Show simple item record

A Bidentate Ligand Featuring Ditopic Lewis Acids in the Second Sphere for Selective Substrate Capture and Activation

dc.contributor.authorBeagan, Daniel M.
dc.contributor.authorKiernicki, John J.
dc.contributor.authorZeller, Matthias
dc.contributor.authorSzymczak, Nathaniel K.
dc.date.accessioned2023-04-04T17:39:25Z
dc.date.available2024-04-04 13:39:23en
dc.date.available2023-04-04T17:39:25Z
dc.date.issued2023-03-20
dc.identifier.citationBeagan, Daniel M.; Kiernicki, John J.; Zeller, Matthias; Szymczak, Nathaniel K. (2023). "A Bidentate Ligand Featuring Ditopic Lewis Acids in the Second Sphere for Selective Substrate Capture and Activation." Angewandte Chemie 135(13): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/176032
dc.description.abstractWe present a ligand platform featuring appended ditopic Lewis acids to facilitate capture/activation of diatomic substrates. We show that incorporation of two 9-borabicyclo[3.3.1]nonane (9-BBN) units on a single carbon tethered to a pyridine pyrazole scaffold maintains a set of unquenched nitrogen donors available to coordinate FeII, ZnII, and NiII. Using hydride ion affinity and competition experiments, we establish an additive effect for ditopic secondary sphere boranes, compared to the monotopic analogue. These effects are exploited to achieve high selectivity for binding NO2− in the presence of competitive anions such as F− and NO3−. Finally, we demonstrate hydrazine capture within the second-sphere of metal complexes, followed by unique activation pathways to generate hydrazido and diazene ligands on Zn and Fe, respectively.We report the synthesis of a bidentate ligand featuring secondary sphere ditopic Lewis acids. We verify a Lewis acid additivity effect for the ditopic boranes compared to a monotopic analogue using hydride ion affinity and competition studies. We show chemoselective nitrite capture in the presence of other anions. Pre-organized hydrazine adducts in the second sphere of Zn and Fe are functionalized to hydrazido and diazene ligands, respectively.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSecondary Coordination Sphere
dc.subject.otherDitopic Boranes
dc.subject.otherHydrazine Functionalization
dc.subject.otherLewis Acids
dc.subject.otherChemoselective Anion Binding
dc.titleA Bidentate Ligand Featuring Ditopic Lewis Acids in the Second Sphere for Selective Substrate Capture and Activation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176032/1/ange202218907.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176032/2/ange202218907_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176032/3/ange202218907-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.202218907
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceS. P. Lewis, L. D. Henderson, B. D. Chandler, M. Parvez, W. E. Piers, S. Collins, J. Am. Chem. Soc. 2005, 127, 46 – 47;
dc.identifier.citedreference 
dc.identifier.citedreferenceC.-H. Chen, F. P. Gabbaï, Angew. Chem. Int. Ed. 2018, 57, 521 – 525; Angew. Chem. 2018, 130, 530 – 534;
dc.identifier.citedreferenceM. Melaïmi, S. Solé, C.-W. Chiu, H. Wang, F. P. Gabbaï, Inorg. Chem. 2006, 45, 8136 – 8143;
dc.identifier.citedreferenceS. Solé, F. P. Gabbaï, Chem. Commun. 2004, 1284 – 1285.
