Show simple item record

International consensus statement on allergy and rhinology: Allergic rhinitis – 2023

dc.contributor.authorWise, Sarah K.
dc.contributor.authorDamask, Cecelia
dc.contributor.authorRoland, Lauren T.
dc.contributor.authorEbert, Charles
dc.contributor.authorLevy, Joshua M.
dc.contributor.authorLin, Sandra
dc.contributor.authorLuong, Amber
dc.contributor.authorRodriguez, Kenneth
dc.contributor.authorSedaghat, Ahmad R.
dc.contributor.authorToskala, Elina
dc.contributor.authorVillwock, Jennifer
dc.contributor.authorAbdullah, Baharudin
dc.contributor.authorAkdis, Cezmi
dc.contributor.authorAlt, Jeremiah A.
dc.contributor.authorAnsotegui, Ignacio J.
dc.contributor.authorAzar, Antoine
dc.contributor.authorBaroody, Fuad
dc.contributor.authorBenninger, Michael S.
dc.contributor.authorBernstein, Jonathan
dc.contributor.authorBrook, Christopher
dc.contributor.authorCampbell, Raewyn
dc.contributor.authorCasale, Thomas
dc.contributor.authorChaaban, Mohamad
dc.contributor.authorChew, Fook Tim
dc.contributor.authorChambliss, Jeffrey
dc.contributor.authorCianferoni, Antonella
dc.contributor.authorCustovic, Adnan
dc.contributor.authorDavis, Elizabeth Mahoney
dc.contributor.authorDelGaudio, John M.
dc.contributor.authorEllis, Anne K.
dc.contributor.authorFlanagan, Carrie
dc.contributor.authorFokkens, Wytske J.
dc.contributor.authorFranzese, Christine
dc.contributor.authorGreenhawt, Matthew
dc.contributor.authorGill, Amarbir
dc.contributor.authorHalderman, Ashleigh
dc.contributor.authorHohlfeld, Jens M.
dc.contributor.authorIncorvaia, Cristoforo
dc.contributor.authorJoe, Stephanie A.
dc.contributor.authorJoshi, Shyam
dc.contributor.authorKuruvilla, Merin Elizabeth
dc.contributor.authorKim, Jean
dc.contributor.authorKlein, Adam M.
dc.contributor.authorKrouse, Helene J.
dc.contributor.authorKuan, Edward C.
dc.contributor.authorLang, David
dc.contributor.authorLarenas-Linnemann, Desiree
dc.contributor.authorLaury, Adrienne M.
dc.contributor.authorLechner, Matt
dc.contributor.authorLee, Stella E.
dc.contributor.authorLee, Victoria S.
dc.contributor.authorLoftus, Patricia
dc.contributor.authorMarcus, Sonya
dc.contributor.authorMarzouk, Haidy
dc.contributor.authorMattos, Jose
dc.contributor.authorMcCoul, Edward
dc.contributor.authorMelen, Erik
dc.contributor.authorMims, James W.
dc.contributor.authorMullol, Joaquim
dc.contributor.authorNayak, Jayakar V.
dc.contributor.authorOppenheimer, John
dc.contributor.authorOrlandi, Richard R.
dc.contributor.authorPhillips, Katie
dc.contributor.authorPlatt, Michael
dc.contributor.authorRamanathan, Murugappan
dc.contributor.authorRaymond, Mallory
dc.contributor.authorRhee, Chae-Seo
dc.contributor.authorReitsma, Sietze
dc.contributor.authorRyan, Matthew
dc.contributor.authorSastre, Joaquin
dc.contributor.authorSchlosser, Rodney J.
dc.contributor.authorSchuman, Theodore A.
dc.contributor.authorShaker, Marcus S.
dc.contributor.authorSheikh, Aziz
dc.contributor.authorSmith, Kristine A.
dc.contributor.authorSoyka, Michael B.
dc.contributor.authorTakashima, Masayoshi
dc.contributor.authorTang, Monica
dc.contributor.authorTantilipikorn, Pongsakorn
dc.contributor.authorTaw, Malcolm B.
dc.contributor.authorTversky, Jody
dc.contributor.authorTyler, Matthew A.
dc.contributor.authorVeling, Maria C.
dc.contributor.authorWallace, Dana
dc.contributor.authorWang, De Yun
dc.contributor.authorWhite, Andrew
dc.contributor.authorZhang, Luo
dc.date.accessioned2023-04-04T17:39:59Z
dc.date.available2024-05-04 13:39:49en
dc.date.available2023-04-04T17:39:59Z
dc.date.issued2023-04
dc.identifier.citationWise, Sarah K.; Damask, Cecelia; Roland, Lauren T.; Ebert, Charles; Levy, Joshua M.; Lin, Sandra; Luong, Amber; Rodriguez, Kenneth; Sedaghat, Ahmad R.; Toskala, Elina; Villwock, Jennifer; Abdullah, Baharudin; Akdis, Cezmi; Alt, Jeremiah A.; Ansotegui, Ignacio J.; Azar, Antoine; Baroody, Fuad; Benninger, Michael S.; Bernstein, Jonathan; Brook, Christopher; Campbell, Raewyn; Casale, Thomas; Chaaban, Mohamad; Chew, Fook Tim; Chambliss, Jeffrey; Cianferoni, Antonella; Custovic, Adnan; Davis, Elizabeth Mahoney; DelGaudio, John M.; Ellis, Anne K.; Flanagan, Carrie; Fokkens, Wytske J.; Franzese, Christine; Greenhawt, Matthew; Gill, Amarbir; Halderman, Ashleigh; Hohlfeld, Jens M.; Incorvaia, Cristoforo; Joe, Stephanie A.; Joshi, Shyam; Kuruvilla, Merin Elizabeth; Kim, Jean; Klein, Adam M.; Krouse, Helene J.; Kuan, Edward C.; Lang, David; Larenas-Linnemann, Desiree ; Laury, Adrienne M.; Lechner, Matt; Lee, Stella E.; Lee, Victoria S.; Loftus, Patricia; Marcus, Sonya; Marzouk, Haidy; Mattos, Jose; McCoul, Edward; Melen, Erik; Mims, James W.; Mullol, Joaquim; Nayak, Jayakar V.; Oppenheimer, John; Orlandi, Richard R.; Phillips, Katie; Platt, Michael; Ramanathan, Murugappan; Raymond, Mallory; Rhee, Chae-Seo ; Reitsma, Sietze; Ryan, Matthew; Sastre, Joaquin; Schlosser, Rodney J.; Schuman, Theodore A.; Shaker, Marcus S.; Sheikh, Aziz; Smith, Kristine A.; Soyka, Michael B.; Takashima, Masayoshi; Tang, Monica; Tantilipikorn, Pongsakorn; Taw, Malcolm B.; Tversky, Jody; Tyler, Matthew A.; Veling, Maria C.; Wallace, Dana; Wang, De Yun; White, Andrew; Zhang, Luo (2023). "International consensus statement on allergy and rhinology: Allergic rhinitis - 2023." International Forum of Allergy & Rhinology 13(4): 293-859.
dc.identifier.issn2042-6976
dc.identifier.issn2042-6984
dc.identifier.urihttps://hdl.handle.net/2027.42/176034
dc.description.abstractBackgroundIn the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document.MethodsICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work.ResultsICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost.ConclusionThe ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
dc.publisherWiley Periodicals, Inc.
dc.publisherJaypee Brothers Medical Publishing
dc.subject.othercockroach
dc.subject.otherconjunctivitis
dc.subject.otherconsensus
dc.subject.othercorticosteroid
dc.subject.othercromolyn
dc.subject.otherdecongestant
dc.subject.othereosinophilic esophagitis
dc.subject.otherenvironment
dc.subject.otherepicutaneous
dc.subject.otherimmunotherapy
dc.subject.otherepidemiology
dc.subject.otherevidence-based medicine
dc.subject.otherfood allergy
dc.subject.otherhouse dust mite
dc.subject.otherIgE
dc.subject.otherimmunoglobulin E
dc.subject.otherimmunotherapy
dc.subject.otherinhalant allergy
dc.subject.otherleukotriene
dc.subject.othermicrobiome
dc.subject.otheroccupational rhinitis
dc.subject.otheromalizumab
dc.subject.otherpediatric
dc.subject.otherperennial
dc.subject.otherpet dander
dc.subject.otherpollen
dc.subject.otherprobiotic
dc.subject.otherrhinitis
dc.subject.otherrhinosinusitis
dc.subject.othersaline
dc.subject.otherseasonal
dc.subject.othersensitization
dc.subject.othersinusitis
dc.subject.othersocioeconomic
dc.subject.otherspecific IgE
dc.subject.othersubcutaneous immunotherapy
dc.subject.othersublingual immunotherapy
dc.subject.othersystematic review
dc.subject.otherrhinitis
dc.subject.othertotal IgE
dc.subject.othertranscutaneous immunotherapy
dc.subject.othervalidated survey
dc.subject.othercough
dc.subject.otherallergen extract
dc.subject.otherallergen immunotherapy
dc.subject.otherallergy
dc.subject.otherallergic rhinitis
dc.subject.otherantihistamine
dc.subject.otherasthma
dc.subject.otheratopic dermatitis
dc.subject.otheravoidance
dc.subject.otherbiologic
dc.titleInternational consensus statement on allergy and rhinology: Allergic rhinitis – 2023
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAllergy and Clinical Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176034/1/alr23090_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176034/2/alr23090.pdf
dc.identifier.doi10.1002/alr.23090
dc.identifier.sourceInternational Forum of Allergy & Rhinology
dc.identifier.citedreferenceXian M, Feng M, Dong Y, Wei N, Su Q, Li J. Changes in CD4+CD25+FoxP3+ regulatory T cells and serum cytokines in sublingual and subcutaneous immunotherapy in allergic rhinitis with or without asthma. Int Arch Allergy Immunol. 2020; 181 ( 1 ): 71 - 80. https://doi.org/10.1159/000503143
dc.identifier.citedreferenceCastro Jimenez A, Gomez Torrijos E, Garcia Rodriguez R, et al. Demographic, clinical and allergological characteristics of Eosinophilic Esophagitis in a Spanish central region. Allergol Immunopathol (Madr). 2014; 42 ( 5 ): 407 - 414. https://doi.org/10.1016/j.aller.2013.04.004
dc.identifier.citedreferenceSpergel JM, Brown-Whitehorn TF, Beausoleil JL, et al. 14 years of eosinophilic esophagitis: clinical features and prognosis. J Pediatr Gastroenterol Nutr. 2009; 48 ( 1 ): 30 - 36. https://doi.org/10.1097/MPG.0b013e3181788282
dc.identifier.citedreferenceRoy-Ghanta S, Larosa DF, Katzka DA. Atopic characteristics of adult patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2008; 6 ( 5 ): 531 - 535. https://doi.org/10.1016/j.cgh.2007.12.045
dc.identifier.citedreferenceAssa’ad AH, Putnam PE, Collins MH, et al. Pediatric patients with eosinophilic esophagitis: an 8-year follow-up. J Allergy Clin Immunol. 2007; 119 ( 3 ): 731 - 738. https://doi.org/10.1016/j.jaci.2006.10.044
dc.identifier.citedreferenceMorris LG, Burschtin O, Lebowitz RA, Jacobs JB, Lee KC. Nasal obstruction and sleep-disordered breathing: a study using acoustic rhinometry. Am J Rhinol. 2005; 19 ( 1 ): 33 - 39.
dc.identifier.citedreferencePlaza-Martin AM, Jimenez-Feijoo R, Andaluz C, et al. Polysensitization to aeroallergens and food in eosinophilic esophagitis in a pediatric population. Allergol Immunopathol (Madr). 2007; 35 ( 1 ): 35 - 37. https://doi.org/10.1016/s0301-0546(07)70227-6
dc.identifier.citedreferenceSugnanam KK, Collins JT, Smith PK, et al. Dichotomy of food and inhalant allergen sensitization in eosinophilic esophagitis. Allergy. 2007; 62 ( 11 ): 1257 - 1260. https://doi.org/10.1111/j.1398-9995.2007.01454.x
dc.identifier.citedreferenceRemedios M, Campbell C, Jones DM, Kerlin P. Eosinophilic esophagitis in adults: clinical, endoscopic, histologic findings, and response to treatment with fluticasone propionate. Gastrointest Endosc. 2006; 63 ( 1 ): 3 - 12. https://doi.org/10.1016/j.gie.2005.07.049
dc.identifier.citedreferenceGuajardo JR, Plotnick LM, Fende JM, Collins MH, Putnam PE, Rothenberg ME. Eosinophil-associated gastrointestinal disorders: a world-wide-web based registry. J Pediatr. 2002; 141 ( 4 ): 576 - 581. https://doi.org/10.1067/mpd.2002.127663
dc.identifier.citedreferenceGonzalez-Cervera J, Arias A, Redondo-Gonzalez O, Cano-Mollinedo MM, Terreehorst I, Lucendo AJ. Association between atopic manifestations and eosinophilic esophagitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2017; 118 ( 5 ): 582 - 590.e2. https://doi.org/10.1016/j.anai.2017.02.006
dc.identifier.citedreferenceImamura K, Haruma K, Matsumoto H, et al. Clinical and endoscopic characteristics of eosinophilic esophagitis in Japan: a case-control study. Asia Pac Allergy. 2020; 10 ( 2 ): e16. https://doi.org/10.5415/apallergy.2020.10.e16
dc.identifier.citedreferenceArmentia A, Martin-Armentia S, Alvarez-Nogal R, Armentia BM, Gayoso MJ, Fernandez-Gonzalez D. Germination of pollen grains in the oesophagus of individuals with eosinophilic oesophagitis. Clin Exp Allergy. 2019; 49 ( 4 ): 471 - 473. https://doi.org/10.1111/cea.13312
dc.identifier.citedreferenceReed CC, Iglesia EGA, Commins SP, Dellon ES. Seasonal exacerbation of eosinophilic esophagitis histologic activity in adults and children implicates role of aeroallergens. Ann Allergy Asthma Immunol. 2019; 122 ( 3 ): 296 - 301. https://doi.org/10.1016/j.anai.2018.12.013
dc.identifier.citedreferenceFahey L, Robinson G, Weinberger K, Giambrone AE, Solomon AB. Correlation between aeroallergen levels and new diagnosis of eosinophilic esophagitis in New York City. J Pediatr Gastroenterol Nutr. 2017; 64 ( 1 ): 22 - 25. https://doi.org/10.1097/MPG.0000000000001245
dc.identifier.citedreferenceRam G, Lee J, Ott M, et al. Seasonal exacerbation of esophageal eosinophilia in children with eosinophilic esophagitis and allergic rhinitis. Ann Allergy Asthma Immunol. 2015; 115 ( 3 ): 224 - 228.e1. https://doi.org/10.1016/j.anai.2015.07.004
dc.identifier.citedreferenceMoawad FJ, Veerappan GR, Lake JM, et al. Correlation between eosinophilic oesophagitis and aeroallergens. Aliment Pharmacol Ther. 2010; 31 ( 4 ): 509 - 515. https://doi.org/10.1111/j.1365-2036.2009.04199.x
dc.identifier.citedreferenceAlmansa C, Krishna M, Buchner AM, et al. Seasonal distribution in newly diagnosed cases of eosinophilic esophagitis in adults. Am J Gastroenterol. 2009; 104 ( 4 ): 828 - 833. https://doi.org/10.1038/ajg.2008.169
dc.identifier.citedreferenceWang FY, Gupta SK, Fitzgerald JF. Is there a seasonal variation in the incidence or intensity of allergic eosinophilic esophagitis in newly diagnosed children? J Clin Gastroenterol. 2007; 41 ( 5 ): 451 - 453. https://doi.org/10.1097/01.mcg.0000248019.16139.67
dc.identifier.citedreferenceFogg MI, Ruchelli E, Spergel JM. Pollen and eosinophilic esophagitis. J Allergy Clin Immunol. 2003; 112 ( 4 ): 796 - 797. https://doi.org/10.1016/s0091-6749(03)01715-9
dc.identifier.citedreferenceArmentia A, Martin-Armentia S, Martin-Armentia B, et al. Is eosinophilic esophagitis an equivalent of pollen allergic asthma? Analysis of biopsies and therapy guided by component resolved diagnosis. Allergol Immunopathol (Madr). 2018; 46 ( 2 ): 181 - 189. https://doi.org/10.1016/j.aller.2017.11.001
dc.identifier.citedreferenceIglesia EGA, Commins SP, Dellon ES. Complete remission of eosinophilic esophagitis with multi-aeroallergen subcutaneous immunotherapy: a case report. J Allergy Clin Immunol Pract. 2021; 9 ( 6 ): 2517 - 2519.e2. https://doi.org/10.1016/j.jaip.2021.01.045
dc.identifier.citedreferenceRamirez RM, Jacobs RL. Eosinophilic esophagitis treated with immunotherapy to dust mites. J Allergy Clin Immunol. 2013; 132 ( 2 ): 503 - 504. https://doi.org/10.1016/j.jaci.2013.04.053
dc.identifier.citedreferenceLucendo AJ, Arias A, Redondo-Gonzalez O, Gonzalez-Cervera J. Seasonal distribution of initial diagnosis and clinical recrudescence of eosinophilic esophagitis: a systematic review and meta-analysis. Allergy. 2015; 70 ( 12 ): 1640 - 1650. https://doi.org/10.1111/all.12767
dc.identifier.citedreferenceElias MK, Kopacova J, Arora AS, et al. The diagnosis of esophageal eosinophilia is not increased in the summer months. Dysphagia. 2015; 30 ( 1 ): 67 - 73. https://doi.org/10.1007/s00455-014-9574-1
dc.identifier.citedreferenceFrederickson NW, Bayman L, Valestin J, et al. Lack of seasonal variation in the incidence of eosinophilic oesophagitis in adolescent and adult non-PPI-responsive oesophageal eosinophilia midwestern US populations. United European Gastroenterol J. 2014; 2 ( 2 ): 69 - 76. https://doi.org/10.1177/2050640614525152
dc.identifier.citedreferenceMeltzer EO, Blaiss MS, Derebery MJ, et al. Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol. 2009; 124 (3 suppl): S43 - S70. https://doi.org/10.1016/j.jaci.2009.05.013
dc.identifier.citedreferenceMeltzer EO, Nathan R, Derebery J, et al. Sleep, quality of life, and productivity impact of nasal symptoms in the United States: findings from the Burden of Rhinitis in America survey. Allergy Asthma Proc. 2009; 30 ( 3 ): 244 - 254. https://doi.org/10.2500/aap.2009.30.3230
dc.identifier.citedreferenceYoung T, Finn L, Palta M. Chronic nasal congestion at night is a risk factor for snoring in a population-based cohort study. Arch Intern Med. 2001; 161 ( 12 ): 1514 - 1519. https://doi.org/10.1001/archinte.161.12.1514
dc.identifier.citedreferenceStorms WW. Pharmacologic approaches to daytime and nighttime symptoms of allergic rhinitis. J Allergy Clin Immunol. 2004; 114 (5 suppl): S146 - S153. https://doi.org/10.1016/j.jaci.2004.08.045
dc.identifier.citedreferenceShedden A. Impact of nasal congestion on quality of life and work productivity in allergic rhinitis: findings from a large online survey. Treat Respir Med. 2005; 4 ( 6 ): 439 - 446. https://doi.org/10.2165/00151829-200504060-00007
dc.identifier.citedreferenceReinberg A, Gervais P, Levi F, Smolensky M, Del Cerro L, Ugolini C. Circadian and circannual rhythms of allergic rhinitis: an epidemiologic study involving chronobiologic methods. J Allergy Clin Immunol. 1988; 81 ( 1 ): 51 - 62. https://doi.org/10.1016/0091-6749(88)90220-5
dc.identifier.citedreferenceTobaldini E, Costantino G, Solbiati M, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017; 74 (pt B): 321 - 329. https://doi.org/10.1016/j.neubiorev.2016.07.004
dc.identifier.citedreferenceFerguson BJ. Influences of allergic rhinitis on sleep. Otolaryngol Head Neck Surg. 2004; 130 ( 5 ): 617 - 629. https://doi.org/10.1016/j.otohns.2004.02.001
dc.identifier.citedreferenceTashiro M, Mochizuki H, Iwabuchi K, et al. Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sci. 2002; 72 ( 4-5 ): 409 - 414. https://doi.org/10.1016/s0024-3205(02)02276-2
dc.identifier.citedreferenceSri Kantha S, Matsumura H, Kubo E, et al. Effects of prostaglandin D2, lipoxins and leukotrienes on sleep and brain temperature of rats. Prostaglandins Leukot Essent Fatty Acids. 1994; 51 ( 2 ): 87 - 93. https://doi.org/10.1016/0952-3278(94)90083-3
dc.identifier.citedreferencePasha S, Kumar S, Chatterjee AB, Krishnaswamy G. An obstructive sleep apnea primer: what the practicing allergist needs to know. Ann Allergy Asthma Immunol. 2017; 118 ( 3 ): 259 - 268. https://doi.org/10.1016/j.anai.2016.07.033
dc.identifier.citedreferenceChirakalwasan N, Ruxrungtham K. The linkage of allergic rhinitis and obstructive sleep apnea. Asian Pac J Allergy Immunol. 2014; 32 ( 4 ): 276 - 286.
dc.identifier.citedreferenceMullington JM, Hinze-Selch D, Pollmacher T. Mediators of inflammation and their interaction with sleep: relevance for chronic fatigue syndrome and related conditions. Ann N Y Acad Sci. 2001; 933: 201 - 210. https://doi.org/10.1111/j.1749-6632.2001.tb05825.x
dc.identifier.citedreferenceTan SN, Abdullah B. The association between obstructive aleep apnea and allergic rhinitis: current literature review. Curr Respir Med Rev. 2021; 17 ( 1 ): 13 - 19.
dc.identifier.citedreferenceTankere F, Maisonobe T, Naccache L, et al. Further evidence for a central reorganisation of synaptic connectivity in patients with hypoglossal-facial anastomosis in man. Brain Res. 2000; 864 ( 1 ): 87 - 94. https://doi.org/10.1016/s0006-8993(00)02177-6
dc.identifier.citedreferenceHorner RL, Innes JA, Murphy K, Guz A. Evidence for reflex upper airway dilator muscle activation by sudden negative airway pressure in man. J Physiol. 1991; 436: 15 - 29. https://doi.org/10.1113/jphysiol.1991.sp018536
dc.identifier.citedreferenceWhite DP, Edwards JK, Shea SA. Local reflex mechanisms: influence on basal genioglossal muscle activation in normal subjects. Sleep. 1998; 21 ( 7 ): 719 - 728. https://doi.org/10.1093/sleep/21.7.719
dc.identifier.citedreferenceLo YL, Jordan AS, Malhotra A, et al. Influence of wakefulness on pharyngeal airway muscle activity. Thorax. 2007; 62 ( 9 ): 799 - 805. https://doi.org/10.1136/thx.2006.072488
dc.identifier.citedreferenceBaraniuk JN, Merck SJ. Nasal reflexes: implications for exercise, breathing, and sex. Curr Allergy Asthma Rep. 2008; 8 ( 2 ): 147 - 153. https://doi.org/10.1007/s11882-008-0025-7
dc.identifier.citedreferenceBasner RC, Simon PM, Schwartzstein RM, Weinberger SE, Weiss JW. Breathing route influences upper airway muscle activity in awake normal adults. J Appl Physiol (1985). 1989; 66 ( 4 ): 1766 - 1771. https://doi.org/10.1152/jappl.1989.66.4.1766
dc.identifier.citedreferenceShintaro C, Park CS. Establishing a patent nasal passage in obstructive sleep apnea. Sleep Med Clin. 2019; 14 ( 1 ): 41 - 50. https://doi.org/10.1016/j.jsmc.2018.10.005
dc.identifier.citedreferencePeppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000; 342 ( 19 ): 1378 - 1384. https://doi.org/10.1056/NEJM200005113421901
dc.identifier.citedreferenceKuniyoshi FH, Garcia-Touchard A, Gami AS, et al. Day-night variation of acute myocardial infarction in obstructive sleep apnea. J Am Coll Cardiol. 2008; 52 ( 5 ): 343 - 346. https://doi.org/10.1016/j.jacc.2008.04.027
dc.identifier.citedreferenceArzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005; 172 ( 11 ): 1447 - 1451. https://doi.org/10.1164/rccm.200505-702OC
dc.identifier.citedreferenceKanagala R, Murali NS, Friedman PA, et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation. 2003; 107 ( 20 ): 2589 - 2594. https://doi.org/10.1161/01.CIR.0000068337.25994.21
dc.identifier.citedreferenceWang H, Parker JD, Newton GE, et al. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol. 2007; 49 ( 15 ): 1625 - 1631. https://doi.org/10.1016/j.jacc.2006.12.046
dc.identifier.citedreferenceMarcus CL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012; 130 ( 3 ): 576 - 584. https://doi.org/10.1542/peds.2012-1671
dc.identifier.citedreferenceAli NJ, Pitson D, Stradling JR. Natural history of snoring and related behaviour problems between the ages of 4 and 7 years. Arch Dis Child. 1994; 71 ( 1 ): 74 - 76. https://doi.org/10.1136/adc.71.1.74
dc.identifier.citedreferenceIsaiah A, Ernst T, Cloak CC, Clark DB, Chang L. Association between habitual snoring and cognitive performance among a large sample of preadolescent children. JAMA Otolaryngol Head Neck Surg. 2021; 147 ( 5 ): 426 - 433. https://doi.org/10.1001/jamaoto.2020.5712
dc.identifier.citedreferenceJan JE, Reiter RJ, Bax MC, Ribary U, Freeman RD, Wasdell MB. Long-term sleep disturbances in children: a cause of neuronal loss. Eur J Paediatr Neurol. 2010; 14 ( 5 ): 380 - 390. https://doi.org/10.1016/j.ejpn.2010.05.001
dc.identifier.citedreferenceMorris LG, Burschtin O, Setlur J, et al. REM-associated nasal obstruction: a study with acoustic rhinometry during sleep. Otolaryngol Head Neck Surg. 2008; 139 ( 5 ): 619 - 623. https://doi.org/10.1016/j.otohns.2008.08.017
dc.identifier.citedreferenceHuseni S, Gutierrez MJ, Rodriguez-Martinez CE, et al. The link between rhinitis and rapid-eye-movement sleep breathing disturbances in children with obstructive sleep apnea. Am J Rhinol Allergy. 2014; 28 ( 1 ): 56 - 61. https://doi.org/10.2500/ajra.2014.28.3994
dc.identifier.citedreferenceKimura A, Chiba S, Capasso R, et al. Phase of nasal cycle during sleep tends to be associated with sleep stage. Laryngoscope. 2013; 123 ( 8 ): 2050 - 2055. https://doi.org/10.1002/lary.23986
dc.identifier.citedreferenceSkirko JR, James KT, Shusterman DJ, Weaver EM. Association of allergic rhinitis with change in nasal congestion in new continuous positive airway pressure users. JAMA Otolaryngol Head Neck Surg. 2020; 146 ( 6 ): 523 - 529. https://doi.org/10.1001/jamaoto.2020.0261
dc.identifier.citedreferenceInoue A, Chiba S, Matsuura K, Osafune H, Capasso R, Wada K. Nasal function and CPAP compliance. Auris Nasus Larynx. 2019; 46 ( 4 ): 548 - 558. https://doi.org/10.1016/j.anl.2018.11.006
dc.identifier.citedreferenceIwata N, Nakata S, Inada H, Kimura A, Hirata M, Yasuma F. Clinical indication of nasal surgery for the CPAP intolerance in obstructive sleep apnea with nasal obstruction. Auris Nasus Larynx. 2020; 47 ( 6 ): 1018 - 1022. https://doi.org/10.1016/j.anl.2020.06.005
dc.identifier.citedreferenceCamacho M, Riaz M, Capasso R, et al. The effect of nasal surgery on continuous positive airway pressure device use and therapeutic treatment pressures: a systematic review and meta-analysis. Sleep. 2015; 38 ( 2 ): 279 - 286. https://doi.org/10.5665/sleep.4414
dc.identifier.citedreferenceNakata S, Noda A, Yagi H, et al. Nasal resistance for determinant factor of nasal surgery in CPAP failure patients with obstructive sleep apnea syndrome. Rhinology. 2005; 43 ( 4 ): 296 - 299.
dc.identifier.citedreferencePoirier J, George C, Rotenberg B. The effect of nasal surgery on nasal continuous positive airway pressure compliance. Laryngoscope. 2014; 124 ( 1 ): 317 - 319. https://doi.org/10.1002/lary.24131
dc.identifier.citedreferenceAwad MI, Kacker A. Nasal obstruction considerations in sleep apnea. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 1003 - 1009. https://doi.org/10.1016/j.otc.2018.05.012
dc.identifier.citedreferenceCraig TJ, Sherkat A, Safaee S. Congestion and sleep impairment in allergic rhinitis. Curr Allergy Asthma Rep. 2010; 10 ( 2 ): 113 - 121. https://doi.org/10.1007/s11882-010-0091-5
dc.identifier.citedreferenceJalalia MM, Soleimanib R, Jalali SM, Mohisafata B. Evaluation of the effects of allergic rhinitis treatment on sexual functioning, sleep, and fatigue. Revue Francaise d-Allergologie. 2020; 60 ( 2 ): 55 - 60.
dc.identifier.citedreferenceKiely JL, Nolan P, McNicholas WT. Intranasal corticosteroid therapy for obstructive sleep apnoea in patients with co-existing rhinitis. Thorax. 2004; 59 ( 1 ): 50 - 55.
dc.identifier.citedreferenceJacobi H, Rehm D, Nolte H, Andersen KF, Demoly P. Effect of house dust mite SLIT-tablet treatment on quality of sleep in allergic rhinitis patients. J Allergy Clin Immunol. 2019; 143: AB286.
dc.identifier.citedreferenceMann RD, Pearce GL, Dunn N, Shakir S. Sedation with "non-sedating" antihistamines: four prescription-event monitoring studies in general practice. BMJ. 2000; 320 ( 7243 ): 1184 - 1186. https://doi.org/10.1136/bmj.320.7243.1184
dc.identifier.citedreferenceHindmarch I, Shamsi Z. Antihistamines: models to assess sedative properties, assessment of sedation, safety and other side-effects. Clin Exp Allergy. 1999; 29 (suppl 3): 133 - 142. https://doi.org/10.1046/j.1365-2222.1999.0290s3133.x
dc.identifier.citedreferenceChen ST, Lu KH, Sun HL, Chang WT, Lue KH, Chou MC. Randomized placebo-controlled trial comparing montelukast and cetirizine for treating perennial allergic rhinitis in children aged 2-6 yr. Pediatr Allergy Immunol. 2006; 17 ( 1 ): 49 - 54. https://doi.org/10.1111/j.1399-3038.2005.00351.x
dc.identifier.citedreferenceClarenbach CF, Kohler M, Senn O, Thurnheer R, Bloch KE. Does nasal decongestion improve obstructive sleep apnea? J Sleep Res. 2008; 17 ( 4 ): 444 - 449. https://doi.org/10.1111/j.1365-2869.2008.00667.x
dc.identifier.citedreferenceNa HG, Sung CM, Yang HC. Effect of continuous positive airway pressure on symptoms of allergic rhinitis in patients with obstructive sleep apnea. World Allergy Organization J. 2020; 13 ( 8 ): 100271.
