/jbm410715_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176030/2/jbm410715.pdf
dc.identifier.doi10.1002/jbm4.10715
dc.identifier.sourceJBMR Plus
dc.identifier.citedreferenceShieh A, Greendale GA, Cauley JA, Karlamangla AS. The association between fast increase in bone turnover during the menopause transition and subsequent fracture. J Clin Endocrinol Metab. 2020; 105 ( 4 ): e1440 - e1448.
dc.identifier.citedreferenceBell KL, Loveridge N, Power J, et al. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999; 14 ( 1 ): 111 - 119.
dc.identifier.citedreferenceJepsen KJ, Kozminski A, Bigelow EM, et al. Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause. J Bone Miner Res. 2017; 32 ( 6 ): 1218 - 1228.
dc.identifier.citedreferenceRezaei A, Dragomir-Daescu D. Femoral strength changes faster with age than BMD in both women and men: a biomechanical study. J Bone Miner Res. 2015; 30 ( 12 ): 2200 - 2206.
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010; 25 ( 7 ): 1468 - 1486.
dc.identifier.citedreferenceLuo Y. Image-based multilevel biomechanical modeling for fall-induced hip fracture. New York, NY: Springer Science + Business Media; 2016.
dc.identifier.citedreferencePatton DM, Bigelow EMR, Schlecht SH, Kohn DH, Bredbenner TL, Jepsen KJ. The relationship between whole bone stiffness and strength is age and sex dependent. J Biomech. 2019; 83: 125 - 133.
dc.identifier.citedreferenceCody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999; 32 ( 10 ): 1013 - 1020.
dc.identifier.citedreferenceNawathe S, Yang H, Fields AJ, Bouxsein ML, Keaveny TM. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body. J Biomech. 2015; 48 ( 7 ): 1264 - 1269.
dc.identifier.citedreferenceBouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006; 4 ( 2 ): 49 - 56.
dc.identifier.citedreferenceBredbenner TL, Mason RL, Havill LM, Orwoll ES, Nicolella DP, Osteoporotic Fractures in Men Study. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J Bone Miner Res. 2014; 29 ( 9 ): 2090 - 2100.
dc.identifier.citedreferenceNawathe S, Akhlaghpour H, Bouxsein ML, Keaveny TM. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. J Bone Miner Res. 2014; 29 ( 2 ): 507 - 515.
dc.identifier.citedreferenceHuber MB, Carballido-Gamio J, Bauer JS, et al. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT-correlation with biomechanical strength measurement. Radiology. 2008; 247 ( 2 ): 472 - 481.
dc.identifier.citedreferenceLoundagain LL, Bredbenner TL, Jepsen KJ, Edwards WB. Bringing mechanical context to image-based measurements of bone integrity. Curr Osteoporos Rep. 2021; 19 ( 5 ): 542 - 552.
dc.identifier.citedreferenceFaulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993; 8 ( 10 ): 1211 - 1217.
dc.identifier.citedreferenceGluer CC, Cummings SR, Pressman A, et al. Prediction of hip fractures from pelvic radiographs: the Study of Osteoporotic Fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1994; 9 ( 5 ): 671 - 677.
dc.identifier.citedreferenceKarlsson KM, Sernbo I, Obrant KJ, Redlund-Johnell I, Johnell O. Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone. 1996; 18 ( 4 ): 327 - 330.
dc.identifier.citedreferenceVillamor E, Monserrat C, Del Rio L, Romero-Martin JA, Ruperez MJ. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Comput Methods Programs Biomed. 2020; 193: 105484.
dc.identifier.citedreferenceDuboeuf F, Hans D, Schott AM, et al. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS study. J Bone Miner Res. 1997; 12 ( 11 ): 1895 - 1902.
dc.identifier.citedreferenceBeck TJ, Ruff CB, Scott WW, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int. 1992; 50 ( 1 ): 24 - 29.
dc.identifier.citedreferenceDuan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003; 18 ( 10 ): 1766 - 1774.
dc.identifier.citedreferenceZhang F, Tan LJ, Lei SF, Deng HW. The differences of femoral neck geometric parameters: effects of age, gender and race. Osteoporos Int. 2010; 21 ( 7 ): 1205 - 1214.
dc.identifier.citedreferenceSzulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int. 2006; 17 ( 2 ): 231 - 236.
dc.identifier.citedreferencePulkkinen P, Eckstein F, Lochmuller EM, Kuhn V, Jamsa T. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res. 2006; 21 ( 6 ): 895 - 901.
dc.identifier.citedreferencePulkkinen P, Gluer CC, Jamsa T. Investigation of differences between hip fracture types: a worthy strategy for improved risk assessment and fracture prevention. Bone. 2011; 49 ( 4 ): 600 - 604.
dc.identifier.citedreferenceBigelow EM, Patton DM, Ward FS, et al. External bone size is a key determinant of strength-decline trajectories of aging male radii. J Bone Miner Res. 2019; 34 ( 5 ): 825 - 837.
dc.identifier.citedreferenceRuff CB, Hayes WC. Bone-mineral content in the lower limb. Relationship to cross-sectional geometry. J Bone Joint Surg Am. 1984; 66 ( 7 ): 1024 - 1031.
dc.identifier.citedreferenceMartin RB, Burr DB. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech. 1984; 17 ( 3 ): 195 - 201.
dc.identifier.citedreferenceBeck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 1990; 25 ( 1 ): 6 - 18.
dc.identifier.citedreferenceBeck TJ, Ruff CB, Mourtada FA, et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996; 11 ( 5 ): 645 - 653.
dc.identifier.citedreferenceAugat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res. 1996; 11 ( 9 ): 1356 - 1363.