dc.identifier.citedreference 
dc.identifier.citedreferenceC.-H. Chen, F. P. Gabbaï, Chem. Sci. 2018, 9, 6210 – 6218;
dc.identifier.citedreferenceZ. Lu, H. Quanz, J. Ruhl, G. Albrecht, C. Logemann, D. Schlettwein, P. R. Schreiner, H. A. Wegner, Angew. Chem. Int. Ed. 2019, 58, 4259 – 4263; Angew. Chem. 2019, 131, 4303 – 4307;
dc.identifier.citedreferenceS. Xu, L. A. Essex, J. Q. Nguyen, P. Farias, J. W. Ziller, W. H. Harmann, W. J. Evans, Dalton Trans. 2021, 50, 15000 – 15002.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Chai, S. P. Lewis, S. Collins, T. J. J. Sciarone, L. D. Henderson, P. A. Chase, G. J. Irvine, W. E. Piers, M. R. J. Elsegood, W. Clegg, Organometallics 2007, 26, 5667 – 5679;
dc.identifier.citedreferenceK. Köhler, W. E. Piers, A. P. Jarvis, S. Xin, Y. Feng, A. M. Bravakis, S. Collins, W. Clegg, G. P. A. Yap, T. B. Marder, Organometallics 1998, 17, 3557 – 3566;
dc.identifier.citedreferenceS. P. Lewis, N. J. Taylor, W. E. Piers, S. Collins, J. Am. Chem. Soc. 2003, 125, 14686 – 14687;
dc.identifier.citedreferenceV. C. Williams, W. E. Piers, W. Clegg, M. R. J. Elsegood, S. Collins, T. B. Marder, J. Am. Chem. Soc. 1999, 121, 3244 – 3245;
dc.identifier.citedreferenceS. N. Kessler, H. A. Wegner, Org. Lett. 2010, 12 ( 18 ), 4062 – 4065.
dc.identifier.citedreferenceSee Supporting Information Pg S14 for more details of single vs. double hydroboration.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. A. Beckett, G. C. Strickland, J. R. Holland, K. Sukumar Varma, Polymer 1996, 37, 4629 – 4631;
dc.identifier.citedreferenceA. P. Lathem, Z. M. Heiden, Dalton Trans. 2017, 46, 5976 – 5985;
dc.identifier.citedreferenceL. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht, I. Krossing, Angew. Chem. Int. Ed. 2008, 47, 7659 – 7663; Angew. Chem. 2008, 120, 7772 – 7776;
dc.identifier.citedreferenceT. E. Mallouk, G. L. Rosenthal, G. Mueller, R. Brusasco, N. Bartlett, Inorg. Chem. 1984, 23, 3167 – 3173.
dc.identifier.citedreferenceM. T. Mock, R. G. Potter, D. M. Camaioni, J. Li, W. G. Dougherty, W. S. Kassel, B. Twamley, D. L. DuBois, J. Am. Chem. Soc. 2009, 131, 14454 – 14465.
dc.identifier.citedreferenceThe 11 B NMR and 1 H NMR (hydride) signals observed are both broad singlets and show no B−H coupling, which is consistent with similar 9-BBN hydrides reported from our group (Refs. 9f and 4b).
dc.identifier.citedreferenceFree fluoride observed by 19 F spectroscopy (see Supporting Information for more details).
dc.identifier.citedreferenceC. T. Saouma, R. A. Kinney, B. M. Hoffman, J. C. Peters, Angew. Chem. Int. Ed. 2011, 50, 3446 – 3449; Angew. Chem. 2011, 123, 3508 – 3511.
dc.identifier.citedreferenceDeposition numbers  2214449, 2214450, 2214451, 2214452, 2214453, 2214454, 2214455, 2214456, 2214457, 2214458, 2214459, 2214460, 2214461, 2214462 and 2214463 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
dc.identifier.citedreferenceY-L. Liu, G. Kehr, C. G. Daniliuc, G. Erker, Chem. Eur. J. 2017, 23, 12141 – 12144.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceA. S. Borovik, Acc. Chem. Res. 2005, 38, 54 – 61;
dc.identifier.citedreferenceT. Spatzal, K. A. Perez, O. Einsle, J. B. Howard, D. C. Rees, Science 2014, 345, 1620 – 1623;
dc.identifier.citedreferenceD. Sippel, M. Rohde, J. Netzer, C. Trncik, J. Gies, K. Grunau, I. Djurdjevic, L. Decamps, S. L. A. Andrade, O. Einsle, Science 2018, 359, 1484 – 1489;
dc.identifier.citedreferenceC. Van Stappen, Y. Deng, Y. Liu, H. Heidari, J.-X. Wang, Y. Zhou, A. P. Ledray, Y. Lu, Chem. Rev. 2022, 122, 11974 – 12045;
dc.identifier.citedreferenceS. T. Stripp, B. R. Duffus, V. Fourmond, C. Léger, S. Leimkühler, S. Hirota, Y. Hu, A. Jasniewski, H. Ogata, M. W. Ribbe, Chem. Rev. 2022, 122, 11900 – 11973.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. C. Dos Santos, R. Y. Igarashi, H.-I. Lee, B. M. Hoffman, L. C. Seefeldt, D. R. Dean, Acc. Chem. Res. 2005, 38, 208 – 214;
dc.identifier.citedreferenceX. Zhang, K. N. Houk, Acc. Chem. Res. 2005, 38, 379 – 385;
dc.identifier.citedreferenceM. Prejanò, F. E. Medina, M. J. Ramos, N. Russo, P. A. Fernandes, T. Marino, ACS Catal. 2020, 10, 2872 – 2881;
dc.identifier.citedreferenceA. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, M. H. M. Olsson, Chem. Rev. 2006, 106, 3210 – 3235.