dc.identifier.citedreferenceChuang C, Tsai M, Tsai Y, Kuo C, Hsu C, Hung J. Increased risk of sleep apnea in patients of allergic rhinitis: a nationwide population-based study. presented at: American Thoracic Society; 2019; Dallas, TX.
dc.identifier.citedreferenceWongvilairat S, Assanasen P, Banhiran W, Tantilipikorn P, Bunnag C. The prevalence of high risk of obstructive sleep apnea in patients with allergic rhinitis. Asian Pacific Journal of Allergy and Immunology. 2022; 40 ( 3 ): 205 - 209. doi: https://doi.org/10.12932/ap-141218-0458
dc.identifier.citedreferenceWHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. Accessed November 13, 2021. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020
dc.identifier.citedreferenceMustafa SS, Shaker MS, Munblit D, Greenhawt M. Paediatric allergy practice in the era of coronavirus disease 2019. Curr Opin Allergy Clin Immunol. 2021; 21 ( 2 ): 159 - 165. https://doi.org/10.1097/ACI.0000000000000727
dc.identifier.citedreferenceIzquierdo-Dominguez A, Rojas-Lechuga MJ, Alobid I. Management of allergic diseases during COVID-19 outbreak. Curr Allergy Asthma Rep. 2021; 21 ( 2 ): 8. https://doi.org/10.1007/s11882-021-00989-x
dc.identifier.citedreferenceSearing DA, Dutmer CM, Fleischer DM, et al. A phased approach to resuming suspended allergy/immunology clinical services. J Allergy Clin Immunol Pract. 2020; 8 ( 7 ): 2125 - 2134. https://doi.org/10.1016/j.jaip.2020.05.012
dc.identifier.citedreferencePfaar O, Klimek L, Jutel M, et al. COVID-19 pandemic: practical considerations on the organization of an allergy clinic – an EAACI/ARIA Position Paper. Allergy. 2021; 76 ( 3 ): 648 - 676. https://doi.org/10.1111/all.14453
dc.identifier.citedreferenceOzturk AB, Baccioglu A, Soyer O, Civelek E, Sekerel BE, Bavbek S. Change in allergy practice during the COVID-19 pandemic. Int Arch Allergy Immunol. 2021; 182 ( 1 ): 49 - 52. https://doi.org/10.1159/000512079
dc.identifier.citedreferenceWinders T, DuBuske L, Bukstein DA, Meltzer EO, Wallace D, Rance K. Shifts in allergy practice in a COVID-19 world: implications of pre-COVID-19 national health care provider and patient surveys of treatments for nasal allergies. Allergy Asthma Proc. 2021; 42 ( 4 ): 301 - 309. https://doi.org/10.2500/aap.2021.42.210035
dc.identifier.citedreferenceTsao LR, Villanueva SA, Pines DA, et al. Impact of rapid transition to telemedicine-based delivery on allergy/immunology care during COVID-19. J Allergy Clin Immunol Pract. 2021; 9 ( 7 ): 2672 - 2679.e2. https://doi.org/10.1016/j.jaip.2021.04.018
dc.identifier.citedreferenceRen J, Pang W, Luo Y, et al. Impact of allergic rhinitis and asthma on COVID-19 infection, hospitalization, and mortality. J Allergy Clin Immunol Pract. 2022; 10 ( 1 ): 124 - 133. https://doi.org/10.1016/j.jaip.2021.10.049
dc.identifier.citedreferenceBeken B, Ozturk GK, Aygun FD, Aydogmus C, Akar HH. Asthma and allergic diseases are not risk factors for hospitalization in children with coronavirus disease 2019. Ann Allergy Asthma Immunol. 2021; 126 ( 5 ): 569 - 575. https://doi.org/10.1016/j.anai.2021.01.018
dc.identifier.citedreferenceYao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020; 50 ( 12 ): 1313 - 1324. https://doi.org/10.1111/cea.13746
dc.identifier.citedreferenceKeswani A, Dhana K, Rosenthal JA, Moore D, Mahdavinia M. Atopy is predictive of a decreased need for hospitalization for coronavirus disease 2019. Ann Allergy Asthma Immunol. 2020; 125 ( 4 ): 479 - 481. https://doi.org/10.1016/j.anai.2020.07.012
dc.identifier.citedreferenceDu H, Dong X, Zhang JJ, et al. Clinical characteristics of 182 pediatric COVID-19 patients with different severities and allergic status. Allergy. 2021; 76 ( 2 ): 510 - 532. https://doi.org/10.1111/all.14452
dc.identifier.citedreferenceDarabi A, Dehghanfard M, Jozan S, et al. Investigating the association between allergic diseases and COVID-19 in 400 Iranian patients. Allergol Immunopathol (Madr). 2021; 49 ( 5 ): 9 - 15. https://doi.org/10.15586/aei.v49i5.105
dc.identifier.citedreferenceMing W, Zuo J, Han J, Chen J. The impact of comorbid allergic airway disease on the severity and mortality of COVID-19: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2022; 279 ( 4 ): 1675 - 1690. https://doi.org/10.1007/s00405-021-07072-1
dc.identifier.citedreferenceGuvey A. How does allergic rhinitis impact the severity of COVID-19?: a case-control study. Eur Arch Otorhinolaryngol. 2021; 278 ( 11 ): 4367 - 4371. https://doi.org/10.1007/s00405-021-06836-z
dc.identifier.citedreferenceHagemann J, Onorato GL, Jutel M, et al. Differentiation of COVID-19 signs and symptoms from allergic rhinitis and common cold: an ARIA-EAACI-GA(2) LEN consensus. Allergy. 2021; 76 ( 8 ): 2354 - 2366. https://doi.org/10.1111/all.14815
dc.identifier.citedreferenceBruno C, Locatello LG, Cilona M, et al. Seasonal allergic rhinitis symptoms in relation to COVID-19. Allergy Rhinol (Providence). 2020; 11: 2152656720968804. https://doi.org/10.1177/2152656720968804
dc.identifier.citedreferenceFerreli F, Gaino F, Russo E, et al. Clinical presentation at the onset of COVID-19 and allergic rhinoconjunctivitis. J Allergy Clin Immunol Pract. 2020; 8 ( 10 ): 3587 - 3589. https://doi.org/10.1016/j.jaip.2020.08.009
dc.identifier.citedreferenceJin L, Fan K, Tan S, Liu S, Wang Y, Yu S. Analysis of the characteristics of outpatient and emergency diseases in the department of otolaryngology during the "COVID-19" pandemic. Sci Prog. 2021; 104 ( 3 ): 368504211036319. https://doi.org/10.1177/00368504211036319
dc.identifier.citedreferenceYoon D, Kim KE, Lee JE, Kim M, Kim JH. Impact of the coronavirus disease 2019 (COVID-19) pandemic on medical use of military hospitals in Korea. J Korean Med Sci. 2021; 36 ( 28 ): e204. https://doi.org/10.3346/jkms.2021.36.e204
dc.identifier.citedreferenceChoi HG, Kong IG. Asthma, allergic rhinitis, and atopic dermatitis incidence in Korean adolescents before and after COVID-19. J Clin Med. 2021; 10 ( 15 ): 3446. https://doi.org/10.3390/jcm10153446
dc.identifier.citedreferenceDayal AK, Sinha V. Trend of allergic rhinitis post COVID-19 pandemic: a retrospective observational study. Indian J Otolaryngol Head Neck Surg. 2020: 1 - 3. https://doi.org/10.1007/s12070-020-02223-y
dc.identifier.citedreferenceGelardi M, Trecca E, Fortunato F, et al. COVID-19 lockdown and seasonal allergic rhinitis: our experience in 40 patients. Acta Biomed. 2021; 92 ( 2 ): e2021215. https://doi.org/10.23750/abm.v92i2.10953
dc.identifier.citedreferenceSozener ZC, Ozturk BO, Aydin O, et al. Coincidence of pollen season and coronavirus disease 2019 pandemic: less time outdoors – lesser allergy symptoms in 2020. Asia Pac Allergy. 2021; 11 ( 2 ): e16. https://doi.org/10.5415/apallergy.2021.11.e16
dc.identifier.citedreferenceYucel E, Suleyman A, Hizli Demirkale Z, Guler N, Tamay ZU, Ozdemir C. ‘Stay at home’: is it good or not for house dust mite sensitized children with respiratory allergies? Pediatr Allergy Immunol. 2021; 32 ( 5 ): 963 - 970. https://doi.org/10.1111/pai.13477
dc.identifier.citedreferenceGallo O, Bruno C, Orlando P, Locatello LG. The impact of lockdown on allergic rhinitis: what is good and what is bad? Laryngoscope Investig Otolaryngol. 2020; 5 ( 5 ): 807 - 808. https://doi.org/10.1002/lio2.459
dc.identifier.citedreferenceDror AA, Eisenbach N, Marshak T, et al. Reduction of allergic rhinitis symptoms with face mask usage during the COVID-19 pandemic. J Allergy Clin Immunol Pract. 2020; 8 ( 10 ): 3590 - 3593. https://doi.org/10.1016/j.jaip.2020.08.035
dc.identifier.citedreferenceMengi E, Kara CO, Alpturk U, Topuz B. The effect of face mask usage on the allergic rhinitis symptoms in patients with pollen allergy during the covid-19 pandemic. Am J Otolaryngol. 2022; 43 ( 1 ): 103206. https://doi.org/10.1016/j.amjoto.2021.103206
dc.identifier.citedreferencePatella V, Delfino G, Florio G, et al. Management of the patient with allergic and immunological disorders in the pandemic COVID-19 era. Clin Mol Allergy. 2020; 18: 18. https://doi.org/10.1186/s12948-020-00134-5
dc.identifier.citedreferenceWang Y, Shi C, Yang Y, et al. Anxiety and depression in allergic rhinitis patients during COVID-19 pandemic in Wuhan, China. Asian Pac J Allergy Immunol. 2021. https://doi.org/10.12932/AP-140820-0941
dc.identifier.citedreferenceGonzalez-Diaz SN, Martin B, Villarreal-Gonzalez RV, et al. Psychological impact of the COVID-19 pandemic on patients with allergic diseases. World Allergy Organ J. 2021; 14 ( 3 ): 100510. https://doi.org/10.1016/j.waojou.2021.100510
dc.identifier.citedreferenceRadulesco T, Verillaud B, Bequignon E, et al. COVID-19 and rhinology, from the consultation room to the operating theatre. Eur Ann Otorhinolaryngol Head Neck Dis. 2020; 137 ( 4 ): 309 - 314. https://doi.org/10.1016/j.anorl.2020.04.013
dc.identifier.citedreferenceDe Luca P, Scarpa A, Ralli M, et al. Nasal, pharyngeal and laryngeal endoscopy procedures during COVID-19 pandemic: available recommendations from national and international societies. Eur Arch Otorhinolaryngol. 2020; 277 ( 7 ): 2151 - 2153. https://doi.org/10.1007/s00405-020-06028-1
dc.identifier.citedreferenceKlimek L, Jutel M, Bousquet J, et al. Management of patients with chronic rhinosinusitis during the COVID-19 pandemic – an EAACI position paper. Allergy. 2021; 76 ( 3 ): 677 - 688. https://doi.org/10.1111/all.14629
dc.identifier.citedreferenceZhang Y, Zhang L. Management practice of allergic rhinitis in china during the COVID-19 pandemic. Allergy Asthma Immunol Res. 2020; 12 ( 4 ): 738 - 742. https://doi.org/10.4168/aair.2020.12.4.738
dc.identifier.citedreferenceMcCarty EB, Soldatova L, Brant JA, Newman JG. Innovations in otorhinolaryngology in the age of COVID-19: a systematic literature review. World J Otorhinolaryngol Head Neck Surg. 2022; 8 ( 3 ): 224 - 238. https://doi.org/10.1016/j.wjorl.2021.01.001
dc.identifier.citedreferenceLee JH, Lee Y, Lee SY, et al. Management of allergic patients during the COVID-19 pandemic in Asia. Allergy Asthma Immunol Res. 2020; 12 ( 5 ): 783 - 791. https://doi.org/10.4168/aair.2020.12.5.783
dc.identifier.citedreferenceCDC – COVID-19 and Your Health – Centers for Disease Control and Prevention. Accessed November 13, 2021. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
dc.identifier.citedreferenceCianferoni A, Votto M. COVID-19 and allergy: how to take care of allergic patients during a pandemic? Pediatr Allergy Immunol. 2020; 31 (suppl 26): 96 - 101. https://doi.org/10.1111/pai.13367
dc.identifier.citedreferenceKlimek L, Pfaar O, Worm M, et al. Allergen immunotherapy in the current COVID-19 pandemic: a position paper of AeDA, ARIA, EAACI, DGAKI and GPA: position paper of the German ARIA Group(A) in cooperation with the Austrian ARIA Group(B), the Swiss ARIA Group(C), German Society for Applied Allergology (AEDA)(D), German Society for Allergology and Clinical Immunology (DGAKI)(E), Society for Pediatric Allergology (GPA)(F) in cooperation with AG Clinical Immunology, Allergology and Environmental Medicine of the DGHNO-KHC(G) and the European Academy of Allergy and Clinical Immunology (EAACI)(H). Allergol Select. 2020; 4: 44 - 52. https://doi.org/10.5414/ALX02147E
dc.identifier.citedreferenceMatos S, Sharma A, Crosby D. Objective assessment of aerosolization during transnasal endoscopy: a systematic review. Otolaryngol Head Neck Surg. 2021: 1945998211050632. https://doi.org/10.1177/01945998211050632
dc.identifier.citedreferenceThamboo A, Lea J, Sommer DD, et al. Clinical evidence based review and recommendations of aerosol generating medical procedures in otolaryngology – head and neck surgery during the COVID-19 pandemic. J Otolaryngol Head Neck Surg. 2020; 49 ( 1 ): 28. https://doi.org/10.1186/s40463-020-00425-6
dc.identifier.citedreferenceWorkman AD, Welling DB, Carter BS, et al. Endonasal instrumentation and aerosolization risk in the era of COVID-19: simulation, literature review, and proposed mitigation strategies. Int Forum Allergy Rhinol. 2020; 10 ( 7 ): 798 - 805. https://doi.org/10.1002/alr.22577
dc.identifier.citedreferenceSharma D, Rubel KE, Ye MJ, et al. Cadaveric simulation of endoscopic endonasal procedures: analysis of droplet splatter patterns during the COVID-19 pandemic. Otolaryngol Head Neck Surg. 2020; 163 ( 1 ): 145 - 150. https://doi.org/10.1177/0194599820929274
dc.identifier.citedreferenceWorkman AD, Jafari A, Welling DB, et al. Airborne aerosol generation during endonasal procedures in the era of COVID-19: risks and recommendations. Otolaryngol Head Neck Surg. 2020; 163 ( 3 ): 465 - 470. https://doi.org/10.1177/0194599820931805
dc.identifier.citedreferenceSharma D, Campiti VJ, Ye MJ, et al. Aerosol generation during routine rhinologic surgeries and in-office procedures. Laryngoscope Investig Otolaryngol. 2021; 6 ( 1 ): 49 - 57. https://doi.org/10.1002/lio2.520
dc.identifier.citedreferenceMurr AT, Lenze NR, Gelpi MW, et al. Quantification of aerosol concentrations during endonasal instrumentation in the clinic setting. Laryngoscope. 2021; 131 ( 5 ): E1415 - E1421. https://doi.org/10.1002/lary.29122
dc.identifier.citedreferenceTan VYJ, Zhang EZY, Daniel D, et al. Respiratory droplet generation and dispersal during nasoendoscopy and upper respiratory swab testing. Head Neck. 2020; 42 ( 10 ): 2779 - 2781. https://doi.org/10.1002/hed.26347
dc.identifier.citedreferenceDi Maio P, Traverso D, Iocca O, De Virgilio A, Spriano G, Giudice M. Endoscopic nasopharyngoscopy and ENT specialist safety in the COVID 19 era: the back endoscopy approach to the patient. Eur Arch Otorhinolaryngol. 2020; 277 ( 9 ): 2647 - 2648. https://doi.org/10.1007/s00405-020-06093-6
dc.identifier.citedreferenceOlaguibel JM, Alobid I, Alvarez Puebla M, et al. Functional examination of the upper and lower airways in asthma and respiratory allergic diseases: considerations in the post-SARS-CoV-2 era. J Investig Allergol Clin Immunol. 2021; 31 ( 1 ): 17 - 35. https://doi.org/10.18176/jiaci.0625
dc.identifier.citedreferenceSuzaki I, Kobayashi H. Coronavirus disease 2019 and nasal conditions: a review of current evidence. In Vivo. 2021; 35 ( 3 ): 1409 - 1417. https://doi.org/10.21873/invivo.12393
dc.identifier.citedreferenceLiu DT, Phillips KM, Speth MM, Besser G, Mueller CA, Sedaghat AR. Portable HEPA purifiers to eliminate airborne SARS-CoV-2: a systematic review. Otolaryngol Head Neck Surg. 2022; 166 ( 4 ): 615 - 622. https://doi.org/10.1177/01945998211022636
dc.identifier.citedreferenceChristopherson DA, Yao WC, Lu M, Vijayakumar R, Sedaghat AR. High-efficiency particulate air filters in the era of COVID-19: function and efficacy. Otolaryngol Head Neck Surg. 2020; 163 ( 6 ): 1153 - 1155. https://doi.org/10.1177/0194599820941838
dc.identifier.citedreferenceBousquet J, Akdis CA, Jutel M, et al. Intranasal corticosteroids in allergic rhinitis in COVID-19 infected patients: an ARIA-EAACI statement. Allergy. 2020; 75 ( 10 ): 2440 - 2444. https://doi.org/10.1111/all.14302
dc.identifier.citedreferenceKlimek L, Pfaar O, Hamelmann E, et al. COVID-19 vaccination and allergen immunotherapy (AIT) – a position paper of the German Society for Applied Allergology (AeDA) and the German Society for Allergology and Clinical Immunology (DGAKI). Allergol Select. 2021; 5: 251 - 259. https://doi.org/10.5414/ALX02245E
dc.identifier.citedreferenceNittner-Marszalska M, Rosiek-Biegus M, Kopec A, et al. Pfizer-BioNTech COVID-19 vaccine tolerance in allergic versus non-allergic individuals. Vaccines (Basel). 2021; 9 ( 6 ): 553. https://doi.org/10.3390/vaccines9060553
dc.identifier.citedreferenceDing M, Dong X, Sun YL, et al. Recent advances and developments in COVID-19 in the context of allergic diseases. Clin Transl Allergy. 2021; 11 ( 7 ): e12065. https://doi.org/10.1002/clt2.12065
dc.identifier.citedreferenceGani F, Cottini M, Landi M, et al., Allergic rhinitis and COVID-19: friends or foes? Eur Ann Allergy Clin Immunol. 2022; 54 ( 2 ): 53 - 59. doi: https://doi.org/10.23822/EurAnnACI.1764-1489.234
dc.identifier.citedreferenceAdir Y, Humbert M, Saliba W. COVID-19 risk and outcomes in adult asthmatic patients treated with biologics or systemic corticosteroids: nationwide real-world evidence. J Allergy Clin Immunol. 2021; 148 ( 2 ): 361 - 367.e13. https://doi.org/10.1016/j.jaci.2021.06.006
dc.identifier.citedreferenceStrauss R, Jawhari N, Attaway AH, et al. Intranasal corticosteroids are associated with better outcomes in coronavirus disease 2019. J Allergy Clin Immunol Pract. 2021; 9 ( 11 ): 3934 - 3940.e9. https://doi.org/10.1016/j.jaip.2021.08.007
dc.identifier.citedreferenceBozek A, Winterstein J. Montelukast’s ability to fight COVID-19 infection. J Asthma. 2021; 58 ( 10 ): 1348 - 1349. https://doi.org/10.1080/02770903.2020.1786112
dc.identifier.citedreferenceLarenas-Linnemann DE, Ortega-Martell JA, Blandon-Vijil MV, et al. Coronavirus disease 2019, allergic diseases, and allergen immunotherapy: possible favorable mechanisms of interaction. Allergy Asthma Proc. 2021; 42 ( 3 ): 187 - 197. https://doi.org/10.2500/aap.2021.42.210013
dc.identifier.citedreferencePfaar O, Agache I, Bonini M, et al. COVID-19 pandemic and allergen immunotherapy-an EAACI survey. Allergy. 2021; 76 ( 11 ): 3504 - 3516. https://doi.org/10.1111/all.14793
dc.identifier.citedreferenceKoca Kalkan I, Ates H, Aksu K, et al. Real-life adherence to subcutaneous immunotherapy: what has changed in the era of the COVID-19 pandemic. World Allergy Organ J. 2021; 14 ( 7 ): 100558. https://doi.org/10.1016/j.waojou.2021.100558
dc.identifier.citedreferenceAytekin ES, Soyer O, Sekerel BE, Sahiner UM. Subcutaneous allergen immunotherapy in children: real life compliance and effect of COVID-19 pandemic on compliance. Int Arch Allergy Immunol. 2021; 182 ( 7 ): 631 - 636. https://doi.org/10.1159/000514587
dc.identifier.citedreferenceYegit OO, Demir S, Unal D, et al. Adherence to subcutaneous immunotherapy with aeroallergens in real-life practice during the COVID-19 pandemic. Allergy. 2022; 77 ( 1 ): 197 - 206. https://doi.org/10.1111/all.14876
dc.identifier.citedreferenceShaker MS, Mosnaim G, Oppenheimer J, Stukus D, Abrams EM, Greenhawt M. Health and economic outcomes of home maintenance allergen immunotherapy in select patients with high health literacy during the COVID-19 pandemic: a cost-effectiveness analysis during exceptional times. J Allergy Clin Immunol Pract. 2020; 8 ( 7 ): 2310 - 2321.e4. https://doi.org/10.1016/j.jaip.2020.05.007
dc.identifier.citedreferenceBusse WW, Morgan WJ, Gergen PJ, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011; 364 ( 11 ): 1005 - 1015. https://doi.org/10.1056/NEJMoa1009705
dc.identifier.citedreferenceTeach SJ, Gill MA, Togias A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015; 136 ( 6 ): 1476 - 1485. https://doi.org/10.1016/j.jaci.2015.09.008
dc.identifier.citedreferenceEsquivel A, Busse WW, Calatroni A, et al. Effects of omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma. Am J Respir Crit Care Med. 2017; 196 ( 8 ): 985 - 992. https://doi.org/10.1164/rccm.201701-0120OC
dc.identifier.citedreferenceHammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021; 184 ( 6 ): 1469 - 1485. https://doi.org/10.1016/j.cell.2021.02.016
dc.identifier.citedreferenceDenlinger LC, Phillips BR, Ramratnam S, et al. Inflammatory and comorbid features of patients with severe asthma and frequent exacerbations. Am J Respir Crit Care Med. 2017; 195 ( 3 ): 302 - 313. https://doi.org/10.1164/rccm.201602-0419OC
dc.identifier.citedreferenceSchroeder JT, Bieneman AP, Xiao H, et al. TLR9- and FcepsilonRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression. J Immunol. 2005; 175 ( 9 ): 5724 - 5731. https://doi.org/10.4049/jimmunol.175.9.5724
dc.identifier.citedreferenceLiang C, Yang Z, Zou Q, Zhou M, Liu H, Fan J. Construction of an irreversible allergic rhinitis-induced olfactory loss mouse model. Biochem Biophys Res Commun. 2019; 513 ( 3 ): 635 - 641. https://doi.org/10.1016/j.bbrc.2019.03.110
dc.identifier.citedreferenceGupta N, Harit A, Taneja HC, Kumar R, Tripathi AK. Olfaction and its correlates in allergic rhinitis: a case control study. Indian J Otolaryngol Head Neck Surg. 2019; 71 (suppl 3): 1782 - 1786. https://doi.org/10.1007/s12070-017-1149-7
dc.identifier.citedreferenceBahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018; 142 ( 2 ): 485 - 496, e16. https://doi.org/10.1016/j.jaci.2018.01.043
dc.identifier.citedreferenceBahri R, Bulfone-Paus S. Mast cell activation test (MAT). Methods Mol Biol. 2020; 2163: 227 - 238. https://doi.org/10.1007/978-1-0716-0696-4_19
dc.identifier.citedreferenceWise SK, Lin SY, Toskala E, et al. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol. 2018; 8 ( 2 ): 108 - 352. https://doi.org/10.1002/alr.22073
dc.identifier.citedreferenceRudmik L, Smith TL. Development of an evidence-based review with recommendations using an online iterative process. Int Forum Allergy Rhinol. 2011; 1 ( 6 ): 431 - 437. https://doi.org/10.1002/alr.20095
dc.identifier.citedreferenceMoher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med. 2009; 3 ( 3 ): e123 - e130.