dc.identifier.citedreferenceRivadeneira F, Zillikens MC, De Laet CE, et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam study. J Bone Miner Res. 2007; 22 ( 11 ): 1781 - 1790.
dc.identifier.citedreferenceYoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. J Bone Miner Res. 1994; 9 ( 7 ): 1053 - 1064.
dc.identifier.citedreferenceHui SL, Zhou L, Evans R, et al. Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporos Int. 1999; 9 ( 3 ): 200 - 205.
dc.identifier.citedreferenceDanielson ME, Beck TJ, Lian Y, et al. Ethnic variability in bone geometry as assessed by hip structure analysis: findings from the hip strength across the menopausal transition study. J Bone Miner Res. 2013; 28 ( 4 ): 771 - 779.
dc.identifier.citedreferenceEpelboym Y, Gendron RN, Mayer J, et al. The inter-individual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue-quality traits and differential bone loss patterns. J Bone Miner Res. 2012; 27 ( 7 ): 1501 - 1510.
dc.identifier.citedreferenceBurge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007; 22 ( 3 ): 465 - 475.
dc.identifier.citedreferenceBrauer CA, Coca-Perraillon M, Cutler DM, Rosen AB. Incidence and mortality of hip fractures in the United States. JAMA. 2009; 302 ( 14 ): 1573 - 1579.
dc.identifier.citedreferenceKhosla S, Cauley JA, Compston J, et al. Addressing the crisis in the treatment of osteoporosis: a path forward. J Bone Miner Res. 2016; 32 ( 3 ): 424 - 430.
dc.identifier.citedreferenceVilaca T, Eastell R, Schini M. Osteoporosis in men. Lancet Diabetes Endocrinol. 2022; 10 ( 4 ): 273 - 283.
dc.identifier.citedreferenceUS Preventive Services Task Force, Curry SJ, Krist AH, et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA. 2018; 319 ( 24 ): 2521 - 2531.
dc.identifier.citedreferenceCooper C, Cole ZA, Holroyd CR, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. 2011; 22 ( 5 ): 1277 - 1288.
dc.identifier.citedreferenceCauley JA, Chalhoub D, Kassem AM, Fuleihan GH. Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol. 2014; 10 ( 6 ): 338 - 351.
dc.identifier.citedreferenceLewiecki EM, Wright NC, Curtis JR, et al. Hip fracture trends in the United States, 2002 to 2015. Osteoporos Int. 2018; 29 ( 3 ): 717 - 722.
dc.identifier.citedreferenceGullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997; 7 ( 5 ): 407 - 413.
dc.identifier.citedreferenceHernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013; 8: 136.
dc.identifier.citedreferenceSiris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004; 164 ( 10 ): 1108 - 1112.
dc.identifier.citedreferenceWainwright SA, Marshall LM, Ensrud KE, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005; 90 ( 5 ): 2787 - 2793.
dc.identifier.citedreferenceCranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007; 177 ( 6 ): 575 - 580.
dc.identifier.citedreferenceTremollieres FA, Pouilles JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res. 2010; 25 ( 5 ): 1002 - 1009.
dc.identifier.citedreferenceLink TM, Vieth V, Langenberg R, et al. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int. 2003; 72 ( 2 ): 156 - 165.
dc.identifier.citedreferenceMarshall LM, Lang TF, Lambert LC, et al. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res. 2006; 21 ( 8 ): 1197 - 1206.
dc.identifier.citedreferenceLuo Y. Bone mineral density averaged over a region of interest on femur is affected by age-related change of bone geometry. Osteoporos Int. 2018; 29 ( 6 ): 1419 - 1425.
dc.identifier.citedreferenceMittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, microCT, and DXA. J Biomech. 2008; 41 ( 2 ): 368 - 375.
dc.identifier.citedreferencePerilli E, Briggs AM, Kantor S, et al. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone. 2012; 50 ( 6 ): 1416 - 1425.
dc.identifier.citedreferenceSchmidutz F, Schopf C, Yan SG, Ahrend MD, Ihle C, Sprecher C. Cortical bone thickness of the distal radius predicts the local bone mineral density. Bone Joint Res. 2021; 10 ( 12 ): 820 - 829.
dc.identifier.citedreferenceBlake GM, Fogelman I. Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med. 1997; 27 ( 3 ): 210 - 228.
dc.identifier.citedreferenceKuiper JW, Van Kuijk C, Grashuis JL. Distribution of trabecular and cortical bone related to geometry. A quantitative computed tomography study of the femoral neck. Invest Radiol. 1997; 32 ( 2 ): 83 - 89.
dc.identifier.citedreferenceBeck TJ. Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007; 5 ( 2 ): 49 - 55.
dc.identifier.citedreferenceDanielson ME, Beck TJ, Karlamangla AS, et al. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women. Osteoporos Int. 2013; 24 ( 4 ): 1379 - 1388.
dc.identifier.citedreferenceWolff J. The law of bone remodelling. Berlin: Springer; 1986 p 1892.
dc.identifier.citedreferenceNazarian A, Muller J, Zurakowski D, Muller R, Snyder BD. Densitometric, morphometric and mechanical distributions in the human proximal femur. J Biomech. 2007; 40 ( 11 ): 2573 - 2579.
dc.identifier.citedreferenceZebaze RM, Jones A, Welsh F, Knackstedt M, Seeman E. Femoral neck shape and the spatial distribution of its mineral mass varies with its size: clinical and biomechanical implications. Bone. 2005; 37 ( 2 ): 243 - 252.
dc.identifier.citedreferenceBell KL, Garrahan N, Kneissel M, et al. Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system. Bone. 1996; 19 ( 5 ): 541 - 548.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.