dc.identifier.citedreferenceM. W. Drover, Chem. Soc. Rev. 2022, 51, 1861 – 1880.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. J. Kiernicki, M. Zeller, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 18194 – 18197;
dc.identifier.citedreferenceJ. J. Kiernicki, J. P. Shanahan, M. Zeller, N. K. Szymczak, Chem. Sci. 2019, 10, 5539 – 5545.
dc.identifier.citedreferenceA. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2008, 130, 11874 – 11875.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. E. Cowie, D. J. H. Emslie, Organometallics 2015, 34, 2737 – 2746;
dc.identifier.citedreferenceB. E. Cowie, D. J. H. Emslie, Can. J. Chem. 2018, 96, 484 – 491.
dc.identifier.citedreferenceJ. A. Zurakowski, B. J. H. Austen, M. C. Dufour, D. M. Spasyuk, D. J. Nelson, M. W. Drover, Chem. Eur. J. 2021, 27, 16021 – 16027.
dc.identifier.citedreferenceJ. A. Zurakowski, M. Bhattacharyya, D. M. Spasyuk, M. W. Drover, Inorg. Chem. 2021, 60, 37 – 41.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. J. Kiernicki, E. E. Norwine, M. A. Lovasz, M. Zeller, N. K. Szymczak, Chem. Commun. 2020, 56, 13105 – 13108;
dc.identifier.citedreferenceJ. J. Kiernicki, E. E. Norwine, M. Zeller, N. K. Szymczak, Chem. Commun. 2019, 55, 11896 – 11899;
dc.identifier.citedreferenceJ. J. Kiernicki, E. E. Norwine, M. Zeller, N. K. Szymczak, Inorg. Chem. 2021, 60, 13806 – 13810;
dc.identifier.citedreferenceJ. J. Kiernicki, M. Zeller, N. K. Szymczak, Inorg. Chem. 2019, 58, 1147 – 1154;
dc.identifier.citedreferenceJ. J. Kiernicki, M. Zeller, N. K. Szymczak, Inorg. Chem. 2020, 59, 9279 – 9286;
dc.identifier.citedreferenceE. E. Norwine, J. J. Kiernicki, M. Zeller, N. K. Szymczak, J. Am. Chem. Soc. 2022, 144, 15038 – 15046;
dc.identifier.citedreferenceB. Wang, C. S. G. Seo, C. Zhang, J. Chu, N. K. Szymczak, J. Am. Chem. Soc. 2022, 144, 15793 – 15802.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Miralles, R. J. Maza, E. Fernández, Adv. Synth. Catal. 2018, 360, 1306 – 1327;
dc.identifier.citedreferenceR. Nallagonda, K. Padala, A. Masarwa, Org. Biomol. Chem. 2018, 16, 1050 – 1064;
dc.identifier.citedreferenceX. Zhao, D. W. Stephan, Chem. Commun. 2011, 47, 1833 – 1835;
dc.identifier.citedreferenceY.-L. Liu, G. Kehr, C. G. Daniliuc, G. Erker, Chem. Sci. 2017, 8, 1097 – 1104.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. D. Hoefelmeyer, F. P. Gabbaï, J. Am. Chem. Soc. 2000, 122, 9054 – 9055;
dc.identifier.citedreferenceA. Hübner, T. Kaese, M. Diefenbach, B. Endeward, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, J. Am. Chem. Soc. 2015, 137, 3705 – 3714.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.