dc.identifier.citedreferenceAmerican Academy of Pediatrics Steering Committee on Quality I, Management. Classifying recommendations for clinical practice guidelines. Pediatrics. 2004; 114 ( 3 ): 874 - 877. https://doi.org/10.1542/peds.2004-1260
dc.identifier.citedreferenceBousquet J, Van Cauwenberge P, Khaltaev N, Aria Workshop Group, World Health Organization. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001; 108 ( 5 Suppl): S147 - S334. https://doi.org/10.1067/mai.2001.118891
dc.identifier.citedreferenceOrlandi RR, Kingdom TT, Hwang PH, et al. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol. 2016; 6 (suppl 1 ): S22 - S209. https://doi.org/10.1002/alr.21695
dc.identifier.citedreferenceOrlandi RR, Kingdom TT, Smith TL, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol. 2021; 11 ( 3 ): 213 - 739. https://doi.org/10.1002/alr.22741
dc.identifier.citedreferenceWang EW, Zanation AM, Gardner PA, et al. ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol. 2019; 9 ( S3 ): S145 - S365. https://doi.org/10.1002/alr.22326
dc.identifier.citedreferencePatel ZM, Holbrook EH, Turner JH, et al. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol. 2022; 12 ( 4 ): 327 - 680. https://doi.org/10.1002/alr.22929
dc.identifier.citedreferenceSackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996; 312 ( 7023 ): 71 - 72. https://doi.org/10.1136/bmj.312.7023.71
dc.identifier.citedreferenceOCEBM Levels of Evidence Working Group: The Oxford 2011 Levels of Evidence. Accessed April 4, 2019. http://www.cebm.net/index.aspx?o=5653
dc.identifier.citedreferenceHandbook for grading the quality of evidence and the strength of recommendations using the GRADE approach, updated October 2013. Accessed April 2, 2019. https://gdt.gradepro.org/app/handbook/handbook.html
dc.identifier.citedreferenceBousquet J, Bachert C, Canonica GW, et al. Unmet needs in severe chronic upper airway disease (SCUAD). J Allergy Clin Immunol. 2009; 124 ( 3 ): 428 - 433. https://doi.org/10.1016/j.jaci.2009.06.027
dc.identifier.citedreferenceBousquet JJ, Schunemann HJ, Togias A, et al. Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases. Clin Transl Allergy. 2019; 9: 44. https://doi.org/10.1186/s13601-019-0279-2
dc.identifier.citedreferenceAsher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006; 368 ( 9537 ): 733 - 743. https://doi.org/10.1016/S0140-6736(06)69283-0
dc.identifier.citedreferenceVinke JG, KleinJan A, Severijnen LW, Hoeve LJ, Fokkens WJ. Differences in nasal cellular infiltrates between allergic children and age-matched controls. Eur Respir J. 1999; 13 ( 4 ): 797 - 803. https://doi.org/10.1034/j.1399-3003.1999.13d17.x
dc.identifier.citedreferenceBauchau V, Durham SR. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J. 2004; 24 ( 5 ): 758 - 764. https://doi.org/10.1183/09031936.04.00013904
dc.identifier.citedreferenceBauchau V, Durham SR. Epidemiological characterization of the intermittent and persistent types of allergic rhinitis. Allergy. 2005; 60 ( 3 ): 350 - 353. https://doi.org/10.1111/j.1398-9995.2005.00751.x
dc.identifier.citedreferenceCiprandi G, Buscaglia S, Pesce G, et al. Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J Allergy Clin Immunol. 1995; 96 (6 pt 1): 971 - 979. https://doi.org/10.1016/s0091-6749(95)70235-0
dc.identifier.citedreferencePlatts-Mills TA, Hayden ML, Chapman MD, Wilkins SR. Seasonal variation in dust mite and grass-pollen allergens in dust from the houses of patients with asthma. J Allergy Clin Immunol. 1987; 79 ( 5 ): 781 - 791. https://doi.org/10.1016/0091-6749(87)90211-9
dc.identifier.citedreferenceConnell JT. Quantitative intranasal pollen challenges. 3. The priming effect in allergic rhinitis. J Allergy. 1969; 43 ( 1 ): 33 - 44. https://doi.org/10.1016/0021-8707(69)90018-5
dc.identifier.citedreferenceWachs M, Proud D, Lichtenstein LM, Kagey-Sobotka A, Norman PS, Naclerio RM. Observations on the pathogenesis of nasal priming. J Allergy Clin Immunol. 1989; 84 (4 pt 1): 492 - 501. https://doi.org/10.1016/0091-6749(89)90362-x
dc.identifier.citedreferenceJuliusson S, Bende M. Priming effect of a birch pollen season studied with laser Doppler flowmetry in patients with allergic rhinitis. Clin Allergy. 1988; 18 ( 6 ): 615 - 618. https://doi.org/10.1111/j.1365-2222.1988.tb02913.x
dc.identifier.citedreferenceNaito K, Ishihara M, Senoh Y, Takeda N, Yokoyama N, Iwata S. Seasonal variations of nasal resistance in allergic rhinitis and environmental pollen counts. II: Efficacy of preseasonal therapy. Auris Nasus Larynx. 1993; 20 ( 1 ): 31 - 38. https://doi.org/10.1016/s0385-8146(12)80208-2
dc.identifier.citedreferenceKoh YY, Lim HS, Min KU, Min YG. Airways of allergic rhinitics are ‘primed’ to repeated allergen inhalation challenge. Clin Exp Allergy. 1994; 24 ( 4 ): 337 - 346. https://doi.org/10.1111/j.1365-2222.1994.tb00244.x
dc.identifier.citedreferenceAssing K, Bodtger U, Poulsen LK, Malling HJ. Grass pollen symptoms interfere with the recollection of birch pollen symptoms – a prospective study of suspected, asymptomatic skin sensitization. Allergy. 2007; 62 ( 4 ): 373 - 377. https://doi.org/10.1111/j.1398-9995.2006.01280.x
dc.identifier.citedreferenceKnani J, Campbell A, Enander I, Peterson CG, Michel FB, Bousquet J. Indirect evidence of nasal inflammation assessed by titration of inflammatory mediators and enumeration of cells in nasal secretions of patients with chronic rhinitis. J Allergy Clin Immunol. 1992; 90 (6 pt 1): 880 - 889. https://doi.org/10.1016/0091-6749(92)90460-j
dc.identifier.citedreferenceRicca V, Landi M, Ferrero P, et al. Minimal persistent inflammation is also present in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 2000; 105 (1 pt 1): 54 - 57. https://doi.org/10.1016/s0091-6749(00)90177-5
dc.identifier.citedreferenceRiediker M, Monn C, Koller T, Stahel WA, Wuthrich B. Air pollutants enhance rhinoconjunctivitis symptoms in pollen-allergic individuals. Ann Allergy Asthma Immunol. 2001; 87 ( 4 ): 311 - 318. https://doi.org/10.1016/S1081-1206(10)62246-6
dc.identifier.citedreferenceBousquet J, Annesi-Maesano I, Carat F, et al. Characteristics of intermittent and persistent allergic rhinitis: DREAMS study group. Clin Exp Allergy. 2005; 35 ( 6 ): 728 - 732. https://doi.org/10.1111/j.1365-2222.2005.02274.x
dc.identifier.citedreferenceWallace DV, Dykewicz MS, Bernstein DI, et al. The diagnosis and management of rhinitis: an updated practice parameter. J Allergy Clin Immunol. 2008; 122 ( 2 suppl): S1 - S84. https://doi.org/10.1016/j.jaci.2008.06.003
dc.identifier.citedreferenceVan Hoecke H, Vastesaeger N, Dewulf L, Sys L, van Cauwenberge P. Classification and management of allergic rhinitis patients in general practice during pollen season. Allergy. 2006; 61 ( 6 ): 705 - 711. https://doi.org/10.1111/j.1398-9995.2006.01057.x
dc.identifier.citedreferenceDemoly P, Allaert FA, Lecasble M, Bousquet J, Pragma. Validation of the classification of ARIA (allergic rhinitis and its impact on asthma). Allergy. 2003; 58 ( 7 ): 672 - 675. https://doi.org/10.1034/j.1398-9995.2003.t01-1-00202.x
dc.identifier.citedreferenceBachert C, van Cauwenberge P, Olbrecht J, van Schoor J. Prevalence, classification and perception of allergic and nonallergic rhinitis in Belgium. Allergy. 2006; 61 ( 6 ): 693 - 698. https://doi.org/10.1111/j.1398-9995.2006.01054.x
dc.identifier.citedreferenceTodo-Bom A, Loureiro C, Almeida MM, et al. Epidemiology of rhinitis in Portugal: evaluation of the intermittent and the persistent types. Allergy. 2007; 62 ( 9 ): 1038 - 1043. https://doi.org/10.1111/j.1398-9995.2007.01448.x
dc.identifier.citedreferenceCustovic A, Henderson J, Simpson A. Does understanding endotypes translate to better asthma management options for all? J Allergy Clin Immunol. 2019; 144 ( 1 ): 25 - 33. https://doi.org/10.1016/j.jaci.2019.05.016
dc.identifier.citedreferenceAkar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract. 2020; 8 ( 2 ): 429 - 440. https://doi.org/10.1016/j.jaip.2019.11.008
dc.identifier.citedreferenceSaglani S, Wisnivesky JP, Charokopos A, Pascoe CD, Halayko AJ, Custovic A. Update in Asthma 2019. Am J Respir Crit Care Med. 2020; 202 ( 2 ): 184 - 192. https://doi.org/10.1164/rccm.202003-0596UP
dc.identifier.citedreferenceKowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD) – a EAACI position paper. Allergy. 2019; 74 ( 1 ): 28 - 39. https://doi.org/10.1111/all.13599
dc.identifier.citedreferenceThien F, Beggs PJ, Csutoros D, et al. The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effect on health services, and patient risk factors. Lancet Planet Health. 2018; 2 ( 6 ): e255 - e263. https://doi.org/10.1016/S2542-5196(18)30120-7
dc.identifier.citedreferenceThien F. Melbourne epidemic thunderstorm asthma event 2016: lessons learnt from the perfect storm. Respirology. 2018; 23 ( 11 ): 976 - 977. https://doi.org/10.1111/resp.13410
dc.identifier.citedreferenceO’Hehir RE, Varese NP, Deckert K, et al. Epidemic Thunderstorm asthma protection with five-grass pollen tablet sublingual immunotherapy: a clinical trial. Am J Respir Crit Care Med. 2018; 198 ( 1 ): 126 - 128. https://doi.org/10.1164/rccm.201711-2337LE
dc.identifier.citedreferenceCustovic A, Custovic D, Kljaic Bukvic B, Fontanella S, Haider S. Atopic phenotypes and their implication in the atopic march. Expert Rev Clin Immunol. 2020; 16 ( 9 ): 873 - 881. https://doi.org/10.1080/1744666X.2020.1816825
dc.identifier.citedreferenceOksel C, Custovic A. Development of allergic sensitization and its relevance to paediatric asthma. Curr Opin Allergy Clin Immunol. 2018; 18 ( 2 ): 109 - 116. https://doi.org/10.1097/ACI.0000000000000430
dc.identifier.citedreferenceShtessel M, Tversky J. Reliability of allergy skin testing. Ann Allergy Asthma Immunol. 2018; 120 ( 1 ): 80 - 83. https://doi.org/10.1016/j.anai.2017.10.015
dc.identifier.citedreferenceSimpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A. IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol. 2005; 116 ( 4 ): 744 - 749. https://doi.org/10.1016/j.jaci.2005.06.032
dc.identifier.citedreferenceMarinho S, Simpson A, Lowe L, Kissen P, Murray C, Custovic A. Rhinoconjunctivitis in 5-year-old children: a population-based birth cohort study. Allergy. 2007; 62 ( 4 ): 385 - 393. https://doi.org/10.1111/j.1398-9995.2006.01294.x
dc.identifier.citedreferenceMarinho S, Simpson A, Marsden P, Smith JA, Custovic A. Quantification of atopy, lung function and airway hypersensitivity in adults. Clin Transl Allergy. 2011; 1 ( 1 ): 16. https://doi.org/10.1186/2045-7022-1-16
dc.identifier.citedreferenceRoberts G, Ollert M, Aalberse R, et al. A new framework for the interpretation of IgE sensitization tests. Allergy. 2016; 71 ( 11 ): 1540 - 1551. https://doi.org/10.1111/all.12939
dc.identifier.citedreferenceEguiluz-Gracia I, Testera-Montes A, Gonzalez M, et al. Safety and reproducibility of nasal allergen challenge. Allergy. 2019; 74 ( 6 ): 1125 - 1134. https://doi.org/10.1111/all.13728
dc.identifier.citedreferenceRamchandani R, Linton S, Hossenbaccus L, Ellis AK. Comparing the nasal allergen challenge and environmental exposure unit models of allergic rhinitis. Ann Allergy Asthma Immunol. 2021; 127 ( 2 ): 163 - 164. https://doi.org/10.1016/j.anai.2021.04.012
dc.identifier.citedreferenceCustovic A, Sonntag HJ, Buchan IE, Belgrave D, Simpson A, Prosperi MCF. Evolution pathways of IgE responses to grass and mite allergens throughout childhood. J Allergy Clin Immunol. 2015; 136 ( 6 ): 1645 - 1652.e8. https://doi.org/10.1016/j.jaci.2015.03.041
dc.identifier.citedreferenceHoward R, Belgrave D, Papastamoulis P, Simpson A, Rattray M, Custovic A. Evolution of IgE responses to multiple allergen components throughout childhood. J Allergy Clin Immunol. 2018; 142 ( 4 ): 1322 - 1330. https://doi.org/10.1016/j.jaci.2017.11.064
dc.identifier.citedreferenceSimpson A, Lazic N, Belgrave DC, et al. Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years. J Allergy Clin Immunol. 2015; 136 ( 5 ): 1224 - 1231. https://doi.org/10.1016/j.jaci.2015.03.027
dc.identifier.citedreferenceProsperi MC, Marinho S, Simpson A, Custovic A, Buchan IE. Predicting phenotypes of asthma and eczema with machine learning. BMC Med Genomics. 2014; 7 (suppl 1 ): S7. https://doi.org/10.1186/1755-8794-7-S1-S7
dc.identifier.citedreferenceProsperi MC, Belgrave D, Buchan I, Simpson A, Custovic A. Challenges in interpreting allergen microarrays in relation to clinical symptoms: a machine learning approach. Pediatr Allergy Immunol. 2014; 25 ( 1 ): 71 - 79. https://doi.org/10.1111/pai.12139
dc.identifier.citedreferenceFontanella S, Frainay C, Murray CS, Simpson A, Custovic A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: a cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018; 15 ( 11 ): e1002691. https://doi.org/10.1371/journal.pmed.1002691
dc.identifier.citedreferenceRoberts G, Fontanella S, Selby A, et al. Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. J Allergy Clin Immunol. 2020; 146 ( 4 ): 821 - 830. https://doi.org/10.1016/j.jaci.2020.02.031
dc.identifier.citedreferenceNiespodziana K, Borochova K, Pazderova P, et al. Toward personalization of asthma treatment according to trigger factors. J Allergy Clin Immunol. 2020; 145 ( 6 ): 1529 - 1534. https://doi.org/10.1016/j.jaci.2020.02.001
dc.identifier.citedreferenceVarghese M, Glaum MC, Lockey RF. Drug-induced rhinitis. Clin Exp Allergy. 2010; 40 ( 3 ): 381 - 384. https://doi.org/10.1111/j.1365-2222.2009.03450.x
dc.identifier.citedreferenceSettipane RA, Kaliner MA. Chapter 14: nonallergic rhinitis. Am J Rhinol Allergy. 2013; 27 (suppl 1 ): S48 - S51. https://doi.org/10.2500/ajra.2013.27.3927
dc.identifier.citedreferenceAgnihotri NT, McGrath KG. Allergic and nonallergic rhinitis. Allergy Asthma Proc. 2019; 40 ( 6 ): 376 - 379. https://doi.org/10.2500/aap.2019.40.4251
dc.identifier.citedreferenceWalgama ES, Hwang PH. Aspirin-exacerbated respiratory disease. Otolaryngol Clin North Am. 2017; 50 ( 1 ): 83 - 94. https://doi.org/10.1016/j.otc.2016.08.007
dc.identifier.citedreferenceLaidlaw TM, Levy JM. NSAID-ERD syndrome: the new hope from prevention, early diagnosis, and new therapeutic targets. Curr Allergy Asthma Rep. 2020; 20 ( 4 ): 10. https://doi.org/10.1007/s11882-020-00905-9
dc.identifier.citedreferenceSousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med. 2002; 347 ( 19 ): 1493 - 1499. https://doi.org/10.1056/NEJMoa013508
dc.identifier.citedreferenceBarnes PJ. Neurogenic inflammation in the airways. Respir Physiol. 2001; 125 ( 1-2 ): 145 - 154. https://doi.org/10.1016/s0034-5687(00)00210-3
dc.identifier.citedreferenceKaliner MA, Baraniuk JN, Benninger M, et al. Consensus definition of nonallergic rhinopathy, previously referred to as vasomotor rhinitis, nonallergic rhinitis, and/or idiopathic rhinitis. World Allergy Organ J. 2009; 2 ( 6 ): 119 - 120. https://doi.org/10.1097/WOX.0b013e3181a8e15a
dc.identifier.citedreferenceSettipane RA, Charnock DR. Epidemiology of rhinitis: allergic and nonallergic. Clin Allergy Immunol. 2007; 19: 23 - 34.
dc.identifier.citedreferenceMah GT, Tejani AM, Musini VM. Methyldopa for primary hypertension. Cochrane Database Syst Rev. 2009;( 4 ): CD003893. https://doi.org/10.1002/14651858.CD003893.pub3
dc.identifier.citedreferenceBoswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. Br J Pharmacol. 2006; 147 (suppl 1 ): S252 - S257. https://doi.org/10.1038/sj.bjp.0706495
dc.identifier.citedreferenceAndersson KE. PDE5 inhibitors – pharmacology and clinical applications 20 years after sildenafil discovery. Br J Pharmacol. 2018; 175 ( 13 ): 2554 - 2565. https://doi.org/10.1111/bph.14205
dc.identifier.citedreferenceKiroglu AF, Bayrakli H, Yuca K, Cankaya H, Kiris M. Nasal obstruction as a common side-effect of sildenafil citrate. Tohoku J Exp Med. 2006; 208 ( 3 ): 251 - 254. https://doi.org/10.1620/tjem.208.251
dc.identifier.citedreferenceMotamed M, Sandhu D, Murty GE. Sildenafil and nasal obstruction. J Otolaryngol. 2003; 32 ( 4 ): 259 - 261. https://doi.org/10.2310/7070.2003.41631
dc.identifier.citedreferenceCingi C, Ozdoganoglu T, Songu M. Nasal obstruction as a drug side effect. Ther Adv Respir Dis. 2011; 5 ( 3 ): 175 - 182. https://doi.org/10.1177/1753465811403348
dc.identifier.citedreferenceAhmed WS, Geethakumari AM, Biswas KH. Phosphodiesterase 5 (PDE5): structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother. 2021; 134: 111128. https://doi.org/10.1016/j.biopha.2020.111128
dc.identifier.citedreferenceTogias A. Unique mechanistic features of allergic rhinitis. J Allergy Clin Immunol. 2000; 105 (6 pt 2): S599 - S604. https://doi.org/10.1067/mai.2000.106885
dc.identifier.citedreferencePinargote P, Guillen D, Guarderas JC. ACE inhibitors: upper respiratory symptoms. BMJ Case Rep. 2014; 2014. https://doi.org/10.1136/bcr-2014-205462
dc.identifier.citedreferenceRiccio MM, Proud D. Evidence that enhanced nasal reactivity to bradykinin in patients with symptomatic allergy is mediated by neural reflexes. J Allergy Clin Immunol. 1996; 97 ( 6 ): 1252 - 1263. https://doi.org/10.1016/s0091-6749(96)70193-8
dc.identifier.citedreferenceShirasaki H, Kanaizumi E, Himi T. Immunohistochemical localization of the bradykinin B1 and B2 receptors in human nasal mucosa. Mediators Inflamm. 2009; 2009: 102406. https://doi.org/10.1155/2009/102406
dc.identifier.citedreferenceTrimarchi M, Miluzio A, Nicolai P, Morassi ML, Bussi M, Marchisio PC. Massive apoptosis erodes nasal mucosa of cocaine abusers. Am J Rhinol. 2006; 20 ( 2 ): 160 - 164.
dc.identifier.citedreferenceTan TH, Stevenson B, Yip D. Docetaxel-induced nasal septal perforation. Intern Med J. 2006; 36 ( 7 ): 471 - 472. https://doi.org/10.1111/j.1445-5994.2006.01105.x
dc.identifier.citedreferenceLanier B, Kai G, Marple B, Wall GM. Pathophysiology and progression of nasal septal perforation. Ann Allergy Asthma Immunol. 2007; 99 ( 6 ): 473 - 479; quiz 480-1, 521. https://doi.org/10.1016/S1081-1206(10)60373-0
dc.identifier.citedreferenceAlexander D, Alexander K, Valentino J. Intranasal hydrocodone-acetaminophen abuse induced necrosis of the nasal cavity and pharynx. Laryngoscope. 2012; 122 ( 11 ): 2378 - 2381. https://doi.org/10.1002/lary.23542
dc.identifier.citedreferenceWang SH, Wang HW, Wang JY. Effects of cocaine on human nasal mucosa. Eur Arch Otorhinolaryngol. 1993; 250 ( 4 ): 245 - 248. https://doi.org/10.1007/BF00171534
dc.identifier.citedreferenceSnyder RD, Snyder LB. Intranasal cocaine abuse in an allergists office. Ann Allergy. 1985; 54 ( 6 ): 489 - 492.
dc.identifier.citedreferenceHall LJ, Jackson RT. Effects of alpha and beta adrenergic agonists on nasal blood flow. Ann Otol Rhinol Laryngol. 1968; 77 ( 6 ): 1120 - 1130. https://doi.org/10.1177/000348946807700610
dc.identifier.citedreferenceWalker JS. Rhinitis medicamentosa. J Allergy. 1952; 23 ( 2 ): 183 - 186. https://doi.org/10.1016/0021-8707(52)90093-2
dc.identifier.citedreferenceKim D, Steinhart B. Seizures induced by recreational abuse of bupropion tablets via nasal insufflation. CJEM. 2010; 12 ( 2 ): 158 - 161. https://doi.org/10.1017/s1481803500012203
dc.identifier.citedreferenceSataloff RT, Gullane PJ, Goldstein DP. Sataloff’s Comprehensive Textbook of Otolaryngology, Head and Neck Surgery. Jaypee Brothers Medical Publishing; 2016.
dc.identifier.citedreferenceDaws LC, Callaghan PD, Moron JA, et al. Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophys Res Commun. 2002; 290 ( 5 ): 1545 - 1550. https://doi.org/10.1006/bbrc.2002.6384
dc.identifier.citedreferenceMiddleton LS, Nuzzo PA, Lofwall MR, Moody DE, Walsh SL. The pharmacodynamic and pharmacokinetic profile of intranasal crushed buprenorphine and buprenorphine/naloxone tablets in opioid abusers. Addiction. 2011; 106 ( 8 ): 1460 - 1473. https://doi.org/10.1111/j.1360-0443.2011.03424.x
dc.identifier.citedreferenceZhang H, Prisinzano TE, Donovan MD. Permeation and metabolism of cocaine in the nasal mucosa. Eur J Drug Metab Pharmacokinet. 2012; 37 ( 4 ): 255 - 262. https://doi.org/10.1007/s13318-012-0085-x
dc.identifier.citedreferenceLin RJ, Smith LJ. Laryngeal Manifestation of intranasal acetaminophen abuse and review of literature. Ear Nose Throat J. 2019; 98 ( 4 ): 192 - 194. https://doi.org/10.1177/0145561319836807
dc.identifier.citedreferenceHardison SA, Marcum KK, Lintzenich CR. Severe necrosis of the palate and nasal septum resulting from intranasal abuse of acetaminophen. Ear Nose Throat J. 2015; 94 ( 10-11 ): E40 - E42.
dc.identifier.citedreferenceLin Y, Lu JY, Pinheiro-Neto CD, Jones DM, Gildener-Leapman N. Intranasal acetaminophen abuse and nasal, pharyngeal, and laryngotracheal damage. Cureus. 2019; 11 ( 8 ): e5432. https://doi.org/10.7759/cureus.5432
dc.identifier.citedreferenceMorrison DA, Wise SK, DelGaudio JM, Chowdhury NI, Levy JM. Intranasal tissue necrosis associated with opioid abuse: case report and systematic review. Laryngoscope. 2018; 128 ( 8 ): 1767 - 1771. https://doi.org/10.1002/lary.27069
dc.identifier.citedreferenceRamey JT, Bailen E, Lockey RF. Rhinitis medicamentosa. J Investig Allergol Clin Immunol. 2006; 16 ( 3 ): 148 - 155.
dc.identifier.citedreferenceGraf PM. Rhinitis medicamentosa. Clin Allergy Immunol. 2007; 19: 295 - 304.
dc.identifier.citedreferenceMin YG, Kim HS, Suh SH, Jeon SY, Son YI, Yoon S. Paranasal sinusitis after long-term use of topical nasal decongestants. Acta Otolaryngol. 1996; 116 ( 3 ): 465 - 471. https://doi.org/10.3109/00016489609137874
dc.identifier.citedreferenceMortuaire G, de Gabory L, Francois M, et al. Rebound congestion and rhinitis medicamentosa: nasal decongestants in clinical practice. Critical review of the literature by a medical panel. Eur Ann Otorhinolaryngol Head Neck Dis. 2013; 130 ( 3 ): 137 - 144. https://doi.org/10.1016/j.anorl.2012.09.005
dc.identifier.citedreferenceZucker SM, Barton BM, McCoul ED. Management of rhinitis medicamentosa: a systematic review. Otolaryngol Head Neck Surg. 2019; 160 ( 3 ): 429 - 438. https://doi.org/10.1177/0194599818807891
dc.identifier.citedreferenceGraf P, Juto JE. Sustained use of xylometazoline nasal spray shortens the decongestive response and induces rebound swelling. Rhinology. 1995; 33 ( 1 ): 14 - 17.
dc.identifier.citedreferenceVicks Sinex. Thompson PDR; 2004.
dc.identifier.citedreferenceFleece L, Mizes JS, Jolly PA, Baldwin RL. Rhinitis medicamentosa. Conceptualization, incidence, and treatment. Ala J Med Sci. 1984; 21 ( 2 ): 205 - 208.
dc.identifier.citedreferenceKnipping S, Holzhausen HJ, Goetze G, Riederer A, Bloching MB. Rhinitis medicamentosa: electron microscopic changes of human nasal mucosa. Otolaryngol Head Neck Surg. 2007; 136 ( 1 ): 57 - 61. https://doi.org/10.1016/j.otohns.2006.08.025
dc.identifier.citedreferenceMarple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004; 130 ( 1 ): 131 - 141. https://doi.org/10.1016/j.otohns.2003.07.005
dc.identifier.citedreferenceGraf P. Adverse effects of benzalkonium chloride on the nasal mucosa: allergic rhinitis and rhinitis medicamentosa. Clin Ther. 1999; 21 ( 10 ): 1749 - 1755. https://doi.org/10.1016/S0149-2918(99)80053-8
dc.identifier.citedreferenceGraf P. Rhinitis medicamentosa: a review of causes and treatment. Treat Respir Med. 2005; 4 ( 1 ): 21 - 29. https://doi.org/10.2165/00151829-200504010-00003
dc.identifier.citedreferenceGraf P. Benzalkonium chloride as a preservative in nasal solutions: re-examining the data. Respir Med. 2001; 95 ( 9 ): 728 - 733. https://doi.org/10.1053/rmed.2001.1127
dc.identifier.citedreferenceKawabata M, Ohori J, Kurono Y. Effects of benzalkonium chloride on histamine H1 receptor mRNA expression in nasal epithelial cells. Auris Nasus Larynx. 2016; 43 ( 6 ): 685 - 688. https://doi.org/10.1016/j.anl.2016.02.003
dc.identifier.citedreferenceMorris S, Eccles R, Martez SJ, Riker DK, Witek TJ. An evaluation of nasal response following different treatment regimes of oxymetazoline with reference to rebound congestion. Am J Rhinol. 1997; 11 ( 2 ): 109 - 115. https://doi.org/10.2500/105065897782537197
dc.identifier.citedreferenceChodirker WB. Rhinitis medicamentosa. Can Med Assoc J. 1981; 124 ( 4 ): 370, 372.
dc.identifier.citedreferenceMay M, West JW. The “stuffy” nose. Otolaryngol Clin North Am. 1973; 6 ( 3 ): 655 - 674.
dc.identifier.citedreferenceGraf P, Hallen H, Juto JE. The pathophysiology and treatment of rhinitis medicamentosa. Clin Otolaryngol Allied Sci. 1995; 20 ( 3 ): 224 - 229. https://doi.org/10.1111/j.1365-2273.1995.tb01853.x
dc.identifier.citedreferenceElwany S, Abdel-Salaam S. Treatment of rhinitis medicamentosa with fluticasone propionate – an experimental study. Eur Arch Otorhinolaryngol. 2001; 258 ( 3 ): 116 - 119. https://doi.org/10.1007/s004050000309
dc.identifier.citedreferenceTas A, Yagiz R, Yalcin O, et al. Use of mometasone furoate aqueous nasal spray in the treatment of rhinitis medicamentosa: an experimental study. Otolaryngol Head Neck Surg. 2005; 132 ( 4 ): 608 - 612. https://doi.org/10.1016/j.otohns.2005.01.010
dc.identifier.citedreferenceStephens AL, Jr., Boggs PB. Intranasal dexamethasone: an adjunct in the treatment of chemical rhinitis. Ann Allergy. 1968; 26 ( 11 ): 612 - 613.
dc.identifier.citedreferenceElwany SS, Stephanos WM. Rhinitis medicamentosa. An experimental histopathological and histochemical study. ORL J Otorhinolaryngol Relat Spec. 1983; 45 ( 4 ): 187 - 194. https://doi.org/10.1159/000275642
dc.identifier.citedreferenceSettipane RA. Other causes of rhinitis: mixed rhinitis, rhinitis medicamentosa, hormonal rhinitis, rhinitis of the elderly, and gustatory rhinitis. Immunol Allergy Clin North Am. 2011; 31 ( 3 ): 457 - 467. https://doi.org/10.1016/j.iac.2011.05.011
dc.identifier.citedreferenceScadding GK. Allergic rhinitis in children. Paediatrics Child Health. 2008; 18: 323 - 328.
dc.identifier.citedreferenceDykewicz MS, Fineman S, Skoner DP, et al. Diagnosis and management of rhinitis: complete guidelines of the Joint Task Force on Practice Parameters in Allergy, Asthma and Immunology. American Academy of Allergy, Asthma, and Immunology. Ann Allergy Asthma Immunol. 1998; 81 (5 pt 2): 478 - 518. https://doi.org/10.1016/s1081-1206(10)63155-9
dc.identifier.citedreferenceAkerlund A, Bende M. Sustained use of oxymetazoline nose drops aggrevates vasomotor rhinitis. Amer J Rhinol. 1991; 5: 157 - 160.
dc.identifier.citedreferenceFowler J, Chin CJ, Massoud E. Rhinitis medicamentosa: a nationwide survey of Canadian otolaryngologists. J Otolaryngol Head Neck Surg. 2019; 48 ( 1 ): 70. https://doi.org/10.1186/s40463-019-0392-1
dc.identifier.citedreferenceYoo JK, Seikaly H, Calhoun KH. Extended use of topical nasal decongestants. Laryngoscope. 1997; 107 ( 1 ): 40 - 43. https://doi.org/10.1097/00005537-199701000-00010
dc.identifier.citedreferenceMoscato G, Vandenplas O, Van Wijk RG, et al. EAACI position paper on occupational rhinitis. Respir Res. 2009; 10: 16. https://doi.org/10.1186/1465-9921-10-16
dc.identifier.citedreferenceKotz S, Pechtold L, Jorres RA, Nowak D, Chaker AM. Occupational rhinitis. Allergol Select. 2021; 5: 51 - 56. https://doi.org/10.5414/ALX02165E
dc.identifier.citedreferenceVandenplas O, Hox V, Bernstein D. Occupational rhinitis. J Allergy Clin Immunol Pract. 2020; 8 ( 10 ): 3311 - 3321. https://doi.org/10.1016/j.jaip.2020.06.047
dc.identifier.citedreferenceTarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014; 370 ( 7 ): 640 - 649. https://doi.org/10.1056/NEJMra1301758
dc.identifier.citedreferenceRonsmans S, Steelant B, Backaert W, Nemery B, Van Gerven L. Diagnostic approach to occupational rhinitis: the role of nasal provocation tests. Curr Opin Allergy Clin Immunol. 2020; 20 ( 2 ): 122 - 130. https://doi.org/10.1097/ACI.0000000000000608
dc.identifier.citedreferenceSiracusa A, Desrosiers M, Marabini A. Epidemiology of occupational rhinitis: prevalence, aetiology and determinants. Clin Exp Allergy. 2000; 30 ( 11 ): 1519 - 1534. https://doi.org/10.1046/j.1365-2222.2000.00946.x
dc.identifier.citedreferencePala G, Pignatti P, Perfetti L, et al. Occupational rhinitis and asthma due to cabreuva wood dust. Ann Allergy Asthma Immunol. 2010; 104 ( 3 ): 268 - 269. https://doi.org/10.1016/j.anai.2010.01.009
dc.identifier.citedreferenceLopata AL, Jeebhay MF. Airborne seafood allergens as a cause of occupational allergy and asthma. Curr Allergy Asthma Rep. 2013; 13 ( 3 ): 288 - 297. https://doi.org/10.1007/s11882-013-0347-y
dc.identifier.citedreferenceSiracusa A, De Blay F, Folletti I, et al. Asthma and exposure to cleaning products – a European Academy of Allergy and Clinical Immunology task force consensus statement. Allergy. 2013; 68 ( 12 ): 1532 - 1545. https://doi.org/10.1111/all.12279
dc.identifier.citedreferenceSiracusa A, Folletti I, Moscato G. Non-IgE-mediated and irritant-induced work-related rhinitis. Curr Opin Allergy Clin Immunol. 2013; 13 ( 2 ): 159 - 166. https://doi.org/10.1097/ACI.0b013e32835e12e7
dc.identifier.citedreferenceFolletti I, Zock JP, Moscato G, Siracusa A. Asthma and rhinitis in cleaning workers: a systematic review of epidemiological studies. J Asthma. 2014; 51 ( 1 ): 18 - 28. https://doi.org/10.3109/02770903.2013.833217
dc.identifier.citedreferenceSzeszenia-Dabrowska N, Swiatkowska B, Wilczynska U. Occupational diseases among farmers in Poland. Med Pr. 2016; 67 ( 2 ): 163 - 171. Choroby zawodowe rolnikow w Polsce. https://doi.org/10.13075/mp.5893.00303
dc.identifier.citedreferenceRodier F, Gautrin D, Ghezzo H, Malo JL. Incidence of occupational rhinoconjunctivitis and risk factors in animal-health apprentices. J Allergy Clin Immunol. 2003; 112 ( 6 ): 1105 - 1111. https://doi.org/10.1016/j.jaci.2003.08.011
dc.identifier.citedreferenceRuoppi P, Koistinen T, Susitaival P, Honkanen J, Soininen H. Frequency of allergic rhinitis to laboratory animals in university employees as confirmed by chamber challenges. Allergy. 2004; 59 ( 3 ): 295 - 301. https://doi.org/10.1046/j.1398-9995.2003.00204.x
dc.identifier.citedreferenceSchyllert C, Ronmark E, Andersson M, et al. Occupational exposure to chemicals drives the increased risk of asthma and rhinitis observed for exposure to vapours, gas, dust and fumes: a cross-sectional population-based study. Occup Environ Med. 2016; 73 ( 10 ): 663 - 669. https://doi.org/10.1136/oemed-2016-103595
dc.identifier.citedreferenceKrop EJ, Heederik DJ, Lutter R, et al. Associations between pre-employment immunologic and airway mucosal factors and the development of occupational allergy. J Allergy Clin Immunol. 2009; 123 ( 3 ): 694 - 700, 700.e1-3. https://doi.org/10.1016/j.jaci.2008.12.021
dc.identifier.citedreferencePhipatanakul W, Matsui E, Portnoy J, et al. Environmental assessment and exposure reduction of rodents: a practice parameter. Ann Allergy Asthma Immunol. 2012; 109 ( 6 ): 375 - 387. https://doi.org/10.1016/j.anai.2012.09.019
dc.identifier.citedreferencePignatti P, Pala G, Pisati M, Perfetti L, Banchieri G, Moscato G. Nasal blown secretion evaluation in specific occupational nasal challenges. Int Arch Occup Environ Health. 2010; 83 ( 2 ): 217 - 223. https://doi.org/10.1007/s00420-009-0459-9
dc.identifier.citedreferenceOttaviano G, Fokkens WJ. Measurements of nasal airflow and patency: a critical review with emphasis on the use of peak nasal inspiratory flow in daily practice. Allergy. 2016; 71 ( 2 ): 162 - 174. https://doi.org/10.1111/all.12778
dc.identifier.citedreferenceWood RA, Phipatanakul W, Hamilton RG, Eggleston PA. A comparison of skin prick tests, intradermal skin tests, and RASTs in the diagnosis of cat allergy. J Allergy Clin Immunol. 1999; 103 (5 pt 1): 773 - 779. https://doi.org/10.1016/s0091-6749(99)70419-7
dc.identifier.citedreferenceNam YH, Lee SK. Comparison between skin prick test and serum immunoglobulin E by CAP system to inhalant allergens. Ann Allergy Asthma Immunol. 2017; 118 ( 5 ): 608 - 613. https://doi.org/10.1016/j.anai.2017.03.005
dc.identifier.citedreferenceRaulf M, Quirce S, Vandenplas O. Addressing molecular diagnosis of occupational allergies. Curr Allergy Asthma Rep. 2018; 18 ( 1 ): 6. https://doi.org/10.1007/s11882-018-0759-9
dc.identifier.citedreferenceAmirneni A, Tversky J. High histamine control concentration leads to false negative allergy skin testing. Am J Rhinol Allergy. 2021; 35 ( 6 ): 854 - 860. https://doi.org/10.1177/19458924211008685
dc.identifier.citedreferenceTversky JR, Chelladurai Y, McGready J, Hamilton RG. Performance and pain tolerability of current diagnostic allergy skin prick test devices. J Allergy Clin Immunol Pract. 2015; 3 ( 6 ): 888 - 893. https://doi.org/10.1016/j.jaip.2015.07.022
dc.identifier.citedreferenceTversky J, MacGlashan D. Short-wave infrared camera as a novel solution to allergy skin testing. Allergy. 2020; 75 ( 4 ): 965 - 968. https://doi.org/10.1111/all.14089
dc.identifier.citedreferenceKim YH, Jang TY. Nasal provocation test using allergen extract versus cold dry air provocation test: which and when? Am J Rhinol Allergy. 2013; 27 ( 2 ): 113 - 117. https://doi.org/10.2500/ajra.2013.27.3870
dc.identifier.citedreferenceJang TY, Kim YH. Nasal provocation test is useful for discriminating allergic, nonallergic, and local allergic rhinitis. Am J Rhinol Allergy. 2015; 29 ( 4 ): e100 - e104. https://doi.org/10.2500/ajra.2015.29.4214
dc.identifier.citedreferenceGomez F, Rondon C, Salas M, Campo P. Local allergic rhinitis: mechanisms, diagnosis and relevance for occupational rhinitis. Curr Opin Allergy Clin Immunol. 2015; 15 ( 2 ): 111 - 116. https://doi.org/10.1097/ACI.0000000000000150
dc.identifier.citedreferenceBousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008; 63 (suppl 86 ): 8 - 160. https://doi.org/10.1111/j.1398-9995.2007.01620.x
dc.identifier.citedreferenceMoscato G, Pala G, Sastre J. Specific immunotherapy and biological treatments for occupational allergy. Curr Opin Allergy Clin Immunol. 2014; 14 ( 6 ): 576 - 581. https://doi.org/10.1097/ACI.0000000000000105
dc.identifier.citedreferenceMoscato G, Rolla G, Siracusa A. Occupational rhinitis: consensus on diagnosis and medicolegal implications. Curr Opin Otolaryngol Head Neck Surg. 2011; 19 ( 1 ): 36 - 42. https://doi.org/10.1097/MOO.0b013e328341e228
dc.identifier.citedreferenceGerth van Wijk R, Patiwael JA, de Jong NW, de Groot H, Burdorf A. Occupational rhinitis in bell pepper greenhouse workers: determinants of leaving work and the effects of subsequent allergen avoidance on health-related quality of life. Allergy. 2011; 66 ( 7 ): 903 - 908. https://doi.org/10.1111/j.1398-9995.2011.02556.x
dc.identifier.citedreferenceFoss-Skiftesvik MH, Winther L, Johnsen CR, et al. High occurrence of rhinitis symptoms in hairdressing apprentices. Int Forum Allergy Rhinol. 2017; 7 ( 1 ): 43 - 49. https://doi.org/10.1002/alr.21834
dc.identifier.citedreferenceRouadi PW, Idriss SA, Naclerio RM, et al. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J. 2020; 13 ( 10 ): 100467. https://doi.org/10.1016/j.waojou.2020.100467
dc.identifier.citedreferenceMoscato G, Pala G, Folletti I, Siracusa A, Quirce S. Occupational rhinitis affects occupational asthma severity. J Occup Health. 2016; 58 ( 3 ): 310 - 313. https://doi.org/10.1539/joh.15-0067-BR
dc.identifier.citedreferenceTai CF, Baraniuk JN. Upper airway neurogenic mechanisms. Curr Opin Allergy Clin Immunol. 2002; 2 ( 1 ): 11 - 19. https://doi.org/10.1097/00130832-200202000-00003
dc.identifier.citedreferenceMeggs WJ. RADS and RUDS–the toxic induction of asthma and rhinitis. J Toxicol Clin Toxicol. 1994; 32 ( 5 ): 487 - 501. https://doi.org/10.3109/15563659409011053
dc.identifier.citedreferenceBrooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest. 1985; 88 ( 3 ): 376 - 384. https://doi.org/10.1378/chest.88.3.376
dc.identifier.citedreferenceBello A, Quinn MM, Perry MJ, Milton DK. Characterization of occupational exposures to cleaning products used for common cleaning tasks – a pilot study of hospital cleaners. Environ Health. 2009; 8: 11. https://doi.org/10.1186/1476-069X-8-11
dc.identifier.citedreferenceChary A, Hennen J, Klein SG, Serchi T, Gutleb AC, Blomeke B. Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol. 2018; 92 ( 2 ): 803 - 822. https://doi.org/10.1007/s00204-017-2088-5
dc.identifier.citedreferenceKimber I, Dearman RJ, Basketter DA. Diisocyanates, occupational asthma and IgE antibody: implications for hazard characterization. J Appl Toxicol. 2014; 34 ( 10 ): 1073 - 1077. https://doi.org/10.1002/jat.3041
dc.identifier.citedreferenceKimber I, Dearman RJ. Chemical respiratory allergy: role of IgE antibody and relevance of route of exposure. Toxicology. 2002; 181-182: 311 - 315. https://doi.org/10.1016/s0300-483x(02)00299-8
dc.identifier.citedreferenceWisnewski AV. Developments in laboratory diagnostics for isocyanate asthma. Curr Opin Allergy Clin Immunol. 2007; 7 ( 2 ): 138 - 145. https://doi.org/10.1097/ACI.0b013e3280895d22
dc.identifier.citedreferenceChristensen DN, Franks ZG, McCrary HC, Saleh AA, Chang EH. A systematic review of the association between cigarette smoke exposure and chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2018; 158 ( 5 ): 801 - 816. https://doi.org/10.1177/0194599818757697
dc.identifier.citedreferenceEriksson J, Ekerljung L, Sundblad BM, et al. Cigarette smoking is associated with high prevalence of chronic rhinitis and low prevalence of allergic rhinitis in men. Allergy. 2013; 68 ( 3 ): 347 - 354. https://doi.org/10.1111/all.12095
dc.identifier.citedreferenceYao TC, Chang SW, Chang WC, et al. Exposure to tobacco smoke and childhood rhinitis: a population-based study. Sci Rep. 2017; 7: 42836. https://doi.org/10.1038/srep42836
dc.identifier.citedreferenceLee A, Lee SY, Lee KS. The use of heated tobacco products is associated with asthma, allergic rhinitis, and atopic dermatitis in Korean adolescents. Sci Rep. 2019; 9 ( 1 ): 17699. https://doi.org/10.1038/s41598-019-54102-4
dc.identifier.citedreferencePhulka JS, Howlett JW, Hu A. Cannabis related side effects in otolaryngology: a scoping review. J Otolaryngol Head Neck Surg. 2021; 50 ( 1 ): 56. https://doi.org/10.1186/s40463-021-00538-6
dc.identifier.citedreferenceAbramson MJ, Schindler C, Schikowski T, et al. Rhinitis in Swiss adults is associated with asthma and early life factors, but not second hand tobacco smoke or obesity. Allergol Int. 2016; 65 ( 2 ): 192 - 198. https://doi.org/10.1016/j.alit.2015.11.004
dc.identifier.citedreferencePallasaho P, Kainu A, Juusela M, Meren M, Sovijarvi A. High prevalence of rhinitis symptoms without allergic sensitization in Estonia and Finland. Eur Clin Respir J. 2015; 2. https://doi.org/10.3402/ecrj.v2.25401
dc.identifier.citedreferenceShargorodsky J, Garcia-Esquinas E, Galan I, Navas-Acien A, Lin SY. Allergic sensitization, rhinitis and tobacco smoke exposure in US adults. PLoS One. 2015; 10 ( 7 ): e0131957. https://doi.org/10.1371/journal.pone.0131957
dc.identifier.citedreferenceHisinger-Molkanen H, Piirila P, Haahtela T, Sovijarvi A, Pallasaho P. Smoking, environmental tobacco smoke and occupational irritants increase the risk of chronic rhinitis. World Allergy Organ J. 2018; 11 ( 1 ): 6. https://doi.org/10.1186/s40413-018-0184-5
dc.identifier.citedreferenceGleich GJ, Welsh PW, Yunginger JW, Hyatt RE, Catlett JB. Allergy to tobacco: an occupational hazard. N Engl J Med. 1980; 302 ( 11 ): 617 - 619. https://doi.org/10.1056/NEJM198003133021107
dc.identifier.citedreferenceBurrows B, Halonen M, Lebowitz MD, Knudson RJ, Barbee RA. The relationship of serum immunoglobulin E, allergy skin tests, and smoking to respiratory disorders. J Allergy Clin Immunol. 1982; 70 ( 3 ): 199 - 204. https://doi.org/10.1016/0091-6749(82)90042-2
dc.identifier.citedreferenceBascom R, Kesavanathan J, Fitzgerald TK, Cheng KH, Swift DL. Sidestream tobacco smoke exposure acutely alters human nasal mucociliary clearance. Environ Health Perspect. 1995; 103 ( 11 ): 1026 - 1030. https://doi.org/10.1289/ehp.951031026
dc.identifier.citedreferenceAndre E, Campi B, Materazzi S, et al. Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest. 2008; 118 ( 7 ): 2574 - 2582. https://doi.org/10.1172/JCI34886
dc.identifier.citedreferenceMeggs WJ. Neurogenic inflammation and sensitivity to environmental chemicals. Environ Health Perspect. 1993; 101 ( 3 ): 234 - 238. https://doi.org/10.1289/ehp.93101234
dc.identifier.citedreferenceBascom R, Kulle T, Kagey-Sobotka A, Proud D. Upper respiratory tract environmental tobacco smoke sensitivity. Am Rev Respir Dis. 1991; 143 ( 6 ): 1304 - 1311. https://doi.org/10.1164/ajrccm/143.6.1304
dc.identifier.citedreferenceDykewicz MS, Wallace DV, Amrol DJ, et al. Rhinitis 2020: a practice parameter update. J Allergy Clin Immunol. 2020; 146 ( 4 ): 721 - 767. https://doi.org/10.1016/j.jaci.2020.07.007
dc.identifier.citedreferenceFokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58 (suppl S29 ): 1 - 464. https://doi.org/10.4193/Rhin20.600
dc.identifier.citedreferenceMeltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg. 2004; 131 ( 6 suppl): S1 - S62. https://doi.org/10.1016/j.otohns.2004.09.067
dc.identifier.citedreferenceFokkens WJ, Lund VJ, Mullol J, et al. European Position Paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012; 23: 3 p preceding table of contents, 1-298.
dc.identifier.citedreferenceAring AM, Chan MM. Current concepts in adult acute rhinosinusitis. Am Fam Physician. 2016; 94 ( 2 ): 97 - 105.
dc.identifier.citedreferenceCanonica GW, Ciprandi G, Pesce GP, Buscaglia S, Paolieri F, Bagnasco M. ICAM-1 on epithelial cells in allergic subjects: a hallmark of allergic inflammation. Int Arch Allergy Immunol. 1995; 107 ( 1-3 ): 99 - 102. https://doi.org/10.1159/000236943
dc.identifier.citedreferenceCiebiada M, Gorska-Ciebiada M, Gorski P. sICAM-1 and TNF-alpha in asthma and rhinitis: relationship with the presence of atopy. J Asthma. 2011; 48 ( 7 ): 660 - 666. https://doi.org/10.3109/02770903.2011.604886
dc.identifier.citedreferenceTantilipikorn P. The relationship between allergic rhinitis and viral infections. Curr Opin Otolaryngol Head Neck Surg. 2014; 22 ( 3 ): 249 - 252. https://doi.org/10.1097/MOO.0000000000000049
dc.identifier.citedreferenceGorska-Ciebiada M, Ciebiada M, Gorska MM, Gorski P, Grzelewska-Rzymowska I. Intercellular adhesion molecule 1 and tumor necrosis factor alpha in asthma and persistent allergic rhinitis: relationship with disease severity. Ann Allergy Asthma Immunol. 2006; 97 ( 1 ): 66 - 72. https://doi.org/10.1016/S1081-1206(10)61372-5
dc.identifier.citedreferenceShiota Y, Wilson JG, Marukawa M, Ono T, Kaji M. Soluble intercellular adhesion molecule 1 (ICAM-1) antigen in sera of bronchial asthmatics. Chest. 1996; 109 ( 1 ): 94 - 99. https://doi.org/10.1378/chest.109.1.94
dc.identifier.citedreferenceGosset P, Tillie-Leblond I, Janin A, et al. Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int Arch Allergy Immunol. 1995; 106 ( 1 ): 69 - 77. https://doi.org/10.1159/000236892
dc.identifier.citedreferenceKenealy T, Arroll B. Antibiotics for the common cold and acute purulent rhinitis. Cochrane Database Syst Rev. 2013;( 6 ): CD000247. https://doi.org/10.1002/14651858.CD000247.pub3
dc.identifier.citedreferenceKaper NM, Breukel L, Venekamp RP, Grolman W, van der Heijden GJ. Absence of evidence for enhanced benefit of antibiotic therapy on recurrent acute rhinosinusitis episodes: a systematic review of the evidence base. Otolaryngol Head Neck Surg. 2013; 149 ( 5 ): 664 - 667. https://doi.org/10.1177/0194599813505841
dc.identifier.citedreferenceLemiengre MB, van Driel ML, Merenstein D, Young J, De Sutter AI. Antibiotics for clinically diagnosed acute rhinosinusitis in adults. Cochrane Database Syst Rev. 2012; 10: CD006089. https://doi.org/10.1002/14651858.CD006089.pub4
dc.identifier.citedreferencevan den Broek MF, Gudden C, Kluijfhout WP, et al. No evidence for distinguishing bacterial from viral acute rhinosinusitis using symptom duration and purulent rhinorrhea: a systematic review of the evidence base. Otolaryngol Head Neck Surg. 2014; 150 ( 4 ): 533 - 537. https://doi.org/10.1177/0194599814522595
dc.identifier.citedreferenceStjarne P, Odeback P, Stallberg B, Lundberg J, Olsson P. High costs and burden of illness in acute rhinosinusitis: real-life treatment patterns and outcomes in Swedish primary care. Prim Care Respir J. 2012; 21 ( 2 ): 174 - 179; quiz 10p following 179. https://doi.org/10.4104/pcrj.2012.00011
dc.identifier.citedreferenceJaume F, Quinto L, Alobid I, Mullol J. Overuse of diagnostic tools and medications in acute rhinosinusitis in Spain: a population-based study (the PROSINUS study). BMJ Open. 2018; 8 ( 1 ): e018788. https://doi.org/10.1136/bmjopen-2017-018788
dc.identifier.citedreferenceSeresirikachorn K, Snidvongs K, Chitsuthipakorn W, et al. EPOS2012 has better specificity compared to IDSA2012 for diagnosing acute bacterial rhinosinusitis. Rhinology. 2018; 56 ( 3 ): 241 - 244. https://doi.org/10.4193/Rhin17.261
dc.identifier.citedreferenceChow AW, Benninger MS, Brook I, et al. IDSA clinical practice guideline for acute bacterial rhinosinusitis in children and adults. Clin Infect Dis. 2012; 54 ( 8 ): e72 - e112. https://doi.org/10.1093/cid/cir1043
dc.identifier.citedreferenceRosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg. 2015; 152 ( 2 suppl): S1 - S39. https://doi.org/10.1177/0194599815572097
dc.identifier.citedreferenceLindbaek M, Hjortdahl P, Johnsen UL. Use of symptoms, signs, and blood tests to diagnose acute sinus infections in primary care: comparison with computed tomography. Fam Med. 1996; 28 ( 3 ): 183 - 188.
dc.identifier.citedreferenceEllegard EK. Pregnancy rhinitis. Immunol Allergy Clin North Am. 2006; 26 ( 1 ): 119 - 135, vii. https://doi.org/10.1016/j.iac.2005.10.007
dc.identifier.citedreferenceEllegard EK. Clinical and pathogenetic characteristics of pregnancy rhinitis. Clin Rev Allergy Immunol. 2004; 26 ( 3 ): 149 - 159. https://doi.org/10.1385/CRIAI:26:3:149
dc.identifier.citedreferenceEllegard E, Karlsson G. Nasal congestion during pregnancy. Clin Otolaryngol Allied Sci. 1999; 24 ( 4 ): 307 - 311. https://doi.org/10.1046/j.1365-2273.1999.00264.x
dc.identifier.citedreferenceBaudoin T, Simunjak T, Bacan N, Jelavic B, Kuna K, Kosec A. Redefining pregnancy-induced rhinitis. Am J Rhinol Allergy. 2021; 35 ( 3 ): 315 - 322. https://doi.org/10.1177/1945892420957490
dc.identifier.citedreferenceEllegard E, Hellgren M, Toren K, Karlsson G. The incidence of pregnancy rhinitis. Gynecol Obstet Invest. 2000; 49 ( 2 ): 98 - 101. https://doi.org/10.1159/000010223
dc.identifier.citedreferencePhilpott CM, Conboy P, Al-Azzawi F, Murty G. Nasal physiological changes during pregnancy. Clin Otolaryngol Allied Sci. 2004; 29 ( 4 ): 343 - 351. https://doi.org/10.1111/j.1365-2273.2004.00815.x
dc.identifier.citedreferenceToppozada H, Michaels L, Toppozada M, El-Ghazzawi I, Talaat M, Elwany S. The human respiratory nasal mucosa in pregnancy. An electron microscopic and histochemical study. J Laryngol Otol. 1982; 96 ( 7 ): 613 - 626. https://doi.org/10.1017/s0022215100092902
dc.identifier.citedreferenceJuniper EF, Guyatt GH, Andersson B, Ferrie PJ. Comparison of powder and aerosolized budesonide in perennial rhinitis: validation of rhinitis quality of life questionnaire. Ann Allergy. 1993; 70 ( 3 ): 225 - 230.
dc.identifier.citedreferenceKumar R, Hayhurst KL, Robson AK. Ear, nose, and throat manifestations during pregnancy. Otolaryngol Head Neck Surg. 2011; 145 ( 2 ): 188 - 198. https://doi.org/10.1177/0194599811407572
dc.identifier.citedreferenceOrban N, Maughan E, Bleach N. Pregnancy-induced rhinitis. Rhinology. 2013; 51 ( 2 ): 111 - 119. https://doi.org/10.4193/Rhino12.045
dc.identifier.citedreferenceHamano N, Terada N, Maesako K, et al. Expression of histamine receptors in nasal epithelial cells and endothelial cells–the effects of sex hormones. Int Arch Allergy Immunol. 1998; 115 ( 3 ): 220 - 227. https://doi.org/10.1159/000023904
dc.identifier.citedreferenceEllegard E, Oscarsson J, Bougoussa M, et al. Serum level of placental growth hormone is raised in pregnancy rhinitis. Arch Otolaryngol Head Neck Surg. 1998; 124 ( 4 ): 439 - 443. https://doi.org/10.1001/archotol.124.4.439
dc.identifier.citedreferenceFranklin KA, Holmgren PA, Jonsson F, Poromaa N, Stenlund H, Svanborg E. Snoring, pregnancy-induced hypertension, and growth retardation of the fetus. Chest. 2000; 117 ( 1 ): 137 - 141. https://doi.org/10.1378/chest.117.1.137
dc.identifier.citedreferenceFavilli A, Laurenti E, Stagni GM, Tassi L, Ricci G, Gerli S. Effects of sodium hyaluronate on symptoms and quality of life in women affected by pregnancy rhinitis: a pilot study. Gynecol Obstet Invest. 2019; 84 ( 2 ): 159 - 165. https://doi.org/10.1159/000493137
dc.identifier.citedreferenceHellings PW, Klimek L, Cingi C, et al. Non-allergic rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2017; 72 ( 11 ): 1657 - 1665. https://doi.org/10.1111/all.13200
dc.identifier.citedreferenceEllegard EK, Karlsson NG, Ellegard LH. Rhinitis in the menstrual cycle, pregnancy, and some endocrine disorders. Clin Allergy Immunol. 2007; 19: 305 - 321.
dc.identifier.citedreferenceNavarrete-Palacios E, Hudson R, Reyes-Guerrero G, Guevara-Guzman R. Correlation between cytological characteristics of the nasal epithelium and the menstrual cycle. Arch Otolaryngol Head Neck Surg. 2003; 129 ( 4 ): 460 - 463. https://doi.org/10.1001/archotol.129.4.460
dc.identifier.citedreferenceProetz AW. Further observations of the effects of thyroid insufficiency on the nasal mucosa. Laryngoscope. 1950; 60 ( 7 ): 627 - 633. https://doi.org/10.1288/00005537-195007000-00004
dc.identifier.citedreferenceKulekci Ozturk S, Sakci E, Kavvasoglu C. Rhinitis in patients with acquired hypothyroidism. Eur Arch Otorhinolaryngol. 2021; 278 ( 1 ): 87 - 92. https://doi.org/10.1007/s00405-020-06254-7
dc.identifier.citedreferenceSkinner DW, Richards SH. Acromegaly – the mucosal changes within the nose and paranasal sinuses. J Laryngol Otol. 1988; 102 ( 12 ): 1107 - 1110. https://doi.org/10.1017/s0022215100107455
dc.identifier.citedreferenceSampson HA, Aceves S, Bock SA, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014; 134 ( 5 ): 1016 - 1025.e43. https://doi.org/10.1016/j.jaci.2014.05.013
dc.identifier.citedreferenceJovancevic L, Georgalas C, Savovic S, Janjevic D. Gustatory rhinitis. Rhinology. 2010; 48 ( 1 ): 7 - 10. https://doi.org/10.4193/Rhin07.153
dc.identifier.citedreferenceWaibel KH, Chang C. Prevalence and food avoidance behaviors for gustatory rhinitis. Ann Allergy Asthma Immunol. 2008; 100 ( 3 ): 200 - 205. https://doi.org/10.1016/S1081-1206(10)60443-7
dc.identifier.citedreferenceRaphael G, Raphael MH, Kaliner M. Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol. 1989; 83 ( 1 ): 110 - 115. https://doi.org/10.1016/0091-6749(89)90484-3
dc.identifier.citedreferenceGeorgalas C, Jovancevic L. Gustatory rhinitis. Curr Opin Otolaryngol Head Neck Surg. 2012; 20 ( 1 ): 9 - 14. https://doi.org/10.1097/MOO.0b013e32834dfb52
dc.identifier.citedreferenceSeki N, Shirasaki H, Kikuchi M, Sakamoto T, Watanabe N, Himi T. Expression and localization of TRPV1 in human nasal mucosa. Rhinology. 2006; 44 ( 2 ): 128 - 134.
dc.identifier.citedreferenceMarshak T, Yun WK, Hazout C, Sacks R, Harvey RJ. A systematic review of the evidence base for vidian neurectomy in managing rhinitis. J Laryngol Otol. 2016; 130 (suppl 4 ): S7 - S28. https://doi.org/10.1017/S0022215116008008
dc.identifier.citedreferenceNihlen U, Greiff LJ, Nyberg P, Persson CG, Andersson M. Alcohol-induced upper airway symptoms: prevalence and co-morbidity. Respir Med. 2005; 99 ( 6 ): 762 - 769. https://doi.org/10.1016/j.rmed.2004.11.010
dc.identifier.citedreferenceGlicksman JT, Parasher AK, Doghramji L, et al. Alcohol-induced respiratory symptoms improve after aspirin desensitization in patients with aspirin-exacerbated respiratory disease. Int Forum Allergy Rhinol. 2018; 8 ( 10 ): 1093 - 1097. https://doi.org/10.1002/alr.22168
dc.identifier.citedreferenceCardet JC, White AA, Barrett NA, et al. Alcohol-induced respiratory symptoms are common in patients with aspirin exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2014; 2 ( 2 ): 208 - 213. https://doi.org/10.1016/j.jaip.2013.12.003
dc.identifier.citedreferenceDe Schryver E, Derycke L, Campo P, et al. Alcohol hyper-responsiveness in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2017; 47 ( 2 ): 245 - 253. https://doi.org/10.1111/cea.12836
dc.identifier.citedreferenceLomholt FK, Nielsen SF, Nordestgaard BG. High alcohol consumption causes high IgE levels but not high risk of allergic disease. J Allergy Clin Immunol. 2016; 138 ( 5 ): 1404 - 1413.e13. https://doi.org/10.1016/j.jaci.2016.05.022
dc.identifier.citedreferenceEllis AK, Keith PK. Nonallergic rhinitis with eosinophilia syndrome. Curr Allergy Asthma Rep. 2006; 6 ( 3 ): 215 - 220. https://doi.org/10.1007/s11882-006-0037-0
dc.identifier.citedreferenceJacobs RL, Freedman PM, Boswell RN. Nonallergic rhinitis with eosinophilia (NARES syndrome). Clinical and immunologic presentation. J Allergy Clin Immunol. 1981; 67 ( 4 ): 253 - 262. https://doi.org/10.1016/0091-6749(81)90019-1
dc.identifier.citedreferenceSimola M, Malmberg H. Sense of smell in allergic and nonallergic rhinitis. Allergy. 1998; 53 ( 2 ): 190 - 194. https://doi.org/10.1111/j.1398-9995.1998.tb03869.x
dc.identifier.citedreferenceMoneret-Vautrin DA, Jankowski R, Bene MC, et al. NARES: a model of inflammation caused by activated eosinophils? Rhinology. 1992; 30 ( 3 ): 161 - 168.
dc.identifier.citedreferencePowe DG, Huskisson RS, Carney AS, Jenkins D, Jones NS. Evidence for an inflammatory pathophysiology in idiopathic rhinitis. Clin Exp Allergy. 2001; 31 ( 6 ): 864 - 872. https://doi.org/10.1046/j.1365-2222.2001.01106.x
dc.identifier.citedreferenceBerger G, Goldberg A, Ophir D. The inferior turbinate mast cell population of patients with perennial allergic and nonallergic rhinitis. Am J Rhinol. 1997; 11 ( 1 ): 63 - 66. https://doi.org/10.2500/105065897781446775
dc.identifier.citedreferenceDe Corso E, Baroni S, Battista M, et al. Nasal fluid release of eotaxin-3 and eotaxin-2 in persistent sinonasal eosinophilic inflammation. Int Forum Allergy Rhinol. 2014; 4 ( 8 ): 617 - 624. https://doi.org/10.1002/alr.21348
dc.identifier.citedreferenceDe Corso E, Baroni S, Lucidi D, et al. Nasal lavage levels of granulocyte-macrophage colony-stimulating factor and chronic nasal hypereosinophilia. Int Forum Allergy Rhinol. 2015; 5 ( 6 ): 557 - 562. https://doi.org/10.1002/alr.21519
dc.identifier.citedreferenceKramer MF, Burow G, Pfrogner E, Rasp G. In vitro diagnosis of chronic nasal inflammation. Clin Exp Allergy. 2004; 34 ( 7 ): 1086 - 1092. https://doi.org/10.1111/j.1365-2222.2004.01989.x
dc.identifier.citedreferenceGroger M, Klemens C, Wendt S, et al. Mediators and cytokines in persistent allergic rhinitis and nonallergic rhinitis with eosinophilia syndrome. Int Arch Allergy Immunol. 2012; 159 ( 2 ): 171 - 178. https://doi.org/10.1159/000336169
dc.identifier.citedreferenceMarcella R, Croce A, Moretti A, Barbacane RC, Di Giocchino M, Conti P. Transcription and translation of the chemokines RANTES and MCP-1 in nasal polyps and mucosa in allergic and non-allergic rhinopathies. Immunol Lett. 2003; 90 ( 2-3 ): 71 - 75. https://doi.org/10.1016/s0165-2478(03)00163-9
dc.identifier.citedreferencePeric A, Sotirovic J, Spadijer-Mirkovic C, Matkovic-Jozin S, Peric AV, Vojvodic D. Nonselective chemokine levels in nasal secretions of patients with perennial nonallergic and allergic rhinitis. Int Forum Allergy Rhinol. 2016; 6 ( 4 ): 392 - 397. https://doi.org/10.1002/alr.21684
dc.identifier.citedreferenceBecker S, Rasp J, Eder K, Berghaus A, Kramer MF, Groger M. Non-allergic rhinitis with eosinophilia syndrome is not associated with local production of specific IgE in nasal mucosa. Eur Arch Otorhinolaryngol. 2016; 273 ( 6 ): 1469 - 1475. https://doi.org/10.1007/s00405-015-3769-4
dc.identifier.citedreferenceEckrich J, Hinkel J, Fischl A, et al. Nasal IgE in subjects with allergic and non-allergic rhinitis. World Allergy Organ J. 2020; 13 ( 6 ): 100129. https://doi.org/10.1016/j.waojou.2020.100129
dc.identifier.citedreferenceZhang M, Yan B, Wang Y, Wang C, Zhang L. Charcot-Leyden crystal protein in nasal secretions of patients with nonallergic rhinitis with eosinophilia syndrome. Int Arch Allergy Immunol. 2020; 181 ( 11 ): 888 - 896. https://doi.org/10.1159/000509252
dc.identifier.citedreferenceMeng Y, Yan B, Wang Y, Wu D, Zhang L, Wang C. Diagnosis and management of nonallergic rhinitis with eosinophilia syndrome using cystatin SN together with symptoms. World Allergy Organ J. 2020; 13 ( 7 ): 100134. https://doi.org/10.1016/j.waojou.2020.100134
dc.identifier.citedreferenceNumao T, Agrawal DK. Neuropeptides modulate human eosinophil chemotaxis. J Immunol. 1992; 149 ( 10 ): 3309 - 3315.
dc.identifier.citedreferenceKramer MF, de la Chaux R, Fintelmann R, Rasp G. NARES: a risk factor for obstructive sleep apnea? Am J Otolaryngol. 2004; 25 ( 3 ): 173 - 177. https://doi.org/10.1016/j.amjoto.2003.12.004
dc.identifier.citedreferenceWang Q, Ji J, Xie Y, et al. Lower airway inflammation and hyperresponsiveness in non-asthmatic patients with non-allergic rhinitis. J Thorac Dis. 2015; 7 ( 10 ): 1756 - 1764. https://doi.org/10.3978/j.issn.2072-1439.2015.10.26
dc.identifier.citedreferenceSettipane RA, Lieberman P. Update on nonallergic rhinitis. Ann Allergy Asthma Immunol. 2001; 86 ( 5 ): 494 - 507; quiz 507-8. https://doi.org/10.1016/S1081-1206(10)62896-7
dc.identifier.citedreferencePipkorn U, Proud D, Lichtenstein LM, Kagey-Sobotka A, Norman PS, Naclerio RM. Inhibition of mediator release in allergic rhinitis by pretreatment with topical glucocorticosteroids. N Engl J Med. 1987; 316 ( 24 ): 1506 - 1510. https://doi.org/10.1056/NEJM198706113162403
dc.identifier.citedreferenceWebb DR, Meltzer EO, Finn AF, Jr., et al. Intranasal fluticasone propionate is effective for perennial nonallergic rhinitis with or without eosinophilia. Ann Allergy Asthma Immunol. 2002; 88 ( 4 ): 385 - 390. https://doi.org/10.1016/S1081-1206(10)62369-1
dc.identifier.citedreferenceBachert C, van Cauwenberge P, Khaltaev N, World Health Organization. Allergic rhinitis and its impact on asthma. In collaboration with the World Health Organization. Executive summary of the workshop report. 7-10 December 1999, Geneva, Switzerland. Allergy. 2002; 57 ( 9 ): 841 - 855. https://doi.org/10.1034/j.1398-9995.2002.23625.x
dc.identifier.citedreferenceBanov CH, Lieberman P, Vasomotor Rhinitis Study Groups. Efficacy of azelastine nasal spray in the treatment of vasomotor (perennial nonallergic) rhinitis. Ann Allergy Asthma Immunol. 2001; 86 ( 1 ): 28 - 35. https://doi.org/10.1016/S1081-1206(10)62352-6
dc.identifier.citedreferenceDe Corso E, Anzivino R, Galli J, et al. Antileukotrienes improve naso-ocular symptoms and biomarkers in patients with NARES and asthma. Laryngoscope. 2019; 129 ( 3 ): 551 - 557. https://doi.org/10.1002/lary.27576
dc.identifier.citedreferenceSettipane RA. Epidemiology of vasomotor rhinitis. World Allergy Organ J. 2009; 2 ( 6 ): 115 - 118. https://doi.org/10.1097/WOX.0b013e3181ac91ae
dc.identifier.citedreferenceMullarkey MF, Hill JS, Webb DR. Allergic and nonallergic rhinitis: their characterization with attention to the meaning of nasal eosinophilia. J Allergy Clin Immunol. 1980; 65 ( 2 ): 122 - 126. https://doi.org/10.1016/0091-6749(80)90196-7
dc.identifier.citedreferenceEnberg RN. Perennial nonallergic rhinitis: a retrospective review. Ann Allergy. 1989; 63 (6 pt 1): 513 - 516.
dc.identifier.citedreferenceNozad CH, Michael LM, Betty Lew D, Michael CF. Non-allergic rhinitis: a case report and review. Clin Mol Allergy. 2010; 8: 1. https://doi.org/10.1186/1476-7961-8-1
dc.identifier.citedreferencePattanaik D, Lieberman P. Vasomotor rhinitis. Curr Allergy Asthma Rep. 2010; 10 ( 2 ): 84 - 91. https://doi.org/10.1007/s11882-010-0089-z
dc.identifier.citedreferenceCampo P, Rondon C, Gould HJ, Barrionuevo E, Gevaert P, Blanca M. Local IgE in non-allergic rhinitis. Clin Exp Allergy. 2015; 45 ( 5 ): 872 - 881. https://doi.org/10.1111/cea.12476
dc.identifier.citedreferenceJames LK, Durham SR. Rhinitis with negative skin tests and absent serum allergen-specific IgE: more evidence for local IgE? J Allergy Clin Immunol. 2009; 124 ( 5 ): 1012 - 1013. https://doi.org/10.1016/j.jaci.2009.09.029
dc.identifier.citedreferenceHamizan AW, Rimmer J, Alvarado R, et al. Positive allergen reaction in allergic and nonallergic rhinitis: a systematic review. Int Forum Allergy Rhinol. 2017; 7 ( 9 ): 868 - 877. https://doi.org/10.1002/alr.21988
dc.identifier.citedreferenceEifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016; 46 ( 9 ): 1139 - 1151. https://doi.org/10.1111/cea.12780
dc.identifier.citedreferenceBernstein JA, Hastings L, Boespflug EL, Allendorfer JB, Lamy M, Eliassen JC. Alteration of brain activation patterns in nonallergic rhinitis patients using functional magnetic resonance imaging before and after treatment with intranasal azelastine. Ann Allergy Asthma Immunol. 2011; 106 ( 6 ): 527 - 532. https://doi.org/10.1016/j.anai.2011.02.014
dc.identifier.citedreferenceSegboer C, Gevorgyan A, Avdeeva K, et al. Intranasal corticosteroids for non-allergic rhinitis. Cochrane Database Syst Rev. 2019; 2019 ( 11 ): CD010592. https://doi.org/10.1002/14651858.CD010592.pub2
dc.identifier.citedreferenceLieberman P, Kaliner MA, Wheeler WJ. Open-label evaluation of azelastine nasal spray in patients with seasonal allergic rhinitis and nonallergic vasomotor rhinitis. Curr Med Res Opin. 2005; 21 ( 4 ): 611 - 618. https://doi.org/10.1185/030079905X41408
dc.identifier.citedreferenceGrossman J, Banov C, Boggs P, et al. Use of ipratropium bromide nasal spray in chronic treatment of nonallergic perennial rhinitis, alone and in combination with other perennial rhinitis medications. J Allergy Clin Immunol. 1995; 95 (5 pt 2): 1123 - 1127. https://doi.org/10.1016/s0091-6749(95)70216-4
dc.identifier.citedreferenceYan CH, Hwang PH. Surgical management of nonallergic rhinitis. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 945 - 955. https://doi.org/10.1016/j.otc.2018.05.010
dc.identifier.citedreferenceIkeda K, Yokoi H, Saito T, Kawano K, Yao T, Furukawa M. Effect of resection of the posterior nasal nerve on functional and morphological changes in the inferior turbinate mucosa. Acta Otolaryngol. 2008; 128 ( 12 ): 1337 - 1341. https://doi.org/10.1080/00016480801935525
dc.identifier.citedreferenceHwang PH, Lin B, Weiss R, Atkins J, Johnson J. Cryosurgical posterior nasal tissue ablation for the treatment of rhinitis. Int Forum Allergy Rhinol. 2017; 7 ( 10 ): 952 - 956. https://doi.org/10.1002/alr.21991
dc.identifier.citedreferenceKompelli AR, Janz TA, Rowan NR, Nguyen SA, Soler ZM. Cryotherapy for the treatment of chronic rhinitis: a qualitative systematic review. Am J Rhinol Allergy. 2018; 32 ( 6 ): 491 - 501. https://doi.org/10.1177/1945892418800879
dc.identifier.citedreferenceSahin-Yilmaz AA, Corey JP. Rhinitis in the elderly. Clin Allergy Immunol. 2007; 19: 209 - 219.
dc.identifier.citedreferenceEdelstein DR. Aging of the normal nose in adults. Laryngoscope. 1996; 106 (9 pt 2): 1 - 25. https://doi.org/10.1097/00005537-199609001-00001
dc.identifier.citedreferenceLindemann J, Sannwald D, Wiesmiller K. Age-related changes in intranasal air conditioning in the elderly. Laryngoscope. 2008; 118 ( 8 ): 1472 - 1475. https://doi.org/10.1097/MLG.0b013e3181758174
dc.identifier.citedreferencePinto JM, Jeswani S. Rhinitis in the geriatric population. Allergy Asthma Clin Immunol. 2010; 6 ( 1 ): 10. https://doi.org/10.1186/1710-1492-6-10
dc.identifier.citedreferenceRodriguez K, Rubinstein E, Ferguson BJ. Clear anterior rhinorrhea in the population. Int Forum Allergy Rhinol. 2015; 5 ( 11 ): 1063 - 1067. https://doi.org/10.1002/alr.21583
dc.identifier.citedreferenceParashar R, Amir M, Pakhare A, Rathi P, Chaudhary L. Age related changes in autonomic functions. J Clin Diagn Res. 2016; 10 ( 3 ): CC11 - CC15. https://doi.org/10.7860/JCDR/2016/16889.7497
dc.identifier.citedreferenceHotta H, Uchida S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr Gerontol Int. 2010; 10 (suppl 1 ): S127 - S136. https://doi.org/10.1111/j.1447-0594.2010.00592.x
dc.identifier.citedreferenceLal D, Corey JP. Vasomotor rhinitis update. Curr Opin Otolaryngol Head Neck Surg. 2004; 12 ( 3 ): 243 - 247. https://doi.org/10.1097/01.moo.0000122310.13359.79
dc.identifier.citedreferenceKimmelman CP, Ali GH. Vasomotor rhinitis. Otolaryngol Clin North Am. 1986; 19 ( 1 ): 65 - 71.
dc.identifier.citedreferenceGeorgitis JW. Prevalence and differential diagnosis of chronic rhinitis. Curr Allergy Asthma Rep. 2001; 1 ( 3 ): 202 - 206. https://doi.org/10.1007/s11882-001-0006-6
dc.identifier.citedreferenceBaptist AP, Nyenhuis S. Rhinitis in the elderly. Immunol Allergy Clin North Am. 2016; 36 ( 2 ): 343 - 357. https://doi.org/10.1016/j.iac.2015.12.010
dc.identifier.citedreferenceJanzen VD. Rhinological disorders in the elderly. J Otolaryngol. 1986; 15 ( 4 ): 228 - 230.
dc.identifier.citedreferenceCiftci Z, Catli T, Hanci D, Cingi C, Erdogan G. Rhinorrhoea in the elderly. Eur Arch Otorhinolaryngol. 2015; 272 ( 10 ): 2587 - 2592. https://doi.org/10.1007/s00405-014-3182-4
dc.identifier.citedreferenceBozek A. Pharmacological management of allergic rhinitis in the elderly. Drugs Aging. 2017; 34 ( 1 ): 21 - 28. https://doi.org/10.1007/s40266-016-0425-7
dc.identifier.citedreferenceHo JC, Chan KN, Hu WH, et al. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med. 2001; 163 ( 4 ): 983 - 988. https://doi.org/10.1164/ajrccm.163.4.9909121
dc.identifier.citedreferenceMirza N, Kroger H, Doty RL. Influence of age on the ‘nasal cycle’. Laryngoscope. 1997; 107 ( 1 ): 62 - 66. https://doi.org/10.1097/00005537-199701000-00014
dc.identifier.citedreferenceSlavin RG. Treating rhinitis in the older population: special considerations. Allergy Asthma Clin Immunol. 2009; 5 ( 1 ): 9. https://doi.org/10.1186/1710-1492-5-9
dc.identifier.citedreferenceSchrodter S, Biermann E, Halata Z. Histological evaluation of age-related changes in human respiratory mucosa of the middle turbinate. Anat Embryol (Berl). 2003; 207 ( 1 ): 19 - 27. https://doi.org/10.1007/s00429-003-0326-5
dc.identifier.citedreferenceMilgrom H, Huang H. Allergic disorders at a venerable age: a mini-review. Gerontology. 2014; 60 ( 2 ): 99 - 107. https://doi.org/10.1159/000355307
dc.identifier.citedreferenceWheatley LM, Togias A. Clinical practice. Allergic rhinitis. N Engl J Med. 2015; 372 ( 5 ): 456 - 463. https://doi.org/10.1056/NEJMcp1412282
dc.identifier.citedreferenceSeidman MD, Gurgel RK, Lin SY, et al. Clinical practice guideline: allergic rhinitis executive summary. Otolaryngol Head Neck Surg. 2015; 152 ( 2 ): 197 - 206. https://doi.org/10.1177/0194599814562166
dc.identifier.citedreferenceSlavin RG. Special considerations in treatment of allergic rhinitis in the elderly: role of intranasal corticosteroids. Allergy Asthma Proc. 2010; 31 ( 3 ): 179 - 184. https://doi.org/10.2500/aap.2010.31.3342
dc.identifier.citedreferenceBozek A, Cudak A, Walter Canonica G. Long-term efficacy of injected allergen immunotherapy for treatment of grass pollen allergy in elderly patients with allergic rhinitis. Allergy Asthma Proc. 2020; 41 ( 4 ): 271 - 277. https://doi.org/10.2500/aap.2020.41.200035
dc.identifier.citedreferenceJain T, Sanju Kumar H, Guerrieri M, Ralli M, Di Mauro R. Primary atrophic rhinitis: ozeana and other infective forms. In: Di Girolamo S, ed. Atrophic Rhinitis. Springer; 2020: 3 - 12.
dc.identifier.citedreferenceWright J. Atrophic rhinitis in its historical, etiological and histological aspects. Laryngoscope. 1913; 23: 641 - 666.
dc.identifier.citedreferenceRuskin S. A differential diagnosis and therapy of atrophic rhinitis and ozena. Arch Otolaryngol. 1932; 15: 222 - 257.
dc.identifier.citedreferenceBunnag C, Jareoncharsri P, Tansuriyawong P, Bhothisuwan W, Chantarakul N. Characteristics of atrophic rhinitis in Thai patients at the Siriraj Hospital. Rhinology. 1999; 37 ( 3 ): 125 - 130.
dc.identifier.citedreferenceMoore EJ, Kern EB. Atrophic rhinitis: a review of 242 cases. Am J Rhinol. 2001; 15 ( 6 ): 355 - 361.
dc.identifier.citedreferenceBist SS, Bisht M, Purohit JP, Saxena R. Study of histopathological changes in primary atrophic rhinitis. ISRN Otolaryngol. 2011; 2011: 269479. https://doi.org/10.5402/2011/269479
dc.identifier.citedreferenceBist SS, Bisht M, Purohit JP. Primary atrophic rhinitis: a clinical profile, microbiological and radiological study. ISRN Otolaryngol. 2012; 2012: 404075. https://doi.org/10.5402/2012/404075
dc.identifier.citedreferenceSinha SN, Sardana DS, Rajvanshi VS. A nine years’ review of 273 cases of atrophic rhinitis and its management. J Laryngol Otol. 1977; 91 ( 7 ): 591 - 600. https://doi.org/10.1017/s0022215100084097
dc.identifier.citedreferenceMishra A, Kawatra R, Gola M. Interventions for atrophic rhinitis. Cochrane Database Syst Rev. 2012;( 2 ): CD008280. https://doi.org/10.1002/14651858.CD008280.pub2
dc.identifier.citedreferenceGigant L, Zoli A, Guiacomini PG, Zoli A. A secondary atrophis rhinitis: autoimmune and granulomatous forms. In: Di Girolamo S, ed. Atrophic Rhinitis. Springer; 2020: 13 - 30.
dc.identifier.citedreferenceLy TH, deShazo RD, Olivier J, Stringer SP, Daley W, Stodard CM. Diagnostic criteria for atrophic rhinosinusitis. Am J Med. 2009; 122 ( 8 ): 747 - 753. https://doi.org/10.1016/j.amjmed.2008.12.025
dc.identifier.citedreferenceTaylor M, Young A. Histopathological and histochemical studies on atrophic rhinitis. J Laryngol Otol. 1961; 75: 574 - 590. https://doi.org/10.1017/s0022215100058138
dc.identifier.citedreferenceZohar Y, Talmi YP, Strauss M, Finkelstein Y, Shvilli Y. Ozena revisited. J Otolaryngol. 1990; 19 ( 5 ): 345 - 349.
dc.identifier.citedreferenceChand MS, MacArthur CJ. Primary atrophic rhinitis: a summary of four cases and review of the literature. Otolaryngol Head Neck Surg. 1997; 116 ( 4 ): 554 - 558. https://doi.org/10.1016/s0194-5998(97)70311-5
dc.identifier.citedreferenceSibert JR, Barton RP. Dominant inheritance in a family with primary atrophic rhinitis. J Med Genet. 1980; 17 ( 1 ): 39 - 40. https://doi.org/10.1136/jmg.17.1.39
dc.identifier.citedreferenceScheithauer MO. Surgery of the turbinates and "empty nose" syndrome. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010; 9: Doc03. https://doi.org/10.3205/cto000067
dc.identifier.citedreferenceCoste A, Dessi P, Serrano E. Empty nose syndrome. Eur Ann Otorhinolaryngol Head Neck Dis. 2012; 129 ( 2 ): 93 - 97. https://doi.org/10.1016/j.anorl.2012.02.001
dc.identifier.citedreferenceChhabra N, Houser SM. The diagnosis and management of empty nose syndrome. Otolaryngol Clin North Am. 2009; 42 ( 2 ): 311 - 330, ix. https://doi.org/10.1016/j.otc.2009.02.001
dc.identifier.citedreferenceHouser SM. Surgical treatment for empty nose syndrome. Arch Otolaryngol Head Neck Surg. 2007; 133 ( 9 ): 858 - 863. https://doi.org/10.1001/archotol.133.9.858
dc.identifier.citedreferenceKuan EC, Suh JD, Wang MB. Empty nose syndrome. Curr Allergy Asthma Rep. 2015; 15 ( 1 ): 493. https://doi.org/10.1007/s11882-014-0493-x
dc.identifier.citedreferenceVelasquez N, Thamboo A, Habib AR, Huang Z, Nayak JV. The Empty Nose Syndrome 6-Item Questionnaire (ENS6Q): a validated 6-item questionnaire as a diagnostic aid for empty nose syndrome patients. Int Forum Allergy Rhinol. 2017; 7 ( 1 ): 64 - 71. https://doi.org/10.1002/alr.21842
dc.identifier.citedreferencePayne SC. Empty nose syndrome: what are we really talking about? Otolaryngol Clin North Am. 2009; 42 ( 2 ): 331 - 337, ix-x. https://doi.org/10.1016/j.otc.2009.02.002
dc.identifier.citedreferenceChang MT, Nayak JV. In Response to Inferior Meatus Augmentation Procedure (IMAP) for treatment of empty nose syndrome. Laryngoscope. 2022; 132 ( 6 ): E22. https://doi.org/10.1002/lary.30119
dc.identifier.citedreferenceThamboo A, Velasquez N, Ayoub N, Nayak JV. Distinguishing computed tomography findings in patients with empty nose syndrome. Int Forum Allergy Rhinol. 2016; 6 ( 10 ): 1075 - 1082. https://doi.org/10.1002/alr.21774
dc.identifier.citedreferenceMalik J, Li C, Maza G, et al. Computational fluid dynamic analysis of aggressive turbinate reductions: is it a culprit of empty nose syndrome? Int Forum Allergy Rhinol. 2019; 9 ( 8 ): 891 - 899. https://doi.org/10.1002/alr.22350
dc.identifier.citedreferenceBautista DM, Siemens J, Glazer JM, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 2007; 448 ( 7150 ): 204 - 208. https://doi.org/10.1038/nature05910
dc.identifier.citedreferenceZhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One. 2011; 6 ( 10 ): e24618. https://doi.org/10.1371/journal.pone.0024618
dc.identifier.citedreferenceZhao K, Jiang J, Blacker K, et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope. 2014; 124 ( 3 ): 589 - 595. https://doi.org/10.1002/lary.24265
dc.identifier.citedreferenceWillatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency. Clin Otolaryngol Allied Sci. 1996; 21 ( 6 ): 519 - 523. https://doi.org/10.1111/j.1365-2273.1996.tb01102.x
dc.identifier.citedreferenceKimbell JS, Frank DO, Laud P, Garcia GJ, Rhee JS. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J Biomech. 2013; 46 ( 15 ): 2634 - 2643. https://doi.org/10.1016/j.jbiomech.2013.08.007
dc.identifier.citedreferenceLindemann J, Tsakiropoulou E, Scheithauer MO, Konstantinidis I, Wiesmiller KM. Impact of menthol inhalation on nasal mucosal temperature and nasal patency. Am J Rhinol. 2008; 22 ( 4 ): 402 - 405. https://doi.org/10.2500/ajr.2008.22.3194
dc.identifier.citedreferenceSozansky J, Houser SM. Pathophysiology of empty nose syndrome. Laryngoscope. 2015; 125 ( 1 ): 70 - 74. https://doi.org/10.1002/lary.24813
dc.identifier.citedreferenceLi C, Farag AA, Leach J, et al. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Laryngoscope. 2017; 127 ( 6 ): E176 - E184. https://doi.org/10.1002/lary.26530
dc.identifier.citedreferenceLi C, Farag AA, Maza G, et al. Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients. Int Forum Allergy Rhinol. 2018; 8 ( 3 ): 444 - 452. https://doi.org/10.1002/alr.22045
dc.identifier.citedreferenceMalik J, Dholakia S, Spector BM, et al. Inferior meatus augmentation procedure (IMAP) normalizes nasal airflow patterns in empty nose syndrome patients via computational fluid dynamics (CFD) modeling. Int Forum Allergy Rhinol. 2021; 11 ( 5 ): 902 - 909. https://doi.org/10.1002/alr.22720
dc.identifier.citedreferenceThamboo A, Velasquez N, Habib AR, Zarabanda D, Paknezhad H, Nayak JV. Defining surgical criteria for empty nose syndrome: validation of the office-based cotton test and clinical interpretability of the validated Empty Nose Syndrome 6-Item Questionnaire. Laryngoscope. 2017; 127 ( 8 ): 1746 - 1752. https://doi.org/10.1002/lary.26549
dc.identifier.citedreferenceTalmadge J, Nayak JV, Yao W, Citardi MJ. Management of postsurgical empty nose syndrome. Facial Plast Surg Clin North Am. 2019; 27 ( 4 ): 465 - 475. https://doi.org/10.1016/j.fsc.2019.07.005
dc.identifier.citedreferenceKanjanawasee D, Campbell RG, Rimmer J, et al. Empty nose syndrome pathophysiology: a systematic review. Otolaryngol Head Neck Surg. 2021: 1945998211052919. https://doi.org/10.1177/01945998211052919
dc.identifier.citedreferenceManji J, Nayak JV, Thamboo A. The functional and psychological burden of empty nose syndrome. Int Forum Allergy Rhinol. 2018; 8 ( 6 ): 707 - 712. https://doi.org/10.1002/alr.22097
dc.identifier.citedreferenceHuang CC, Wu PW, Fu CH, Huang CC, Chang PH, Lee TJ. Impact of psychologic burden on surgical outcome in empty nose syndrome. Laryngoscope. 2021; 131 ( 3 ): E694 - E701. https://doi.org/10.1002/lary.28845
dc.identifier.citedreferenceHuang CC, Wu PW, Lee CC, Chang PH, Huang CC, Lee TJ. Suicidal thoughts in patients with empty nose syndrome. Laryngoscope Investig Otolaryngol. 2022; 7 ( 1 ): 22 - 28. https://doi.org/10.1002/lio2.730
dc.identifier.citedreferenceTian P, Hu J, Ma Y, et al. The clinical effect of psychosomatic interventions on empty nose syndrome secondary to turbinate-sparing techniques: a prospective self-controlled study. Int Forum Allergy Rhinol. 2021; 11 ( 6 ): 984 - 992. https://doi.org/10.1002/alr.22726
dc.identifier.citedreferenceLemogne C, Consoli SM, Limosin F, Bonfils P. Treating empty nose syndrome as a somatic symptom disorder. Gen Hosp Psychiatry. 2015; 37 ( 3 ): 273.e9 - 10. https://doi.org/10.1016/j.genhosppsych.2015.02.005
dc.identifier.citedreferenceBorchard NA, Dholakia SS, Yan CH, Zarabanda D, Thamboo A, Nayak JV. Use of intranasal submucosal fillers as a transient implant to alter upper airway aerodynamics: implications for the assessment of empty nose syndrome. Int Forum Allergy Rhinol. 2019; 9 ( 6 ): 681 - 687. https://doi.org/10.1002/alr.22299
dc.identifier.citedreferenceModrzynski M. Hyaluronic acid gel in the treatment of empty nose syndrome. Am J Rhinol Allergy. 2011; 25 ( 2 ): 103 - 106. https://doi.org/10.2500/ajra.2011.25.3577
dc.identifier.citedreferenceSaafan ME. Acellular dermal (alloderm) grafts versus silastic sheets implants for management of empty nose syndrome. Eur Arch Otorhinolaryngol. 2013; 270 ( 2 ): 527 - 533. https://doi.org/10.1007/s00405-012-1955-1
dc.identifier.citedreferenceJiang C, Shi R, Sun Y. Study of inferior turbinate reconstruction with Medpor for the treatment of empty nose syndrome. Laryngoscope. 2013; 123 ( 5 ): 1106 - 1111. https://doi.org/10.1002/lary.23908
dc.identifier.citedreferenceBastier PL, Bennani-Baiti AA, Stoll D, de Gabory L. beta-Tricalcium phosphate implant to repair empty nose syndrome: preliminary results. Otolaryngol Head Neck Surg. 2013; 148 ( 3 ): 519 - 522. https://doi.org/10.1177/0194599812472436
dc.identifier.citedreferenceJung JH, Baguindali MA, Park JT, Jang YJ. Costal cartilage is a superior implant material than conchal cartilage in the treatment of empty nose syndrome. Otolaryngol Head Neck Surg. 2013; 149 ( 3 ): 500 - 505. https://doi.org/10.1177/0194599813491223
dc.identifier.citedreferenceVelasquez N, Huang Z, Humphreys IM, Nayak JV. Inferior turbinate reconstruction using porcine small intestine submucosal xenograft demonstrates improved quality of life outcomes in patients with empty nose syndrome. Int Forum Allergy Rhinol. 2015; 5 ( 11 ): 1077 - 1081. https://doi.org/10.1002/alr.21633
dc.identifier.citedreferenceChang MT, Bartho M, Kim D, et al. Inferior Meatus Augmentation Procedure (IMAP) for treatment of empty nose syndrome. Laryngoscope. 2022; 132 ( 6 ): 1285 - 1288. https://doi.org/10.1002/lary.30001
dc.identifier.citedreferenceThamboo A, Dholakia SS, Borchard NA, et al. Inferior Meatus Augmentation Procedure (IMAP) to treat empty nose syndrome: a pilot study. Otolaryngol Head Neck Surg. 2020; 162 ( 3 ): 382 - 385. https://doi.org/10.1177/0194599819900263
dc.identifier.citedreferenceDholakia SS, Yang A, Kim D, et al. Long-term outcomes of inferior meatus augmentation procedure to treat empty nose syndrome. Laryngoscope. 2021; 131 ( 11 ): E2736 - E2741. https://doi.org/10.1002/lary.29593
dc.identifier.citedreferenceMalik J, Thamboo A, Dholakia S, et al. The cotton test redistributes nasal airflow in patients with empty nose syndrome. Int Forum Allergy Rhinol. 2020; 10 ( 4 ): 539 - 545. https://doi.org/10.1002/alr.22489
dc.identifier.citedreferenceAlobid I, Mullol J, Cid MC. Rhinitis of granulomatous and vasculitic diseases. Clin Allergy Immunol. 2007; 19: 221 - 239.
dc.identifier.citedreferenceAfiari A, Gabriel A, Gaiki MR. Concurrent use of mepolizumab and rituximab for eosinophilic granulomatosis with polyangiitis and multisystem involvement. Cureus. 2020; 12 ( 7 ): e9242. https://doi.org/10.7759/cureus.9242
dc.identifier.citedreferenceFalk RJ, Gross WL, Guillevin L, et al. Granulomatosis with polyangiitis (Wegener’s): an alternative name for Wegener’s granulomatosis. Arthritis Rheum. 2011; 63 ( 4 ): 863 - 864. https://doi.org/10.1002/art.30286
dc.identifier.citedreferenceSardana K, Goel K. Nasal septal ulceration. Clin Dermatol. 2014; 32 ( 6 ): 817 - 826. https://doi.org/10.1016/j.clindermatol.2014.02.022
dc.identifier.citedreferenceErickson VR, Hwang PH. Wegener’s granulomatosis: current trends in diagnosis and management. Curr Opin Otolaryngol Head Neck Surg. 2007; 15 ( 3 ): 170 - 176. https://doi.org/10.1097/MOO.0b013e3281568b96
dc.identifier.citedreferenceNasser M, Cottin V. The respiratory system in autoimmune vascular diseases. Respiration. 2018; 96 ( 1 ): 12 - 28. https://doi.org/10.1159/000486899
dc.identifier.citedreferenceHolle JU, Gross WL. Neurological involvement in Wegener’s granulomatosis. Curr Opin Rheumatol. 2011; 23 ( 1 ): 7 - 11. https://doi.org/10.1097/BOR.0b013e32834115f9
dc.identifier.citedreferenceBeltran Rodriguez-Cabo O, Reyes E, Rojas-Serrano J, Flores-Suarez LF. Increased histopathological yield for granulomatosis with polyangiitis based on nasal endoscopy of suspected active lesions. Eur Arch Otorhinolaryngol. 2018; 275 ( 2 ): 425 - 429. https://doi.org/10.1007/s00405-017-4841-z
dc.identifier.citedreferenceAl-Hussain T, Hussein MH, Conca W, Al Mana H, Akhtar M. Pathophysiology of ANCA-associated vasculitis. Adv Anat Pathol. 2017; 24 ( 4 ): 226 - 234. https://doi.org/10.1097/PAP.0000000000000154
dc.identifier.citedreferenceLynch 3rd JP, Derhovanessian A, Tazelaar H, Belperio JA. Granulomatosis with polyangiitis (Wegener’s granulomatosis): evolving concepts in treatment. Semin Respir Crit Care Med. 2018; 39 ( 4 ): 434 - 458. https://doi.org/10.1055/s-0038-1660874
dc.identifier.citedreferenceNoth I, Strek ME, Leff AR. Churg-Strauss syndrome. Lancet. 2003; 361 ( 9357 ): 587 - 594. https://doi.org/10.1016/S0140-6736(03)12518-4
dc.identifier.citedreferenceGroh M, Pagnoux C, Baldini C, et al. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) (EGPA) Consensus Task Force recommendations for evaluation and management. Eur J Intern Med. 2015; 26 ( 7 ): 545 - 553. https://doi.org/10.1016/j.ejim.2015.04.022
dc.identifier.citedreferenceChaigne B, Dion J, Guillevin L, Mouthon L, Terrier B. Physiopathologie de la granulomatose eosinophilique avec polyangeite (Churg-Strauss. Rev Med Interne. 2016; 37: 337 - 342.
dc.identifier.citedreferenceWechsler ME, Akuthota P, Jayne D, et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med. 2017; 376 ( 20 ): 1921 - 1932. https://doi.org/10.1056/NEJMoa1702079
dc.identifier.citedreferenceCrouser ED, Maier LA, Wilson KC, et al. Diagnosis and detection of sarcoidosis. An official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2020; 201 ( 8 ): e26 - e51. https://doi.org/10.1164/rccm.202002-0251ST
dc.identifier.citedreferenceCereceda-Monteoliva N, Rouhani MJ, Maughan EF, et al. Sarcoidosis of the ear, nose and throat: A review of the literature. Clin Otolaryngol. 2021; 46 ( 5 ): 935 - 940. https://doi.org/10.1111/coa.13814
dc.identifier.citedreferenceJudson MA. The clinical features of sarcoidosis: a comprehensive review. Clin Rev Allergy Immunol. 2015; 49 ( 1 ): 63 - 78. https://doi.org/10.1007/s12016-014-8450-y
dc.identifier.citedreferenceSend T, Tuleta I, Koppen T, et al. Sarcoidosis of the paranasal sinuses. Eur Arch Otorhinolaryngol. 2019; 276 ( 7 ): 1969 - 1974. https://doi.org/10.1007/s00405-019-05388-7
dc.identifier.citedreferenceLisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014; 384 ( 9957 ): 1878 - 1888. https://doi.org/10.1016/S0140-6736(14)60128-8
dc.identifier.citedreferenceThong B, Olsen NJ. Systemic lupus erythematosus diagnosis and management. Rheumatology (Oxford). 2017; 56 (suppl_ 1 ): i3 - i13. https://doi.org/10.1093/rheumatology/kew401
dc.identifier.citedreferenceSamotij D, Reich A. Biologics in the treatment of lupus erythematosus: a critical literature review. Biomed Res Int. 2019; 2019: 8142368. https://doi.org/10.1155/2019/8142368
dc.identifier.citedreferenceTanaka Y, Tummala R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: an overview from clinical trials. Mod Rheumatol. 2021; 31 ( 1 ): 1 - 12. https://doi.org/10.1080/14397595.2020.1812201
dc.identifier.citedreferenceHelman SN, Barrow E, Edwards T, DelGaudio JM, Levy JM, Wise SK. The role of allergic rhinitis in chronic rhinosinusitis. Immunol Allergy Clin North Am. 2020; 40 ( 2 ): 201 - 214. https://doi.org/10.1016/j.iac.2019.12.010
dc.identifier.citedreferenceMin YG. The pathophysiology, diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2010; 2 ( 2 ): 65 - 76. https://doi.org/10.4168/aair.2010.2.2.65
dc.identifier.citedreferenceKakli HA, Riley TD. Allergic rhinitis. Prim Care. 2016; 43 ( 3 ): 465 - 475. https://doi.org/10.1016/j.pop.2016.04.009
dc.identifier.citedreferenceBenninger MS, Ferguson BJ, Hadley JA, et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg. 2003; 129 ( 3 suppl): S1 - S32. https://doi.org/10.1016/s0194-5998(03)01397-4
dc.identifier.citedreferenceShapiro DJ, Gonzales R, Cabana MD, Hersh AL. National trends in visit rates and antibiotic prescribing for children with acute sinusitis. Pediatrics. 2011; 127 ( 1 ): 28 - 34. https://doi.org/10.1542/peds.2010-1340
dc.identifier.citedreferenceWhyte A, Boeddinghaus R. Imaging of adult nasal obstruction. Clin Radiol. 2020; 75 ( 9 ): 688 - 704. https://doi.org/10.1016/j.crad.2019.07.027
dc.identifier.citedreferenceHsu DW, Suh JD. Anatomy and Physiology of Nasal Obstruction. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 853 - 865. https://doi.org/10.1016/j.otc.2018.05.001
dc.identifier.citedreferenceCox DR, Wise SK. Medical Treatment of Nasal Airway Obstruction. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 897 - 908. https://doi.org/10.1016/j.otc.2018.05.004
dc.identifier.citedreferenceVillwock JA, Kuppersmith RB. Diagnostic Algorithm for Evaluating Nasal Airway Obstruction. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 867 - 872. https://doi.org/10.1016/j.otc.2018.05.002
dc.identifier.citedreferenceSamra S, Steitz JT, Hajnas N, Toriumi DM. Surgical Management of Nasal Valve Collapse. Otolaryngol Clin North Am. 2018; 51 ( 5 ): 929 - 944. https://doi.org/10.1016/j.otc.2018.05.009
dc.identifier.citedreferenceAlvo A, Villarroel G, Sedano C. Neonatal nasal obstruction. Eur Arch Otorhinolaryngol. 2021; 278 ( 10 ): 3605 - 3611. https://doi.org/10.1007/s00405-020-06546-y
dc.identifier.citedreferenceHarvey RJ, Sheahan PO, Schlosser RJ. Surgical management of benign sinonasal masses. Otolaryngol Clin North Am. 2009; 42 ( 2 ): 353 - 375, x. https://doi.org/10.1016/j.otc.2009.01.006
dc.identifier.citedreferenceKuo MJ, Reid AP, Smith JE. Unilateral nasal obstruction: an unusual presentation of a complication of nasotracheal intubation. J Laryngol Otol. 1994; 108 ( 11 ): 991 - 992. https://doi.org/10.1017/s0022215100128701
dc.identifier.citedreferenceTuluc M, Zhang X, Inniss S. Giant cell tumor of the nasal cavity: case report. Eur Arch Otorhinolaryngol. 2007; 264 ( 2 ): 205 - 208. https://doi.org/10.1007/s00405-006-0143-6
dc.identifier.citedreferenceHongmei Y, Zhe W, Jing W, Daokui W, Peicheng C, Yongjie L. Delayed cerebrospinal fluid rhinorrhea after gamma knife surgery in a patient with a growth hormone-secreting adenoma. J Clin Neurosci. 2012; 19 ( 6 ): 900 - 902. https://doi.org/10.1016/j.jocn.2011.09.016
dc.identifier.citedreferenceMarchiano E, Carniol ET, Guzman DE, Raikundalia MD, Baredes S, Eloy JA. An Analysis of Patients Treated for Cerebrospinal Fluid Rhinorrhea in the United States from 2002 to 2010. J Neurol Surg B Skull Base. 2017; 78 ( 1 ): 18 - 23. https://doi.org/10.1055/s-0036-1584297
dc.identifier.citedreferenceTufano RP, Thaler ER, Lanza DC, Goldberg AN, Kennedy DW. Endoscopic management of sinonasal inverted papilloma. Am J Rhinol. 1999; 13 ( 6 ): 423 - 426. https://doi.org/10.2500/105065899781329665
dc.identifier.citedreferenceTaylor MA, Saba NF. Cancer of the Paranasal Sinuses. Hematol Oncol Clin North Am. 2021; 35 ( 5 ): 949 - 962. https://doi.org/10.1016/j.hoc.2021.05.006
dc.identifier.citedreferenceOakley GM, Alt JA, Schlosser RJ, Harvey RJ, Orlandi RR. Diagnosis of cerebrospinal fluid rhinorrhea: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2016; 6 ( 1 ): 8 - 16. https://doi.org/10.1002/alr.21637
dc.identifier.citedreferenceKinoshita Y, Wasita B, Akatsuka K, Kambe A, Kurosaki M, Watanabe T. Choroid plexus papilloma presenting with cerebrospinal fluid rhinorrhea and otorrhea: case report. Neurol Med Chir (Tokyo). 2010; 50 ( 10 ): 930 - 933. https://doi.org/10.2176/nmc.50.930
dc.identifier.citedreferenceKose OD, Kose TE, Erdem MA, Cankaya AB. Large rhinolith causing nasal obstruction. BMJ Case Rep. 2015; 2015. https://doi.org/10.1136/bcr-2014-208260
dc.identifier.citedreferenceSumbullu MA, Tozoglu U, Yoruk O, Yilmaz AB, Ucuncu H. Rhinolithiasis: the importance of flat panel detector-based cone beam computed tomography in diagnosis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107 ( 6 ): e65 - e67. https://doi.org/10.1016/j.tripleo.2009.02.029
dc.identifier.citedreferenceOkafor S, Kelly KM, Halderman AA. Management of sinusitis in the cystic fibrosis patient. Immunol Allergy Clin North Am. 2020; 40 ( 2 ): 371 - 383. https://doi.org/10.1016/j.iac.2019.12.008
dc.identifier.citedreferenceShoemark A, Harman K. Primary ciliary dyskinesia. Semin Respir Crit Care Med. 2021; 42 ( 4 ): 537 - 548. https://doi.org/10.1055/s-0041-1730919
dc.identifier.citedreferenceFinocchio E, Locatelli F, Sanna F, et al. Gastritis and gastroesophageal reflux disease are strongly associated with non-allergic nasal disorders. BMC Pulm Med. 2021; 21 ( 1 ): 53. https://doi.org/10.1186/s12890-020-01364-8
dc.identifier.citedreferenceDagli E, Yuksel A, Kaya M, Ugur KS, Turkay FC. Association of oral antireflux medication with laryngopharyngeal reflux and nasal resistance. JAMA Otolaryngol Head Neck Surg. 2017; 143 ( 5 ): 478 - 483. https://doi.org/10.1001/jamaoto.2016.4127
dc.identifier.citedreferenceLou Z, Lou ZH. Laryngopharyngeal reflux is a potential cause of nasal congestion and obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol. 2018; 275 ( 9 ): 2409 - 2411. https://doi.org/10.1007/s00405-017-4782-6
dc.identifier.citedreferenceKraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007; 7 ( 5 ): 365 - 378. https://doi.org/10.1038/nri2072
dc.identifier.citedreferenceAcharya M, Borland G, Edkins AL, et al. CD23/FcepsilonRII: molecular multi-tasking. Clin Exp Immunol. 2010; 162 ( 1 ): 12 - 23. https://doi.org/10.1111/j.1365-2249.2010.04210.x
dc.identifier.citedreferenceWu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol. 2014; 14 ( 4 ): 247 - 259. https://doi.org/10.1038/nri3632
dc.identifier.citedreferenceBlank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol. 2021; 72: 51 - 58. https://doi.org/10.1016/j.coi.2021.03.015
dc.identifier.citedreferenceHumbert M, Bousquet J, Bachert C, et al. IgE-mediated multimorbidities in allergic asthma and the potential for omalizumab therapy. J Allergy Clin Immunol Pract. 2019; 7 ( 5 ): 1418 - 1429. https://doi.org/10.1016/j.jaip.2019.02.030
dc.identifier.citedreferencePaolini R, Jouvin MH, Kinet JP. Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature. 1991; 353 ( 6347 ): 855 - 858. https://doi.org/10.1038/353855a0
dc.identifier.citedreferenceSiraganian RP, de Castro RO, Barbu EA, Zhang J. Mast cell signaling: the role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. FEBS Lett. 2010; 584 ( 24 ): 4933 - 4940. https://doi.org/10.1016/j.febslet.2010.08.006
dc.identifier.citedreferenceCostello PS, Turner M, Walters AE, et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene. 1996; 13 ( 12 ): 2595 - 2605.
dc.identifier.citedreferenceZhang J, Berenstein EH, Evans RL, Siraganian RP. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med. 1996; 184 ( 1 ): 71 - 79. https://doi.org/10.1084/jem.184.1.71
dc.identifier.citedreferenceMukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018; 282 ( 1 ): 121 - 150. https://doi.org/10.1111/imr.12634
dc.identifier.citedreferenceDraber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol. 2016; 778: 11 - 23. https://doi.org/10.1016/j.ejphar.2015.02.057
dc.identifier.citedreferenceMotakis E, Guhl S, Ishizu Y, et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood. 2014; 123 ( 17 ): e58 - e67. https://doi.org/10.1182/blood-2013-02-483792
dc.identifier.citedreferenceLi Y, Gao J, Kamran M, et al. GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat Commun. 2021; 12 ( 1 ): 494. https://doi.org/10.1038/s41467-020-20766-0
dc.identifier.citedreferenceCildir G, Pant H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. J Exp Med. 2017; 214 ( 9 ): 2491 - 2506. https://doi.org/10.1084/jem.20170910
dc.identifier.citedreferenceJayapal M, Tay HK, Reghunathan R, et al. Genome-wide gene expression profiling of human mast cells stimulated by IgE or FcepsilonRI-aggregation reveals a complex network of genes involved in inflammatory responses. BMC Genomics. 2006; 7: 210. https://doi.org/10.1186/1471-2164-7-210
dc.identifier.citedreferenceAnto JM, Bousquet J, Akdis M, et al. Mechanisms of the Development of Allergy (MeDALL): introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017; 139 ( 2 ): 388 - 399. https://doi.org/10.1016/j.jaci.2016.12.940
dc.identifier.citedreferenceOettgen HC, Geha RS. IgE in asthma and atopy: cellular and molecular connections. J Clin Invest. 1999; 104 ( 7 ): 829 - 835. https://doi.org/10.1172/JCI8205
dc.identifier.citedreferenceGalli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012; 18 ( 5 ): 693 - 704. https://doi.org/10.1038/nm.2755
dc.identifier.citedreferenceBerger A. Th1 and Th2 responses: what are they? BMJ. 2000; 321 ( 7258 ): 424. https://doi.org/10.1136/bmj.321.7258.424
dc.identifier.citedreferenceChaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010; 125 (2 suppl 2 ): S3 - S23. https://doi.org/10.1016/j.jaci.2009.12.980
dc.identifier.citedreferenceMoro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010; 463 ( 7280 ): 540 - 544. https://doi.org/10.1038/nature08636
dc.identifier.citedreferenceNeill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010; 464 ( 7293 ): 1367 - 1370. https://doi.org/10.1038/nature08900
dc.identifier.citedreferenceHalim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014; 40 ( 3 ): 425 - 435. https://doi.org/10.1016/j.immuni.2014.01.011
dc.identifier.citedreferenceLambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol. 2014; 134 ( 3 ): 499 - 507. https://doi.org/10.1016/j.jaci.2014.06.036
dc.identifier.citedreferenceCayrol C, Duval A, Schmitt P, et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol. 2018; 19 ( 4 ): 375 - 385. https://doi.org/10.1038/s41590-018-0067-5
dc.identifier.citedreferenceRoan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest. 2019; 129 ( 4 ): 1441 - 1451. https://doi.org/10.1172/JCI124606
dc.identifier.citedreferenceHammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015; 43 ( 1 ): 29 - 40. https://doi.org/10.1016/j.immuni.2015.07.007
dc.identifier.citedreferenceOsguthorpe JD. Pathophysiology of and potential new therapies for allergic rhinitis. Int Forum Allergy Rhinol. 2013; 3 ( 5 ): 384 - 392. https://doi.org/10.1002/alr.21120
dc.identifier.citedreferenceSin B, Togias A. Pathophysiology of allergic and nonallergic rhinitis. Proc Am Thorac Soc. 2011; 8 ( 1 ): 106 - 114. https://doi.org/10.1513/pats.201008-057RN
dc.identifier.citedreferencePawankar R, Mori S, Ozu C, Kimura S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011; 1 ( 3 ): 157 - 167. https://doi.org/10.5415/apallergy.2011.1.3.157
dc.identifier.citedreferenceLiu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006; 203 ( 2 ): 269 - 273. https://doi.org/10.1084/jem.20051745
dc.identifier.citedreferenceBousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Primers. 2020; 6 ( 1 ): 95. https://doi.org/10.1038/s41572-020-00227-0
dc.identifier.citedreferenceGeha RS. Regulation of IgE synthesis in humans. J Allergy Clin Immunol. 1992; 90 ( 2 ): 143 - 150. https://doi.org/10.1016/0091-6749(92)90064-9
dc.identifier.citedreferenceNurieva RI, Liu X, Dong C. Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev. 2009; 229 ( 1 ): 88 - 100. https://doi.org/10.1111/j.1600-065X.2009.00769.x
dc.identifier.citedreferenceLuna-Gomes T, Magalhaes KG, Mesquita-Santos FP, et al. Eosinophils as a novel cell source of prostaglandin D2: autocrine role in allergic inflammation. J Immunol. 2011; 187 ( 12 ): 6518 - 6526. https://doi.org/10.4049/jimmunol.1101806
dc.identifier.citedreferenceXue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014; 133 ( 4 ): 1184 - 1194. https://doi.org/10.1016/j.jaci.2013.10.056
dc.identifier.citedreferenceTogias A. Systemic effects of local allergic disease. J Allergy Clin Immunol. 2004; 113 ( 1 suppl): S8 - S14. https://doi.org/10.1016/j.jaci.2003.09.051
dc.identifier.citedreferencePinart M, Benet M, Annesi-Maesano I, et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med. 2014; 2 ( 2 ): 131 - 140. https://doi.org/10.1016/S2213-2600(13)70277-7
dc.identifier.citedreferenceTogias AG. Systemic immunologic and inflammatory aspects of allergic rhinitis. J Allergy Clin Immunol. 2000; 106 ( 5 suppl): S247 - S250. https://doi.org/10.1067/mai.2000.110157
dc.identifier.citedreferenceScadding G, Hellings P, Alobid I, et al. Diagnostic tools in Rhinology EAACI position paper. Clin Transl Allergy. 2011; 1 ( 1 ): 2. https://doi.org/10.1186/2045-7022-1-2
dc.identifier.citedreferenceRondon C, Bogas G, Barrionuevo E, Blanca M, Torres MJ, Campo P. Nonallergic rhinitis and lower airway disease. Allergy. 2017; 72 ( 1 ): 24 - 34. https://doi.org/10.1111/all.12988
dc.identifier.citedreferenceFuiano N, Fusilli S, Passalacqua G, Incorvaia C. Allergen-specific immunoglobulin E in the skin and nasal mucosa of symptomatic and asymptomatic children sensitized to aeroallergens. J Investig Allergol Clin Immunol. 2010; 20 ( 5 ): 425 - 430.
dc.identifier.citedreferenceRondon C, Campo P, Togias A, et al. Local allergic rhinitis: concept, pathophysiology, and management. J Allergy Clin Immunol. 2012; 129 ( 6 ): 1460 - 1467. https://doi.org/10.1016/j.jaci.2012.02.032
dc.identifier.citedreferencePowe DG, Jagger C, Kleinjan A, Carney AS, Jenkins D, Jones NS. ‘Entopy’: localized mucosal allergic disease in the absence of systemic responses for atopy. Clin Exp Allergy. 2003; 33 ( 10 ): 1374 - 1379. https://doi.org/10.1046/j.1365-2222.2003.01737.x
dc.identifier.citedreferenceRondon C, Campo P, Zambonino MA, et al. Follow-up study in local allergic rhinitis shows a consistent entity not evolving to systemic allergic rhinitis. J Allergy Clin Immunol. 2014; 133 ( 4 ): 1026 - 1031. https://doi.org/10.1016/j.jaci.2013.10.034
dc.identifier.citedreferenceRondon C, Campo P, Eguiluz-Gracia I, et al. Local allergic rhinitis is an independent rhinitis phenotype: the results of a 10-year follow-up study. Allergy. 2018; 73 ( 2 ): 470 - 478. https://doi.org/10.1111/all.13272
dc.identifier.citedreferenceSennekamp J, Joest I, Filipiak-Pittroff B, von Berg A, Berdel D. Local allergic nasal reactions convert to classic systemic allergic reactions: a long-term follow-up. Int Arch Allergy Immunol. 2015; 166 ( 2 ): 154 - 160. https://doi.org/10.1159/000380852
dc.identifier.citedreferenceCoker HA, Durham SR, Gould HJ. Local somatic hypermutation and class switch recombination in the nasal mucosa of allergic rhinitis patients. J Immunol. 2003; 171 ( 10 ): 5602 - 5610. https://doi.org/10.4049/jimmunol.171.10.5602
dc.identifier.citedreferenceDurham SR, Gould HJ, Thienes CP, et al. Expression of epsilon germ-line gene transcripts and mRNA for the epsilon heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur J Immunol. 1997; 27 ( 11 ): 2899 - 2906. https://doi.org/10.1002/eji.1830271123
dc.identifier.citedreferencePlatts-Mills TA. Local production of IgG, IgA and IgE antibodies in grass pollen hay fever. J Immunol. 1979; 122 ( 6 ): 2218 - 2225.
dc.identifier.citedreferenceTakhar P, Smurthwaite L, Coker HA, et al. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol. 2005; 174 ( 8 ): 5024 - 5032. https://doi.org/10.4049/jimmunol.174.8.5024
dc.identifier.citedreferencePowe DG, Huskisson RS, Carney AS, et al. Mucosal T-cell phenotypes in persistent atopic and nonatopic rhinitis show an association with mast cells. Allergy. 2004; 59 ( 2 ): 204 - 212. https://doi.org/10.1046/j.1398-9995.2003.00315.x
dc.identifier.citedreferenceRondon C, Dona I, Lopez S, et al. Seasonal idiopathic rhinitis with local inflammatory response and specific IgE in absence of systemic response. Allergy. 2008; 63 ( 10 ): 1352 - 1358. https://doi.org/10.1111/j.1398-9995.2008.01695.x
dc.identifier.citedreferenceRondon C, Romero JJ, Lopez S, et al. Local IgE production and positive nasal provocation test in patients with persistent nonallergic rhinitis. J Allergy Clin Immunol. 2007; 119 ( 4 ): 899 - 905. https://doi.org/10.1016/j.jaci.2007.01.006
dc.identifier.citedreferenceWedback A, Enbom H, Eriksson NE, Moverare R, Malcus I. Seasonal non-allergic rhinitis (SNAR) – a new disease entity? A clinical and immunological comparison between SNAR, seasonal allergic rhinitis and persistent non-allergic rhinitis. Rhinology. 2005; 43 ( 2 ): 86 - 92.
dc.identifier.citedreferenceHuggins KG, Brostoff J. Local production of specific IgE antibodies in allergic-rhinitis patients with negative skin tests. Lancet. 1975; 2 ( 7926 ): 148 - 150. https://doi.org/10.1016/s0140-6736(75)90056-2
dc.identifier.citedreferenceBozek A, Ignasiak B, Kasperska-Zajac A, Scierski W, Grzanka A, Jarzab J. Local allergic rhinitis in elderly patients. Ann Allergy Asthma Immunol. 2015; 114 ( 3 ): 199 - 202. https://doi.org/10.1016/j.anai.2014.12.013
dc.identifier.citedreferenceKlimek L, Bardenhewer C, Spielhaupter M, Harai C, Becker K, Pfaar O. Lokale allergische Rhinitis auf Alternaria alternata: Nachweis bei Patienten mit persistierender nasaler Symptomatik [Local allergic rhinitis to Alternaria alternata: Evidence for local IgE production exclusively in the nasal mucosa]. HNO. 2015 May;63(5):364–72. German. https://doi.org/10.1007/s00106-015-0005-x
dc.identifier.citedreferenceLopez S, Rondon C, Torres MJ, et al. Immediate and dual response to nasal challenge with Dermatophagoides pteronyssinus in local allergic rhinitis. Clin Exp Allergy. 2010; 40 ( 7 ): 1007 - 1014. https://doi.org/10.1111/j.1365-2222.2010.03492.x
dc.identifier.citedreferenceSamolinski B, Rapiejko P, Krzych-Falta E. Standards of nasal provocation tests. Postepy Dermatol Alergol. 2010; 27: 1669.
dc.identifier.citedreferenceRondon C, Fernandez J, Lopez S, et al. Nasal inflammatory mediators and specific IgE production after nasal challenge with grass pollen in local allergic rhinitis. J Allergy Clin Immunol. 2009; 124 ( 5 ): 1005 - 1011.e1. https://doi.org/10.1016/j.jaci.2009.07.018
dc.identifier.citedreferenceBlanca-Lopez N, Campo P, Salas M, et al. Seasonal local allergic rhinitis in areas with high concentrations of grass pollen. J Investig Allergol Clin Immunol. 2016; 26 ( 2 ): 83 - 91. https://doi.org/10.18176/jiaci.0018
dc.identifier.citedreferenceCampo P, Eguiluz-Gracia I, Bogas G, et al. Local allergic rhinitis: implications for management. Clin Exp Allergy. 2019; 49 ( 1 ): 6 - 16. https://doi.org/10.1111/cea.13192
dc.identifier.citedreferenceRondon C, Campo P, Galindo L, et al. Prevalence and clinical relevance of local allergic rhinitis. Allergy. 2012; 67 ( 10 ): 1282 - 1288. https://doi.org/10.1111/all.12002
dc.identifier.citedreferenceCampo P, Villalba M, Barrionuevo E, et al. Immunologic responses to the major allergen of Olea europaea in local and systemic allergic rhinitis subjects. Clin Exp Allergy. 2015; 45 ( 11 ): 1703 - 1712. https://doi.org/10.1111/cea.12600
dc.identifier.citedreferenceGomez E, Campo P, Rondon C, et al. Role of the basophil activation test in the diagnosis of local allergic rhinitis. J Allergy Clin Immunol. 2013; 132 ( 4 ):975-676.e1-5. https://doi.org/10.1016/j.jaci.2013.07.016
dc.identifier.citedreferenceCampo P, Salas M, Blanca-Lopez N, Rondon C. Local allergic rhinitis. Immunol Allergy Clin North Am. 2016; 36 ( 2 ): 321 - 332. https://doi.org/10.1016/j.iac.2015.12.008
dc.identifier.citedreferenceReitsma S, Subramaniam S, Fokkens WWJ, Wang Y. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy. 2018; 73 ( 12 ): 2306 - 2313. https://doi.org/10.1111/all.13617
dc.identifier.citedreferenceShin YS, Jung CG, Park HS. Prevalence and clinical characteristics of local allergic rhinitis to house dust mites. Curr Opin Allergy Clin Immunol. 2018; 18 ( 1 ): 10 - 15. https://doi.org/10.1097/ACI.0000000000000413
dc.identifier.citedreferenceCheng KJ, Xu YY, Liu HY, Wang SQ. Serum eosinophil cationic protein level in Chinese subjects with nonallergic and local allergic rhinitis and its relation to the severity of disease. Am J Rhinol Allergy. 2013; 27 ( 1 ): 8 - 12. https://doi.org/10.2500/ajra.2013.27.3845
dc.identifier.citedreferenceZicari AM, Occasi F, Di Fraia M, et al. Local allergic rhinitis in children: novel diagnostic features and potential biomarkers. Am J Rhinol Allergy. 2016; 30 ( 5 ): 329 - 334. https://doi.org/10.2500/ajra.2016.30.4352
dc.identifier.citedreferenceDuman H, Bostanci I, Ozmen S, Dogru M. The relevance of nasal provocation testing in children with nonallergic rhinitis. Int Arch Allergy Immunol. 2016; 170 ( 2 ): 115 - 121. https://doi.org/10.1159/000447635
dc.identifier.citedreferenceAltintoprak N, Kar M, Bayar Muluk N, et al. Update on local allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2016; 87: 105 - 109. https://doi.org/10.1016/j.ijporl.2016.06.008
dc.identifier.citedreferenceBuntarickpornpan P, Veskitkul J, Pacharn P, et al. The proportion of local allergic rhinitis to Dermatophagoides pteronyssinus in children. Pediatr Allergy Immunol. 2016; 27 ( 6 ): 574 - 579. https://doi.org/10.1111/pai.12606
dc.identifier.citedreferenceRondon C, Campo P, Blanca-Lopez N, Torres MJ, Blanca M. More research is needed for local allergic rhinitis. Int Arch Allergy Immunol. 2015; 167 ( 2 ): 99 - 100. https://doi.org/10.1159/000436970
dc.identifier.citedreferencePapadopoulos NG, Bernstein JA, Demoly P, et al. Phenotypes and endotypes of rhinitis and their impact on management: a PRACTALL report. Allergy. 2015; 70 ( 5 ): 474 - 494. https://doi.org/10.1111/all.12573
dc.identifier.citedreferenceZhang Y, Lan F, Zhang L. Advances and highlights in allergic rhinitis. Allergy. 2021; 76 ( 11 ): 3383 - 3389. https://doi.org/10.1111/all.15044
dc.identifier.citedreferenceToppila-Salmi S, van Drunen CM, Fokkens WJ, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep. 2015; 15 ( 2 ): 495. https://doi.org/10.1007/s11882-014-0495-8
dc.identifier.citedreferenceScadding GK, Scadding GW. Innate and adaptive immunity in allergic airway disease. Curr Opin Allergy Clin Immunol. 2022; 22 ( 1 ): 10 - 15. https://doi.org/10.1097/ACI.0000000000000800
dc.identifier.citedreferenceJacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy. 2020; 75 ( 1 ): 33 - 53. https://doi.org/10.1111/all.13940
dc.identifier.citedreferenceKortekaas Krohn I, Seys SF, Lund G, et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy. 2020; 75 ( 5 ): 1155 - 1164. https://doi.org/10.1111/all.14132
dc.identifier.citedreferenceShim JS, Lee HS, Park DE, et al. Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11c(intermediate) macrophages. Allergy. 2020; 75 ( 2 ): 381 - 391. https://doi.org/10.1111/all.14017
dc.identifier.citedreferenceKim J, Kim YC, Ham J, et al. The effect of air pollutants on airway innate immune cells in patients with asthma. Allergy. 2020; 75 ( 9 ): 2372 - 2376. https://doi.org/10.1111/all.14323
dc.identifier.citedreferenceSteelant B, Farre R, Wawrzyniak P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 2016; 137 ( 4 ): 1043 - 1053.e5. https://doi.org/10.1016/j.jaci.2015.10.050
dc.identifier.citedreferencePat Y, Ogulur I. The epithelial barrier hypothesis: a 20-year journey. Allergy. 2021; 76 ( 11 ): 3560 - 3562. https://doi.org/10.1111/all.14899
dc.identifier.citedreferencevan Tongeren J, Golebski K, Van Egmond D, de Groot EJ, Fokkens WJ, van Drunen CM. Synergy between TLR-2 and TLR-3 signaling in primary human nasal epithelial cells. Immunobiology. 2015; 220 ( 4 ): 445 - 451. https://doi.org/10.1016/j.imbio.2014.11.004
dc.identifier.citedreferenceRadman M, Golshiri A, Shamsizadeh A, et al. Toll-like receptor 4 plays significant roles during allergic rhinitis. Allergol Immunopathol (Madr). 2015; 43 ( 4 ): 416 - 420. https://doi.org/10.1016/j.aller.2014.04.006
dc.identifier.citedreferenceMjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011; 12 ( 11 ): 1055 - 1062. https://doi.org/10.1038/ni.2104
dc.identifier.citedreferenceMatsushita K, Kato Y, Akasaki S, Yoshimoto T. Proallergic cytokines and group 2 innate lymphoid cells in allergic nasal diseases. Allergol Int. 2015; 64 ( 3 ): 235 - 240. https://doi.org/10.1016/j.alit.2014.12.008
dc.identifier.citedreferenceBartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014; 134 ( 3 ): 671 - 678.e4. https://doi.org/10.1016/j.jaci.2014.06.024
dc.identifier.citedreferenceHong H, Liao S, Chen F, Yang Q, Wang DY. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75 ( 11 ): 2794 - 2804. https://doi.org/10.1111/all.14526
dc.identifier.citedreferenceDoherty TA, Scott D, Walford HH, et al. Allergen challenge in allergic rhinitis rapidly induces increased peripheral blood type 2 innate lymphoid cells that express CD84. J Allergy Clin Immunol. 2014; 133 ( 4 ): 1203 - 1205. https://doi.org/10.1016/j.jaci.2013.12.1086
dc.identifier.citedreferenceLao-Araya M, Steveling E, Scadding GW, Durham SR, Shamji MH. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2014; 134 ( 5 ): 1193 - 1195.e4. https://doi.org/10.1016/j.jaci.2014.07.029
dc.identifier.citedreferenceDhariwal J, Cameron A, Trujillo-Torralbo MB, et al. Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergens. Am J Respir Crit Care Med. 2017; 195 ( 12 ): 1586 - 1596. https://doi.org/10.1164/rccm.201609-1846OC
dc.identifier.citedreferenceXie Y, Ju X, Beaudin S, et al. Effect of intranasal corticosteroid treatment on allergen-induced changes in group 2 innate lymphoid cells in allergic rhinitis with mild asthma. Allergy. 2021; 76 ( 9 ): 2797 - 2808. https://doi.org/10.1111/all.14835
dc.identifier.citedreferenceSugita K, Steer CA, Martinez-Gonzalez I, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol. 2018; 141 ( 1 ): 300 - 310.e11. https://doi.org/10.1016/j.jaci.2017.02.038
dc.identifier.citedreferenceBoguniewicz M, Beck LA, Sher L, et al. Dupilumab improves asthma and sinonasal outcomes in adults with moderate to severe atopic dermatitis. J Allergy Clin Immunol Pract. 2021; 9 ( 3 ): 1212 - 1223.e6. https://doi.org/10.1016/j.jaip.2020.12.059
dc.identifier.citedreferenceOrimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy. 2021; 76 ( 11 ): 3332 - 3348. https://doi.org/10.1111/all.14863
dc.identifier.citedreferenceAkdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016; 138 ( 4 ): 984 - 1010. https://doi.org/10.1016/j.jaci.2016.06.033
dc.identifier.citedreferenceZheng H, Zhang Y, Pan J, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021; 12: 586078. https://doi.org/10.3389/fimmu.2021.586078
dc.identifier.citedreferenceYu X, Wang M, Cao Z. Reduced CD4(+)T cell CXCR3 expression in patients with allergic rhinitis. Front Immunol. 2020; 11: 581180. https://doi.org/10.3389/fimmu.2020.581180
dc.identifier.citedreferenceSchuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015; 349 ( 6252 ): 1106 - 1110. https://doi.org/10.1126/science.aac6623
dc.identifier.citedreferenceLambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015; 16 ( 1 ): 45 - 56. https://doi.org/10.1038/ni.3049
dc.identifier.citedreferenceMuraro A, Lemanske Jr. RF, Hellings PW, et al. Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2016; 137 ( 5 ): 1347 - 1358. https://doi.org/10.1016/j.jaci.2016.03.010
dc.identifier.citedreferenceNian JB, Zeng M, Zheng J, et al. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis. Cell Cycle. 2020; 19 ( 10 ): 1132 - 1142. https://doi.org/10.1080/15384101.2020.1749402
dc.identifier.citedreferenceCheng KJ, Zhou ML, Liu YC, Wang C, Xu YY. The role of CD40 in allergic rhinitis and airway remodelling. Mediators Inflamm. 2021; 2021: 6694109. https://doi.org/10.1155/2021/6694109
dc.identifier.citedreferenceKleinJan A, Willart M, van Rijt LS, et al. An essential role for dendritic cells in human and experimental allergic rhinitis. J Allergy Clin Immunol. 2006; 118 ( 5 ): 1117 - 1125. https://doi.org/10.1016/j.jaci.2006.05.030
dc.identifier.citedreferenceHammad H, Plantinga M, Deswarte K, et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010; 207 ( 10 ): 2097 - 2111. https://doi.org/10.1084/jem.20101563
dc.identifier.citedreferenceMeng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy. 2020; 75 ( 12 ): 3069 - 3076. https://doi.org/10.1111/all.14586
dc.identifier.citedreferenceAnnunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015; 135 ( 3 ): 626 - 635. https://doi.org/10.1016/j.jaci.2014.11.001
dc.identifier.citedreferenceDurham SR, Ying S, Varney VA, et al. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol. 1992; 148 ( 8 ): 2390 - 2394.
dc.identifier.citedreferenceSogut A, Yilmaz O, Kirmaz C, et al. Regulatory-T, T-helper 1, and T-helper 2 cell differentiation in nasal mucosa of allergic rhinitis with olive pollen sensitivity. Int Arch Allergy Immunol. 2012; 157 ( 4 ): 349 - 353. https://doi.org/10.1159/000329159
dc.identifier.citedreferencePawankar RU, Okuda M, Okubo K, Ra C. Lymphocyte subsets of the nasal mucosa in perennial allergic rhinitis. Am J Respir Crit Care Med. 1995; 152 (6 pt 1): 2049 - 2058. https://doi.org/10.1164/ajrccm.152.6.8520775
dc.identifier.citedreferenceSoyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012; 130 ( 5 ): 1087 - 1096.e10. https://doi.org/10.1016/j.jaci.2012.05.052
dc.identifier.citedreferenceKubo T, Wawrzyniak P, Morita H, et al. CpG-DNA enhances the tight junction integrity of the bronchial epithelial cell barrier. J Allergy Clin Immunol. 2015; 136 ( 5 ):1413-1416.e1-8. https://doi.org/10.1016/j.jaci.2015.05.006
dc.identifier.citedreferenceGeoras SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014; 134 ( 3 ): 509 - 520. https://doi.org/10.1016/j.jaci.2014.05.049
dc.identifier.citedreferenceAkdis M. Healthy immune response to allergens: T regulatory cells and more. Curr Opin Immunol. 2006; 18 ( 6 ): 738 - 744. https://doi.org/10.1016/j.coi.2006.06.003
dc.identifier.citedreferenceAkdis M, Akdis CA. Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov. 2009; 8 ( 8 ): 645 - 660. https://doi.org/10.1038/nrd2653
dc.identifier.citedreferenceRaedler D, Ballenberger N, Klucker E, et al. Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J Allergy Clin Immunol. 2015; 135 ( 1 ): 81 - 91. https://doi.org/10.1016/j.jaci.2014.07.046
dc.identifier.citedreferenceAkdis M, Verhagen J, Taylor A, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004; 199 ( 11 ): 1567 - 1575. https://doi.org/10.1084/jem.20032058
dc.identifier.citedreferenceSuarez-Fueyo A, Ramos T, Galan A, et al. Grass tablet sublingual immunotherapy downregulates the TH2 cytokine response followed by regulatory T-cell generation. J Allergy Clin Immunol. 2014; 133 ( 1 ):130-138.e1-2. https://doi.org/10.1016/j.jaci.2013.09.043
dc.identifier.citedreferenceFox EM, Torrero MN, Evans H, Mitre E. Immunologic characterization of 3 murine regimens of allergen-specific immunotherapy. J Allergy Clin Immunol. 2015; 135 ( 5 ):1341-1351.e1-7. https://doi.org/10.1016/j.jaci.2014.07.052
dc.identifier.citedreferenceAkdis CA, Akdis M. Advances in allergen immunotherapy: aiming for complete tolerance to allergens. Sci Transl Med. 2015; 7 ( 280 ): 280ps6. https://doi.org/10.1126/scitranslmed.aaa7390
dc.identifier.citedreferenceJansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy. 2021; 76 ( 9 ): 2699 - 2715. https://doi.org/10.1111/all.14763
dc.identifier.citedreferenceHofmann MA, Fluhr JW, Ruwwe-Glosenkamp C, Stevanovic K, Bergmann KC, Zuberbier T. Role of IL-17 in atopy – a systematic review. Clin Transl Allergy. 2021; 11 ( 6 ): e12047. https://doi.org/10.1002/clt2.12047
dc.identifier.citedreferenceMorita H, Arae K, Unno H, et al. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity. 2015; 43 ( 1 ): 175 - 186. https://doi.org/10.1016/j.immuni.2015.06.021
dc.identifier.citedreferenceGanzer U, Bachert C. Localization of IgE synthesis in immediate-type allergy of the upper respiratory tract. ORL J Otorhinolaryngol Relat Spec. 1988; 50 ( 4 ): 257 - 264. https://doi.org/10.1159/000276000
dc.identifier.citedreferenceKleinJan A, Vinke JG, Severijnen LW, Fokkens WJ. Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur Respir J. 2000; 15 ( 3 ): 491 - 497. https://doi.org/10.1034/j.1399-3003.2000.15.11.x
dc.identifier.citedreferenceYao Y, Wang N, Chen CL, et al. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy. 2020; 75 ( 10 ): 2599 - 2612. https://doi.org/10.1111/all.14288
dc.identifier.citedreferenceBentley AM, Jacobson MR, Cumberworth V, et al. Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol. 1992; 89 ( 4 ): 877 - 883. https://doi.org/10.1016/0091-6749(92)90444-7
dc.identifier.citedreferenceGomez E, Corrado OJ, Baldwin DL, Swanston AR, Davies RJ. Direct in vivo evidence for mast cell degranulation during allergen-induced reactions in man. J Allergy Clin Immunol. 1986; 78 (4 pt 1): 637 - 645. https://doi.org/10.1016/0091-6749(86)90082-5
dc.identifier.citedreferenceHaenuki Y, Matsushita K, Futatsugi-Yumikura S, et al. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012; 130 ( 1 ): 184 - 194.e11. https://doi.org/10.1016/j.jaci.2012.02.013
dc.identifier.citedreferenceKleinJan A, McEuen AR, Dijkstra MD, Buckley MG, Walls AF, Fokkens WJ. Basophil and eosinophil accumulation and mast cell degranulation in the nasal mucosa of patients with hay fever after local allergen provocation. J Allergy Clin Immunol. 2000; 106 ( 4 ): 677 - 686. https://doi.org/10.1067/mai.2000.109621
dc.identifier.citedreferenceSemik-Orzech A, Barczyk A, Wiaderkiewicz R, Pierzchala W. Eotaxin, but not IL-8, is increased in upper and lower airways of allergic rhinitis subjects after nasal allergen challenge. Allergy Asthma Proc. 2011; 32 ( 3 ): 230 - 238. https://doi.org/10.2500/aap.2011.32.3435
dc.identifier.citedreferenceKim TH, Lee JY, Lee HM, et al. Remodelling of nasal mucosa in mild and severe persistent allergic rhinitis with special reference to the distribution of collagen, proteoglycans, and lymphatic vessels. Clin Exp Allergy. 2010; 40 ( 12 ): 1742 - 1754. https://doi.org/10.1111/j.1365-2222.2010.03612.x
dc.identifier.citedreferencePawankar R, Yamagishi S, Yagi T. Revisiting the roles of mast cells in allergic rhinitis and its relation to local IgE synthesis. Am J Rhinol. 2000; 14 ( 5 ): 309 - 317. https://doi.org/10.2500/105065800781329582
dc.identifier.citedreferencePawankar R. Mast cells in allergic airway disease and chronic rhinosinusitis. Chem Immunol Allergy. 2005; 87: 111 - 129. https://doi.org/10.1159/000087639
dc.identifier.citedreferencePowe DG, Hiskisson RS, Carney AS, Jenkins D, Jones NS. Idiopathic and allergic rhinitis show a similar inflammatory response. Clin Otolaryngol Allied Sci. 2000; 25 ( 6 ): 570 - 576. https://doi.org/10.1046/j.1365-2273.2000.00422-2.x
dc.identifier.citedreferenceDivekar R, Kita H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol. 2015; 15 ( 1 ): 98 - 103. https://doi.org/10.1097/ACI.0000000000000133
dc.identifier.citedreferenceWang W, Li Y, Lv Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol. 2018; 201 ( 8 ): 2221 - 2231. https://doi.org/10.4049/jimmunol.1800709
dc.identifier.citedreferenceHussain M, Borcard L, Walsh KP, et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol. 2018; 141 ( 1 ): 223 - 234.e5. https://doi.org/10.1016/j.jaci.2017.02.035
dc.identifier.citedreferenceCorren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol. 2019; 20 ( 12 ): 1603 - 1609. https://doi.org/10.1038/s41590-019-0524-9
dc.identifier.citedreferenceLondon Jr. NR, Lane AP. Innate immunity and chronic rhinosinusitis: what we have learned from animal models. Laryngoscope Investig Otolaryngol. 2016; 1 ( 3 ): 49 - 56. https://doi.org/10.1002/lio2.21
dc.identifier.citedreferencePawankar R. Epithelial cells as immunoregulators in allergic airway diseases. Curr Opin Allergy Clin Immunol. 2002; 2 ( 1 ): 1 - 5. https://doi.org/10.1097/00130832-200202000-00001
dc.identifier.citedreferencePeng YQ, Qin ZL, Fang SB, et al. Effects of myeloid and plasmacytoid dendritic cells on ILC2s in patients with allergic rhinitis. J Allergy Clin Immunol. 2020; 145 ( 3 ): 855 - 867.e8. https://doi.org/10.1016/j.jaci.2019.11.029
dc.identifier.citedreferenceKabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev. 2018; 286 ( 1 ): 37 - 52. https://doi.org/10.1111/imr.12706
dc.identifier.citedreferenceWilhelm C, Hirota K, Stieglitz B, et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 2011; 12 ( 11 ): 1071 - 1077. https://doi.org/10.1038/ni.2133
dc.identifier.citedreferenceTurner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med. 2013; 210 ( 13 ): 2951 - 2965. https://doi.org/10.1084/jem.20130071
dc.identifier.citedreferenceWilson AM, Duong M, Crawford L, Denburg J. An evaluation of peripheral blood eosinophil/basophil progenitors following nasal allergen challenge in patients with allergic rhinitis. Clin Exp Allergy. 2005; 35 ( 1 ): 39 - 44. https://doi.org/10.1111/j.1365-2222.2004.02072.x
dc.identifier.citedreferenceBradding P, Holgate ST. The mast cell as a source of cytokines in asthma. Ann N Y Acad Sci. 1996; 796: 272 - 281. https://doi.org/10.1111/j.1749-6632.1996.tb32589.x
dc.identifier.citedreferencePawankar RU, Okuda M, Hasegawa S, et al. Interleukin-13 expression in the nasal mucosa of perennial allergic rhinitis. Am J Respir Crit Care Med. 1995; 152 (6 pt 1): 2059 - 2067. https://doi.org/10.1164/ajrccm.152.6.8520776
dc.identifier.citedreferencePawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997; 99 ( 7 ): 1492 - 1499. https://doi.org/10.1172/JCI119311
dc.identifier.citedreferencePawankar R. Inflammatory mechanisms in allergic rhinitis. Curr Opin Allergy Clin Immunol. 2007; 7 ( 1 ): 1 - 4. https://doi.org/10.1097/ACI.0b013e3280145347
dc.identifier.citedreferenceNonaka M, Pawankar R, Fukumoto A, Ogihara N, Sakanushi A, Yagi T. Induction of eotaxin production by interleukin-4, interleukin-13 and lipopolysaccharide by nasal fibroblasts. Clin Exp Allergy. 2004; 34 ( 5 ): 804 - 811. https://doi.org/10.1111/j.1365-2222.2004.1954.x
dc.identifier.citedreferenceNair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009; 360 ( 10 ): 985 - 993. https://doi.org/10.1056/NEJMoa0805435
dc.identifier.citedreferenceNakamaru Y, Oridate N, Nishihira J, Takagi D, Furuta Y, Fukuda S. Macrophage migration inhibitory factor in allergic rhinitis: its identification in eosinophils at the site of inflammation. Ann Otol Rhinol Laryngol. 2004; 113 (3 pt 1): 205 - 209. https://doi.org/10.1177/000348940411300306
dc.identifier.citedreferenceKobayashi H, Gleich GJ, Butterfield JH, Kita H. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood. 2002; 99 ( 6 ): 2214 - 2220. https://doi.org/10.1182/blood.v99.6.2214
dc.identifier.citedreferencePappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011; 134 ( 1 ): 8 - 16. https://doi.org/10.1111/j.1365-2567.2011.03465.x
dc.identifier.citedreferenceMandhane SN, Shah JH, Thennati R. Allergic rhinitis: an update on disease, present treatments and future prospects. Int Immunopharmacol. 2011; 11 ( 11 ): 1646 - 1662. https://doi.org/10.1016/j.intimp.2011.07.005
dc.identifier.citedreferenceKim D, Baraniuk JN. Neural aspects of allergic rhinitis. Curr Opin Otolaryngol Head Neck Surg. 2007; 15 ( 4 ): 268 - 273. https://doi.org/10.1097/MOO.0b013e328259c372
dc.identifier.citedreferencePfaar O, Raap U, Holz M, Hormann K, Klimek L. Pathophysiology of itching and sneezing in allergic rhinitis. Swiss Med Wkly. 2009; 139 ( 3-4 ): 35 - 40. doi:smw-12468.
dc.identifier.citedreferenceSingh U, Bernstein JA, Haar L, Luther K, Jones WK. Azelastine desensitization of transient receptor potential vanilloid 1: a potential mechanism explaining its therapeutic effect in nonallergic rhinitis. Am J Rhinol Allergy. 2014; 28 ( 3 ): 215 - 224. https://doi.org/10.2500/ajra.2014.28.4059
dc.identifier.citedreferenceSingh U, Bernstein JA, Lorentz H, et al. A pilot study investigating clinical responses and biological pathways of azelastine/fluticasone in nonallergic vasomotor rhinitis before and after cold dry air provocation. Int Arch Allergy Immunol. 2017; 173 ( 3 ): 153 - 164. https://doi.org/10.1159/000478698
dc.identifier.citedreferenceKuruvilla M, Kalangara J, Lee FEE. Neuropathic pain and itch mechanisms underlying allergic conjunctivitis. J Investig Allergol Clin Immunol. 2019; 29 ( 5 ): 349 - 356. https://doi.org/10.18176/jiaci.0320
dc.identifier.citedreferenceGawlik R, Jawor B, Rogala B, Parzynski S, DuBuske L. Effect of intranasal azelastine on substance P release in perennial nonallergic rhinitis patients. Am J Rhinol Allergy. 2013; 27 ( 6 ): 514 - 516. https://doi.org/10.2500/ajra.2013.27.3955
dc.identifier.citedreferenceBaraniuk JN, Kaliner MA. Neuropeptides and nasal secretion. J Allergy Clin Immunol. 1990; 86 (4 pt 2): 620 - 627. https://doi.org/10.1016/s0091-6749(05)80226-x
dc.identifier.citedreferenceBernstein JA, Davis BP, Picard JK, Cooper JP, Zheng S, Levin LS. A randomized, double-blind, parallel trial comparing capsaicin nasal spray with placebo in subjects with a significant component of nonallergic rhinitis. Ann Allergy Asthma Immunol. 2011; 107 ( 2 ): 171 - 178. https://doi.org/10.1016/j.anai.2011.05.016
dc.identifier.citedreferenceGolpanian RS, Smith P, Yosipovitch G. Itch in organs beyond the skin. Curr Allergy Asthma Rep. 2020; 20 ( 9 ): 49. https://doi.org/10.1007/s11882-020-00947-z
dc.identifier.citedreferenceMosimann BL, White MV, Hohman RJ, Goldrich MS, Kaulbach HC, Kaliner MA. Substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol. 1993; 92 (1 pt 1): 95 - 104. https://doi.org/10.1016/0091-6749(93)90043-f
dc.identifier.citedreferenceSingh U, Bernstein JA. Intranasal capsaicin in management of nonallergic (vasomotor) rhinitis. Prog Drug Res. 2014; 68: 147 - 170. https://doi.org/10.1007/978-3-0348-0828-6_6
dc.identifier.citedreferenceSanico AM, Koliatsos VE, Stanisz AM, Bienenstock J, Togias A. Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol. 1999; 118 ( 2-4 ): 154 - 158. https://doi.org/10.1159/000024054
dc.identifier.citedreferenceBresciani M, Laliberte F, Laliberte MF, Gramiccioni C, Bonini S. Nerve growth factor localization in the nasal mucosa of patients with persistent allergic rhinitis. Allergy. 2009; 64 ( 1 ): 112 - 117. https://doi.org/10.1111/j.1398-9995.2008.01831.x
dc.identifier.citedreferenceO’Hanlon S, Facer P, Simpson KD, Sandhu G, Saleh HA, Anand P. Neuronal markers in allergic rhinitis: expression and correlation with sensory testing. Laryngoscope. 2007; 117 ( 9 ): 1519 - 1527. https://doi.org/10.1097/MLG.0b013e3180ca7846
dc.identifier.citedreferenceAbbott-Banner K, Poll C, Verkuyl JM. Targeting TRP channels in airway disorders. Curr Top Med Chem. 2013; 13 ( 3 ): 310 - 321. https://doi.org/10.2174/1568026611313030008
dc.identifier.citedreferenceBa G, Tang R, Sun X, Li Z, Lin H, Zhang W. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Int J Immunopathol Pharmacol. 2021; 35: 20587384211015054. https://doi.org/10.1177/20587384211015054
dc.identifier.citedreferenceBackaert W, Steelant B, Hellings PW, Talavera K, Van Gerven L. A TRiP through the roles of transient receptor potential cation channels in type 2 upper airway inflammation. Curr Allergy Asthma Rep. 2021; 21 ( 3 ): 20. https://doi.org/10.1007/s11882-020-00981-x
dc.identifier.citedreferenceNam JH, Kim WK. The role of TRP channels in allergic inflammation and its clinical relevance. Curr Med Chem. 2020; 27 ( 9 ): 1446 - 1468. https://doi.org/10.2174/0929867326666181126113015
dc.identifier.citedreferenceVareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011; 24 ( 1 ): 210 - 229. https://doi.org/10.1128/CMR.00014-10
dc.identifier.citedreferenceWang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep. 2015; 15 ( 1 ): 490. https://doi.org/10.1007/s11882-014-0490-0
dc.identifier.citedreferenceAkira S. Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85 ( 4 ): 143 - 156. https://doi.org/10.2183/pjab.85.143
dc.identifier.citedreferenceChen CR, Kachramanoglou C, Li D, Andrews P, Choi D. Anatomy and cellular constituents of the human olfactory mucosa: a review. J Neurol Surg B Skull Base. 2014; 75 ( 5 ): 293 - 300. https://doi.org/10.1055/s-0033-1361837
dc.identifier.citedreferenceBustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017; 9 ( 4 ): a028241. https://doi.org/10.1101/cshperspect.a028241
dc.identifier.citedreferenceScherzad A, Hagen R, Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation. J Inflamm Res. 2019; 12: 309 - 317. https://doi.org/10.2147/JIR.S180853
dc.identifier.citedreferenceHamelmann E. Development of allergic airway inflammation in early life – interaction of early viral infections and allergic sensitization. Allergol Select. 2018; 2 ( 1 ): 132 - 137. https://doi.org/10.5414/ALX01635E
dc.identifier.citedreferenceShin SH, Ye MK, Lee DW, Chae MH, Han BD. Nasal epithelial cells activated with alternaria and house dust mite induce not only Th2 but also Th1 immune responses. Int J Mol Sci. 2020; 21 ( 8 ): 2693. https://doi.org/10.3390/ijms21082693
dc.identifier.citedreferenceBergougnan C, Dittlein DC, Hummer E, et al. Physical and immunological barrier of human primary nasal epithelial cells from non-allergic and allergic donors. World Allergy Organ J. 2020; 13 ( 3 ): 100109. https://doi.org/10.1016/j.waojou.2020.100109
dc.identifier.citedreferenceOrban NT, Jacobson MR, Nouri-Aria KT, Durham SR, Eifan AO. Repetitive nasal allergen challenge in allergic rhinitis: priming and Th2-type inflammation but no evidence of remodelling. Clin Exp Allergy. 2021; 51 ( 2 ): 329 - 338. https://doi.org/10.1111/cea.13775
dc.identifier.citedreferenceWatts AM, West NP, Cripps AW, Smith PK, Cox AJ. Distinct gene expression patterns between nasal mucosal cells and blood collected from allergic rhinitis sufferers. Int Arch Allergy Immunol. 2018; 177 ( 1 ): 29 - 34. https://doi.org/10.1159/000489609
dc.identifier.citedreferenceGroneberg DA, Peiser C, Dinh QT, et al. Distribution of respiratory mucin proteins in human nasal mucosa. Laryngoscope. 2003; 113 ( 3 ): 520 - 524. https://doi.org/10.1097/00005537-200303000-00023
dc.identifier.citedreferenceLee SN, Kim SJ, Yoon SA, et al. CD44v3-positive intermediate progenitor cells contribute to airway goblet cell hyperplasia. Am J Respir Cell Mol Biol. 2021; 64 ( 2 ): 247 - 259. https://doi.org/10.1165/rcmb.2020-0350OC
dc.identifier.citedreferenceSiti Sarah CO, Md Shukri N, Mohd Ashari NS, Wong KK. Zonula occludens and nasal epithelial barrier integrity in allergic rhinitis. PeerJ. 2020; 8: e9834. https://doi.org/10.7717/peerj.9834
dc.identifier.citedreferenceSteelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol. 2019; 144 ( 5 ): 1242 - 1253.e7. https://doi.org/10.1016/j.jaci.2019.04.027
dc.identifier.citedreferenceZhou LB, Zheng YM, Liao WJ, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis. J Allergy Clin Immunol. 2019; 144 ( 6 ): 1716 - 1719.e5. https://doi.org/10.1016/j.jaci.2019.07.042
dc.identifier.citedreferenceBuckle FG, Cohen AB. Nasal mucosal hyperpermeability to macromolecules in atopic rhinitis and extrinsic asthma. J Allergy Clin Immunol. 1975; 55 ( 4 ): 213 - 221. https://doi.org/10.1016/0091-6749(75)90139-6
dc.identifier.citedreferenceZhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 ( 1 ): 131 - 140. https://doi.org/10.1111/all.13489
dc.identifier.citedreferenceWang J, Wen L, Wang Y, Chen F. Therapeutic effect of histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis in vivo. DNA Cell Biol. 2016; 35 ( 4 ): 203 - 208. https://doi.org/10.1089/dna.2015.3037
dc.identifier.citedreferenceRunswick S, Mitchell T, Davies P, Robinson C, Garrod DR. Pollen proteolytic enzymes degrade tight junctions. Respirology. 2007; 12 ( 6 ): 834 - 842. https://doi.org/10.1111/j.1440-1843.2007.01175.x
dc.identifier.citedreferenceHenriquez OA, Den Beste K, Hoddeson EK, Parkos CA, Nusrat A, Wise SK. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int Forum Allergy Rhinol. 2013; 3 ( 8 ): 630 - 635. https://doi.org/10.1002/alr.21168
dc.identifier.citedreferenceSteelant B, Seys SF, Van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol. 2018; 141 ( 3 ): 951 - 963.e8. https://doi.org/10.1016/j.jaci.2017.08.039
dc.identifier.citedreferenceOhwada K, Konno T, Kohno T, et al. Effects of HMGB1 on tricellular tight junctions via TGF-beta signaling in human nasal epithelial cells. Int J Mol Sci. 2021; 22 ( 16 ): 8390. https://doi.org/10.3390/ijms22168390
dc.identifier.citedreferenceFukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy. 2016; 46 ( 1 ): 142 - 152. https://doi.org/10.1111/cea.12597
dc.identifier.citedreferenceKamekura R, Kojima T, Koizumi J, et al. Thymic stromal lymphopoietin enhances tight-junction barrier function of human nasal epithelial cells. Cell Tissue Res. 2009; 338 ( 2 ): 283 - 293. https://doi.org/10.1007/s00441-009-0855-1
dc.identifier.citedreferenceHupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014; 69 ( 11 ): 1540 - 1549. https://doi.org/10.1111/all.12503
dc.identifier.citedreferenceAkdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021; 21 ( 11 ): 739 - 751. https://doi.org/10.1038/s41577-021-00538-7
dc.identifier.citedreferenceWawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017; 139 ( 1 ): 93 - 103. https://doi.org/10.1016/j.jaci.2016.03.050
dc.identifier.citedreferenceNur Husna SM, Siti Sarah CO, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Reduced occludin and claudin-7 expression is associated with urban locations and exposure to second-hand smoke in allergic rhinitis patients. Sci Rep. 2021; 11 ( 1 ): 1245. https://doi.org/10.1038/s41598-020-79208-y
dc.identifier.citedreferenceBaeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010; 10 ( 4 ): 482 - 496. https://doi.org/10.1016/j.coph.2010.04.001
dc.identifier.citedreferenceAdams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010; 95 ( 2 ): 471 - 478. https://doi.org/10.1210/jc.2009-1773
dc.identifier.citedreferenceKongsbak M, Levring TB, Geisler C, von Essen MR. The vitamin d receptor and T cell function. Front Immunol. 2013; 4: 148. https://doi.org/10.3389/fimmu.2013.00148
dc.identifier.citedreferenceTian HQ, Cheng L. The role of vitamin D in allergic rhinitis. Asia Pac Allergy. 2017; 7 ( 2 ): 65 - 73. https://doi.org/10.5415/apallergy.2017.7.2.65
dc.identifier.citedreferenceHamzaoui A, Berraies A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K. Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children. Immunobiology. 2014; 219 ( 11 ): 873 - 879. https://doi.org/10.1016/j.imbio.2014.07.009
dc.identifier.citedreferenceZhang H, Shih DQ, Zhang X. Mechanisms underlying effects of 1,25-dihydroxyvitamin D3 on the Th17 cells. Eur J Microbiol Immunol (Bp). 2013; 3 ( 4 ): 237 - 240. https://doi.org/10.1556/EuJMI.3.2013.4.1
dc.identifier.citedreferenceUrry Z, Chambers ES, Xystrakis E, et al. The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol. 2012; 42 ( 10 ): 2697 - 2708. https://doi.org/10.1002/eji.201242370
dc.identifier.citedreferenceJolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017; 5 ( 11 ): 881 - 890. https://doi.org/10.1016/S2213-2600(17)30306-5
dc.identifier.citedreferenceRiverin BD, Maguire JL, Li P. Vitamin D supplementation for childhood asthma: a systematic review and meta-analysis. PLoS One. 2015; 10 ( 8 ): e0136841. https://doi.org/10.1371/journal.pone.0136841
dc.identifier.citedreferenceWee JH, Cho SW, Kim JW, Rhee CS. Non-association between low vitamin d levels and aeroallergen-positivity evaluated using multiple allergen simultaneous test in Korean adults. Allergy Asthma Clin Immunol. 2021; 17 ( 1 ): 23. https://doi.org/10.1186/s13223-021-00525-6
dc.identifier.citedreferenceBener A, Ehlayel MS, Bener HZ, Hamid Q. The impact of Vitamin D deficiency on asthma, allergic rhinitis and wheezing in children: an emerging public health problem. J Family Community Med. 2014; 21 ( 3 ): 154 - 161. https://doi.org/10.4103/2230-8229.142967
dc.identifier.citedreferenceKim YH, Kim KW, Kim MJ, et al. Vitamin D levels in allergic rhinitis: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2016; 27 ( 6 ): 580 - 590. https://doi.org/10.1111/pai.12599
dc.identifier.citedreferenceBakhshaee M, Sharifian M, Esmatinia F, Rasoulian B, Mohebbi M. Therapeutic effect of vitamin D supplementation on allergic rhinitis. Eur Arch Otorhinolaryngol. 2019; 276 ( 10 ): 2797 - 2801. https://doi.org/10.1007/s00405-019-05546-x
dc.identifier.citedreferenceJerzynska J, Stelmach W, Rychlik B, et al. Clinical and immunological effects of vitamin D supplementation during the pollen season in children with allergic rhinitis. Arch Med Sci. 2018; 14 ( 1 ): 122 - 131. https://doi.org/10.5114/aoms.2016.61978
dc.identifier.citedreferenceTakeno S, Yoshimura H, Kubota K, Taruya T, Ishino T, Hirakawa K. Comparison of nasal nitric oxide levels between the inferior turbinate surface and the middle meatus in patients with symptomatic allergic rhinitis. Allergol Int. 2014; 63 ( 3 ): 475 - 483. https://doi.org/10.2332/allergolint.14-OA-0689
dc.identifier.citedreferenceTakeno S, Osada R, Furukido K, Chen JH, Yajin K. Increased nitric oxide production in nasal epithelial cells from allergic patients–RT-PCR analysis and direct imaging by a fluorescence indicator: DAF-2 DA. Clin Exp Allergy. 2001; 31 ( 6 ): 881 - 888. https://doi.org/10.1046/j.1365-2222.2001.01093.x
dc.identifier.citedreferenceYuksel H, Kirmaz C, Yilmaz O, et al. Nasal mucosal expression of nitric oxide synthases in patients with allergic rhinitis and its relation to asthma. Ann Allergy Asthma Immunol. 2008; 100 ( 1 ): 12 - 16. https://doi.org/10.1016/S1081-1206(10)60398-5
dc.identifier.citedreferenceHou J, Lou H, Wang Y, et al. Nasal ventilation is an important factor in evaluating the diagnostic value of nasal nitric oxide in allergic rhinitis. Int Forum Allergy Rhinol. 2018; 8 ( 6 ): 686 - 694. https://doi.org/10.1002/alr.22087
dc.identifier.citedreferenceRen L, Zhang W, Zhang Y, Zhang L. Nasal nitric oxide is correlated with nasal patency and nasal symptoms. Allergy Asthma Immunol Res. 2019; 11 ( 3 ): 367 - 380. https://doi.org/10.4168/aair.2019.11.3.367
dc.identifier.citedreferenceLiu C, Zheng K, Liu X, et al. Use of nasal nitric oxide in the diagnosis of allergic rhinitis and nonallergic rhinitis in patients with and without sinus inflammation. J Allergy Clin Immunol Pract. 2020; 8 ( 5 ): 1574 - 1581.e4. https://doi.org/10.1016/j.jaip.2019.12.017
dc.identifier.citedreferenceManiscalco M, Sofia M, Pelaia G. Nitric oxide in upper airways inflammatory diseases. Inflamm Res. 2007; 56 ( 2 ): 58 - 69. https://doi.org/10.1007/s00011-006-6111-1
dc.identifier.citedreferenceBarnes PJ, Dweik RA, Gelb AF, et al. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest. 2010; 138 ( 3 ): 682 - 692. https://doi.org/10.1378/chest.09-2090
dc.identifier.citedreferenceManiscalco M, Bianco A, Mazzarella G, Motta A. Recent advances on nitric oxide in the upper airways. Curr Med Chem. 2016; 23 ( 24 ): 2736 - 2745. https://doi.org/10.2174/0929867323666160627115335
dc.identifier.citedreferenceAlam MS, Akaike T, Okamoto S, et al. Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun. 2002; 70 ( 6 ): 3130 - 3142. https://doi.org/10.1128/IAI.70.6.3130-3142.2002
dc.identifier.citedreferencePoljakovic M, Persson K. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am J Physiol Renal Physiol. 2003; 284 ( 1 ): F22 - F31. https://doi.org/10.1152/ajprenal.00101.2002
dc.identifier.citedreferenceRajaram K, Nelson DE. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B. Infect Immun. 2015; 83 ( 8 ): 3164 - 3175. https://doi.org/10.1128/IAI.00382-15
dc.identifier.citedreferenceYadav R, Samuni Y, Abramson A, et al. Pro-oxidative synergic bactericidal effect of NO: kinetics and inhibition by nitroxides. Free Radic Biol Med. 2014; 67: 248 - 254. https://doi.org/10.1016/j.freeradbiomed.2013.10.012
dc.identifier.citedreferenceWorkman AD, Carey RM, Kohanski MA, et al. Relative susceptibility of airway organisms to antimicrobial effects of nitric oxide. Int Forum Allergy Rhinol. 2017; 7 ( 8 ): 770 - 776. https://doi.org/10.1002/alr.21966
dc.identifier.citedreferenceCarey RM, Chen B, Adappa ND, et al. Human upper airway epithelium produces nitric oxide in response to Staphylococcus epidermidis. Int Forum Allergy Rhinol. 2016; 6 ( 12 ): 1238 - 1244. https://doi.org/10.1002/alr.21837
dc.identifier.citedreferenceFreund JR, Mansfield CJ, Doghramji LJ, et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem. 2018; 293 ( 25 ): 9824 - 9840. https://doi.org/10.1074/jbc.RA117.001005
dc.identifier.citedreferenceAntosova M, Bencova A, Mokra D, Plevkova J, Pepucha L, Buday T. Exhaled and nasal nitric oxide – impact for allergic rhinitis. Physiol Res. 2020; 69 (suppl 1 ): S123 - S130. https://doi.org/10.33549/physiolres.934393
dc.identifier.citedreferenceRolim WR, Pieretti JC, Reno DLS, et al. Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl Mater Interfaces. 2019; 11 ( 6 ): 6589 - 6604. https://doi.org/10.1021/acsami.8b19021
dc.identifier.citedreferenceAkaberi D, Krambrich J, Ling J, et al. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020; 37: 101734. https://doi.org/10.1016/j.redox.2020.101734
dc.identifier.citedreferencePieretti JC, Rubilar O, Weller RB, Tortella GR, Seabra AB. Nitric oxide (NO) and nanoparticles – potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res. 2021; 291: 198202. https://doi.org/10.1016/j.virusres.2020.198202
dc.identifier.citedreferenceLi D, Shirakami G, Zhan X, Johns RA. Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am J Respir Cell Mol Biol. 2000; 23 ( 2 ): 175 - 181. https://doi.org/10.1165/ajrcmb.23.2.4022
dc.identifier.citedreferenceHariri BM, Payne SJ, Chen B, et al. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology. Am J Rhinol Allergy. 2016; 30 ( 4 ): 261 - 268. https://doi.org/10.2500/ajra.2016.30.4331
dc.identifier.citedreferenceFowler CJ, Olivier KN, Leung JM, et al. Abnormal nasal nitric oxide production, ciliary beat frequency, and Toll-like receptor response in pulmonary nontuberculous mycobacterial disease epithelium. Am J Respir Crit Care Med. 2013; 187 ( 12 ): 1374 - 1381. https://doi.org/10.1164/rccm.201212-2197OC
dc.identifier.citedreferenceJiao J, Wang H, Lou W, et al. Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. Exp Cell Res. 2011; 317 ( 17 ): 2548 - 2553. https://doi.org/10.1016/j.yexcr.2011.07.007
dc.identifier.citedreferenceSerbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003; 19 ( 1 ): 59 - 70. https://doi.org/10.1016/s1074-7613(03)00171-7
dc.identifier.citedreferenceCobb JP, Hotchkiss RS, Swanson PE, et al. Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice. Surgery. 1999; 126 ( 2 ): 438 - 442.
dc.identifier.citedreferenceMacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997; 94 ( 10 ): 5243 - 5248. https://doi.org/10.1073/pnas.94.10.5243
dc.identifier.citedreferenceMishra BB, Lovewell RR, Olive AJ, et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol. 2017; 2: 17072. https://doi.org/10.1038/nmicrobiol.2017.72
dc.identifier.citedreferenceBajwa G, DeBerardinis RJ, Shao B, Hall B, Farrar JD, Gill MA. Cutting Edge: Critical Role of Glycolysis in Human Plasmacytoid Dendritic Cell Antiviral Responses. J Immunol. 2016; 196 ( 5 ): 2004 - 2009. https://doi.org/10.4049/jimmunol.1501557
dc.identifier.citedreferenceKopincova J, Calkovska A. Meconium-induced inflammation and surfactant inactivation: specifics of molecular mechanisms. Pediatr Res. 2016; 79 ( 4 ): 514 - 521. https://doi.org/10.1038/pr.2015.265
dc.identifier.citedreferenceHeffler E, Carpagnano GE, Favero E, et al. Fractional Exhaled Nitric Oxide (FENO) in the management of asthma: a position paper of the Italian Respiratory Society (SIP/IRS) and Italian Society of Allergy, Asthma and Clinical Immunology (SIAAIC). Multidiscip Respir Med. 2020; 15 ( 1 ): 36. https://doi.org/10.4081/mrm.2020.36
dc.identifier.citedreferenceSoares MP, Teixeira L, Moita LF. Disease tolerance and immunity in host protection against infection. Nat Rev Immunol. 2017; 17 ( 2 ): 83 - 96. https://doi.org/10.1038/nri.2016.136
dc.identifier.citedreferenceGarcia-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med. 2018; 24 ( 4 ): 412 - 427. https://doi.org/10.1016/j.molmed.2018.02.002
dc.identifier.citedreferenceAkdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020; 75 ( 7 ): 1582 - 1605. https://doi.org/10.1111/all.14318
dc.identifier.citedreferenceMonga N, Sethi GS, Kondepudi KK, Naura AS. Lipid mediators and asthma: scope of therapeutics. Biochem Pharmacol. 2020; 179: 113925. https://doi.org/10.1016/j.bcp.2020.113925
dc.identifier.citedreferenceHuang F, Yin JN, Wang HB, Liu SY, Li YN. Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children. Allergy Asthma Proc. 2017; 38 ( 6 ): 70 - 77. https://doi.org/10.2500/aap.2017.38.4076
dc.identifier.citedreferenceAmiel E, Everts B, Fritz D, et al. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol. 2014; 193 ( 6 ): 2821 - 2830. https://doi.org/10.4049/jimmunol.1302498
dc.identifier.citedreferenceEverts B, Amiel E, van der Windt GJ, et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood. 2012; 120 ( 7 ): 1422 - 1431. https://doi.org/10.1182/blood-2012-03-419747
dc.identifier.citedreferenceLawless SJ, Kedia-Mehta N, Walls JF, et al. Glucose represses dendritic cell-induced T cell responses. Nat Commun. 2017; 8: 15620. https://doi.org/10.1038/ncomms15620
dc.identifier.citedreferenceLinke M, Fritsch SD, Sukhbaatar N, Hengstschlager M, Weichhart T. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett. 2017; 591 ( 19 ): 3089 - 3103. https://doi.org/10.1002/1873-3468.12711
dc.identifier.citedreferenceChen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001; 276 ( 12 ): 9519 - 9525. https://doi.org/10.1074/jbc.M010144200
dc.identifier.citedreferenceXu L, Huang Y, Yang J, et al. Dendritic cell-derived nitric oxide is involved in IL-4-induced suppression of experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol. 1999; 118 ( 1 ): 115 - 121. https://doi.org/10.1046/j.1365-2249.1999.01029.x
dc.identifier.citedreferenceNathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992; 6 ( 12 ): 3051 - 3064.
dc.identifier.citedreferenceBogdan C. Nitric oxide and the immune response. Nat Immunol. 2001; 2 ( 10 ): 907 - 916. https://doi.org/10.1038/ni1001-907
dc.identifier.citedreferenceNathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest. 2003; 111 ( 6 ): 769 - 778. https://doi.org/10.1172/JCI18174
dc.identifier.citedreferenceBogdan C. Regulation of lymphocytes by nitric oxide. Methods Mol Biol. 2011; 677: 375 - 393. https://doi.org/10.1007/978-1-60761-869-0_24
dc.identifier.citedreferenceWink DA, Hines HB, Cheng RY, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011; 89 ( 6 ): 873 - 891. https://doi.org/10.1189/jlb.1010550
dc.identifier.citedreferenceIbiza S, Serrador JM. The role of nitric oxide in the regulation of adaptive immune responses. Immunologia. 2008; 27: 103 - 117.
dc.identifier.citedreferenceBogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015; 36 ( 3 ): 161 - 178. https://doi.org/10.1016/j.it.2015.01.003
dc.identifier.citedreferenceBailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019; 28 ( 1 ): 218 - 230.e7. https://doi.org/10.1016/j.celrep.2019.06.018
dc.identifier.citedreferenceLee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase. Results Probl Cell Differ. 2017; 62: 181 - 207. https://doi.org/10.1007/978-3-319-54090-0_8
dc.identifier.citedreferencePavord ID, Afzalnia S, Menzies-Gow A, Heaney LG. The current and future role of biomarkers in type 2 cytokine-mediated asthma management. Clin Exp Allergy. 2017; 47 ( 2 ): 148 - 160. https://doi.org/10.1111/cea.12881
dc.identifier.citedreferenceBachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019; 394 ( 10209 ): 1638 - 1650. https://doi.org/10.1016/S0140-6736(19)31881-1
dc.identifier.citedreferenceNesi RT, Barroso MV, Souza Muniz V, et al. Pharmacological modulation of reactive oxygen species (ROS) improves the airway hyperresponsiveness by shifting the Th1 response in allergic inflammation induced by ovalbumin. Free Radic Res. 2017; 51 ( 7-8 ): 708 - 722. https://doi.org/10.1080/10715762.2017.1364377
dc.identifier.citedreferenceBove PF, van der Vliet A. Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Radic Biol Med. 2006; 41 ( 4 ): 515 - 527. https://doi.org/10.1016/j.freeradbiomed.2006.05.011
dc.identifier.citedreferenceSparkman L, Boggaram V. Nitric oxide increases IL-8 gene transcription and mRNA stability to enhance IL-8 gene expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004; 287 ( 4 ): L764 - L773. https://doi.org/10.1152/ajplung.00165.2004
dc.identifier.citedreferenceGottipati KR, Bandari SK, Nonnenmann MW, et al. Transcriptional mechanisms and protein kinase signaling mediate organic dust induction of IL-8 expression in lung epithelial and THP-1 cells. Am J Physiol Lung Cell Mol Physiol. 2015; 308 ( 1 ): L11 - L21. https://doi.org/10.1152/ajplung.00215.2014
dc.identifier.citedreferenceVocca L, Di Sano C, Uasuf CG, et al. IL-33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases. Immunobiology. 2015; 220 ( 8 ): 954 - 963. https://doi.org/10.1016/j.imbio.2015.02.005
dc.identifier.citedreferenceUchida M, Anderson EL, Squillace DL, et al. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy. 2017; 72 ( 10 ): 1521 - 1531. https://doi.org/10.1111/all.13158
dc.identifier.citedreferenceUrsell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012; 70 (suppl 1 ): S38 - S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
dc.identifier.citedreferenceQin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464 ( 7285 ): 59 - 65. https://doi.org/10.1038/nature08821
dc.identifier.citedreferenceInternational Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431 ( 7011 ): 931 - 945. https://doi.org/10.1038/nature03001
dc.identifier.citedreferenceFierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008; 105 ( 46 ): 17994 - 17999. https://doi.org/10.1073/pnas.0807920105
dc.identifier.citedreferenceTurnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457 ( 7228 ): 480 - 484. https://doi.org/10.1038/nature07540
dc.identifier.citedreferenceAbrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014; 44 ( 6 ): 842 - 850. https://doi.org/10.1111/cea.12253
dc.identifier.citedreferenceSjogren YM, Jenmalm MC, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009; 39 ( 4 ): 518 - 526. https://doi.org/10.1111/j.1365-2222.2008.03156.x
dc.identifier.citedreferenceMelli LC, do Carmo-Rodrigues MS, Araujo-Filho HB, Sole D, de Morais MB. Intestinal microbiota and allergic diseases: a systematic review. Allergol Immunopathol (Madr). 2016; 44 ( 2 ): 177 - 188. https://doi.org/10.1016/j.aller.2015.01.013
dc.identifier.citedreferenceFujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016; 22 ( 10 ): 1187 - 1191. https://doi.org/10.1038/nm.4176
dc.identifier.citedreferenceIpci K, Altintoprak N, Muluk NB, Senturk M, Cingi C. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017; 274 ( 2 ): 617 - 626. https://doi.org/10.1007/s00405-016-4058-6
dc.identifier.citedreferenceBisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011; 128 ( 3 ):646-652.e1-5. https://doi.org/10.1016/j.jaci.2011.04.060
dc.identifier.citedreferenceWatts AM, West NP, Zhang P, Smith PK, Cripps AW, Cox AJ. The gut microbiome of adults with allergic rhinitis is characterised by reduced diversity and an altered abundance of key microbial taxa compared to controls. Int Arch Allergy Immunol. 2021; 182 ( 2 ): 94 - 105. https://doi.org/10.1159/000510536
dc.identifier.citedreferenceZhou MS, Zhang B, Gao ZL, et al. Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb Pathog. 2021; 161 (pt A): 105272. https://doi.org/10.1016/j.micpath.2021.105272
dc.identifier.citedreferenceHua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine. 2016; 3: 172 - 179. https://doi.org/10.1016/j.ebiom.2015.11.038
dc.identifier.citedreferenceChoi CH, Poroyko V, Watanabe S, et al. Seasonal allergic rhinitis affects sinonasal microbiota. Am J Rhinol Allergy. 2014; 28 ( 4 ): 281 - 286. https://doi.org/10.2500/ajra.2014.28.4050
dc.identifier.citedreferencePenston J, Wormsley KG. Adverse reactions and interactions with H2-receptor antagonists. Med Toxicol. 1986; 1 ( 3 ): 192 - 216. https://doi.org/10.1007/BF03259837
dc.identifier.citedreferenceGan W, Yang F, Meng J, Liu F, Liu S, Xian J. Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur Arch Otorhinolaryngol. 2021; 278 ( 3 ): 711 - 718. https://doi.org/10.1007/s00405-020-06311-1
dc.identifier.citedreferenceBender ME, Read TD, Edwards TS, et al. A Comparison of the Bacterial Nasal Microbiome in Allergic Rhinitis Patients Before and After Immunotherapy. Laryngoscope. 2020; 130 ( 12 ): E882 - E888. https://doi.org/10.1002/lary.28599
dc.identifier.citedreferenceHu B, Kuang Y, Jing Y, Li Y, Zhao H, Ouyang H. Pediatric allergic rhinitis with functional gastrointestinal disease: Associations with the intestinal microbiota and gastrointestinal peptides and therapeutic effects of interventions. Hum Exp Toxicol. 2021; 40 ( 11 ): 2012 - 2021. https://doi.org/10.1177/09603271211017325
dc.identifier.citedreferenceMorin A, McKennan CG, Pedersen CT, et al. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J Allergy Clin Immunol. 2020; 146 ( 6 ): 1358 - 1366. https://doi.org/10.1016/j.jaci.2020.07.005
dc.identifier.citedreferenceZhu L, Xu F, Wan W, et al. Gut microbial characteristics of adult patients with allergy rhinitis. Microb Cell Fact. 2020; 19 ( 1 ): 171. https://doi.org/10.1186/s12934-020-01430-0
dc.identifier.citedreferenceGiavina-Bianchi P, Aun MV, Takejima P, Kalil J, Agondi RC. United airway disease: current perspectives. J Asthma Allergy. 2016; 9: 93 - 100. https://doi.org/10.2147/JAA.S81541
dc.identifier.citedreferenceGenuneit J, Seibold AM, Apfelbacher CJ, et al. Overview of systematic reviews in allergy epidemiology. Allergy. 2017; 72 ( 6 ): 849 - 856. https://doi.org/10.1111/all.13123
dc.identifier.citedreferenceAgache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines – recommendations on the use of biologicals in severe asthma. Allergy. 2020; 75 ( 5 ): 1023 - 1042. https://doi.org/10.1111/all.14221
dc.identifier.citedreferenceShamji MH, Palmer E, Layhadi JA, Moraes TJ, Eiwegger T. Biological treatment in allergic disease. Allergy. 2021; 76 ( 9 ): 2934 - 2937. https://doi.org/10.1111/all.14954
dc.identifier.citedreferenceKanda A, Kobayashi Y, Asako M, Tomoda K, Kawauchi H, Iwai H. Regulation of interaction between the upper and lower airways in united airway disease. Med Sci (Basel). 2019; 7 ( 2 ): 27. https://doi.org/10.3390/medsci7020027
dc.identifier.citedreferenceAkdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013; 131 ( 6 ): 1479 - 1490. https://doi.org/10.1016/j.jaci.2013.02.036
dc.identifier.citedreferenceAsano K, Ueki S, Tamari M, Imoto Y, Fujieda S, Taniguchi M. Adult-onset eosinophilic airway diseases. Allergy. 2020; 75 ( 12 ): 3087 - 3099. https://doi.org/10.1111/all.14620
dc.identifier.citedreferenceBackaert W, Steelant B, Jorissen M, et al. Self-reported nasal hyperreactivity is common in all chronic upper airway inflammatory phenotypes and not related to general well-being. Allergy. 2021; 76 ( 12 ): 3806 - 3809. https://doi.org/10.1111/all.15060
dc.identifier.citedreferenceFeijen J, Seys SF, Steelant B, et al. Prevalence and triggers of self-reported nasal hyperreactivity in adults with asthma. World Allergy Organ J. 2020; 13 ( 6 ): 100132. https://doi.org/10.1016/j.waojou.2020.100132
dc.identifier.citedreferenceDoulaptsi M, Steelant B, Prokopakis E, et al. Prevalence and impact of nasal hyperreactivity in chronic rhinosinusitis. Allergy. 2020; 75 ( 7 ): 1768 - 1771. https://doi.org/10.1111/all.14199
dc.identifier.citedreferenceAgache I, Sugita K, Morita H, Akdis M, Akdis CA. The Complex Type 2 Endotype in Allergy and Asthma: From Laboratory to Bedside. Curr Allergy Asthma Rep. 2015; 15 ( 6 ): 29. https://doi.org/10.1007/s11882-015-0529-x
dc.identifier.citedreferenceAvdeeva KS, Fokkens WJ, Reitsma S. Towards a new epidemiological definition of chronic rhinitis: prevalence of nasal complaints in the general population. Rhinology. 2021; 59 ( 3 ): 258 - 266. https://doi.org/10.4193/Rhin20.637
dc.identifier.citedreferenceViiu B, Christer J, Fredrik S, et al. Asthma in combination with rhinitis and eczema is associated with a higher degree of type-2 inflammation and symptom burden than asthma alone. Allergy. 2021; 76 ( 12 ): 3827 - 3829. https://doi.org/10.1111/all.15082
dc.identifier.citedreferenceCamp J, Cane JL, Bafadhel M. Shall we focus on the eosinophil to guide treatment with systemic corticosteroids during acute exacerbations of COPD?: PRO. Med Sci (Basel). 2018; 6 ( 3 ): 74. https://doi.org/10.3390/medsci6030074
dc.identifier.citedreferenceHox V, Lourijsen E, Jordens A, et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper. Clin Transl Allergy. 2020; 10: 1. https://doi.org/10.1186/s13601-019-0303-6
dc.identifier.citedreferenceHox V, Lourijsen E, Jordens A, et al. Correction to: benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper. Clin Transl Allergy. 2020; 10: 38. https://doi.org/10.1186/s13601-020-00343-w
dc.identifier.citedreferenceAgache I, Song Y, Alonso-Coello P, et al. Efficacy and safety of treatment with biologicals for severe chronic rhinosinusitis with nasal polyps: a systematic review for the EAACI guidelines. Allergy. 2021; 76 ( 8 ): 2337 - 2353. https://doi.org/10.1111/all.14809
dc.identifier.citedreferenceHellings PW, Verhoeven E, Fokkens WJ. State-of-the-art overview on biological treatment for CRSwNP. Rhinology. 2021; 59 ( 2 ): 151 - 163. https://doi.org/10.4193/Rhin20.570
dc.identifier.citedreferenceTomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016; 137 ( 5 ): 1449 - 1456.e4. https://doi.org/10.1016/j.jaci.2015.12.1324
dc.identifier.citedreferenceKato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy. 2022; 77 ( 3 ): 812 - 826. https://doi.org/10.1111/all.15074
dc.identifier.citedreferenceSteelant B, Seys SF, Boeckxstaens G, Akdis CA, Ceuppens JL, Hellings PW. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinology. 2016; 54 ( 3 ): 195 - 205. https://doi.org/10.4193/Rhino15.376
dc.identifier.citedreferenceScadding GK, Scadding GW. Innate and adaptive immunity: ILC2 and Th2 cells in upper and lower airway allergic diseases. J Allergy Clin Immunol Pract. 2021; 9 ( 5 ): 1851 - 1857. https://doi.org/10.1016/j.jaip.2021.02.013
dc.identifier.citedreferencevan der Ploeg EK, Golebski K, van Nimwegen M, et al. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol. 2021; 6 ( 55 ): eabd3489. https://doi.org/10.1126/sciimmunol.abd3489
dc.identifier.citedreferenceBraunstahl GJ, Fokkens W. Nasal involvement in allergic asthma. Allergy. 2003; 58 ( 12 ): 1235 - 1243. https://doi.org/10.1046/j.0105-4538.2003.00354.x
dc.identifier.citedreferenceIzuhara Y, Matsumoto H, Nagasaki T, et al. Mouth breathing, another risk factor for asthma: the Nagahama study. Allergy. 2016; 71 ( 7 ): 1031 - 1036. https://doi.org/10.1111/all.12885
dc.identifier.citedreferenceBraunstahl GJ. United airways concept: what does it teach us about systemic inflammation in airways disease? Proc Am Thorac Soc. 2009; 6 ( 8 ): 652 - 654. https://doi.org/10.1513/pats.200906-052DP
dc.identifier.citedreferenceCorren J, Adinoff AD, Irvin CG. Changes in bronchial responsiveness following nasal provocation with allergen. J Allergy Clin Immunol. 1992; 89 ( 2 ): 611 - 618. https://doi.org/10.1016/0091-6749(92)90329-z
dc.identifier.citedreferenceBraunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000; 161 ( 6 ): 2051 - 2057. https://doi.org/10.1164/ajrccm.161.6.9906121
dc.identifier.citedreferenceBraunstahl GJ, Overbeek SE, Fokkens WJ, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med. 2001; 164 ( 5 ): 858 - 865. https://doi.org/10.1164/ajrccm.164.5.2006082
dc.identifier.citedreferenceBraunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001; 107 ( 3 ): 469 - 476. https://doi.org/10.1067/mai.2001.113046
dc.identifier.citedreferenceAllakhverdi Z, Comeau MR, Smith DE, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol. 2009; 123 ( 2 ): 472 - 478. https://doi.org/10.1016/j.jaci.2008.10.022
dc.identifier.citedreferenceSergejeva S, Malmhall C, Lotvall J, Pullerits T. Increased number of CD34+ cells in nasal mucosa of allergic rhinitis patients: inhibition by a local corticosteroid. Clin Exp Allergy. 2005; 35 ( 1 ): 34 - 38. https://doi.org/10.1111/j.1365-2222.2004.02038.x
dc.identifier.citedreferenceLans R, Fokkens WJ, Adriaensen G, Hoven DR, Drubbel JJ, Reitsma S. Real-life observational cohort verifies high efficacy of dupilumab for chronic rhinosinusitis with nasal polyps. Allergy. 2022; 77 ( 2 ): 670 - 674. https://doi.org/10.1111/all.15134
dc.identifier.citedreferenceISAAC Steering Committee. ISAAC – The International Study of Asthma and Allergies in Childhood. Accessed November 1, 2021. http://isaac.auckland.ac.nz
dc.identifier.citedreferenceWorld Health Organization. International Statistical Classigfication of Diseases and Related Health Problems (ICD). Accessed November 1, 2021. https://www.who.int/standards/classifications/classification-of-diseases
dc.identifier.citedreferenceAlqahtani JM. Atopy and allergic diseases among Saudi young adults: a cross-sectional study. J Int Med Res. 2020; 48 ( 1 ): 300060519899760. https://doi.org/10.1177/0300060519899760
dc.identifier.citedreferenceOliveira TB, Persigo ALK, Ferrazza CC, Ferreira ENN, Veiga ABG. Prevalence of asthma, allergic rhinitis and pollinosis in a city of Brazil: a monitoring study. Allergol Immunopathol (Madr). 2020; 48 ( 6 ): 537 - 544. https://doi.org/10.1016/j.aller.2020.03.010
dc.identifier.citedreferenceNam JS, Hwang CS, Hong MP, Kim KS. Prevalence and clinical characteristics of allergic rhinitis in the elderly Korean population. Eur Arch Otorhinolaryngol. 2020; 277 ( 12 ): 3367 - 3373. https://doi.org/10.1007/s00405-020-06256-5
dc.identifier.citedreferenceMortz CG, Andersen KE, Poulsen LK, Kjaer HF, Broesby-Olsen S, Bindslev-Jensen C. Atopic diseases and type I sensitization from adolescence to adulthood in an unselected population (TOACS) with focus on predictors for allergic rhinitis. Allergy. 2019; 74 ( 2 ): 308 - 317. https://doi.org/10.1111/all.13630
dc.identifier.citedreferenceWang XY, Ma TT, Wang XY, et al. Prevalence of pollen-induced allergic rhinitis with high pollen exposure in grasslands of northern China. Allergy. 2018; 73 ( 6 ): 1232 - 1243. https://doi.org/10.1111/all.13388
dc.identifier.citedreferenceSchmitt J, Stadler E, Kuster D, Wustenberg EG. Medical care and treatment of allergic rhinitis: a population-based cohort study based on routine healthcare utilization data. Allergy. 2016; 71 ( 6 ): 850 - 858. https://doi.org/10.1111/all.12838
dc.identifier.citedreferenceWestman M, Kull I, Lind T, et al. The link between parental allergy and offspring allergic and nonallergic rhinitis. Allergy. 2013; 68 ( 12 ): 1571 - 1578. https://doi.org/10.1111/all.12267
dc.identifier.citedreferenceSorensen M, Wickman M, Sollid JU, Furberg AS, Klingenberg C. Allergic disease and Staphylococcus aureus carriage in adolescents in the Arctic region of Norway. Pediatr Allergy Immunol. 2016; 27 ( 7 ): 728 - 735. https://doi.org/10.1111/pai.12595
dc.identifier.citedreferenceWinther A, Dennison E, Ahmed LA, et al. The Tromso Study: Fit Futures: a study of Norwegian adolescents’ lifestyle and bone health. Arch Osteoporos. 2014; 9: 185. https://doi.org/10.1007/s11657-014-0185-0
dc.identifier.citedreferenceJacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njolstad I. Cohort profile: the Tromso study. Int J Epidemiol. 2012; 41 ( 4 ): 961 - 967. https://doi.org/10.1093/ije/dyr049
dc.identifier.citedreferenceYang L, Fu J, Zhou Y. Research progress in Atopic March. Front Immunol. 2020; 11: 1907. https://doi.org/10.3389/fimmu.2020.01907
dc.identifier.citedreferencePark S, Jung PK, Choi M, et al. Association between occupational clusters and allergic rhinitis in the Korean population: analysis of the Korean National Health and Nutrition Examination Survey data. J Occup Health. 2018; 60 ( 4 ): 312 - 319. https://doi.org/10.1539/joh.2017-0234-OA
dc.identifier.citedreferenceCardell LO, Olsson P, Andersson M, et al. TOTALL: high cost of allergic rhinitis-a national Swedish population-based questionnaire study. NPJ Prim Care Respir Med. 2016; 26: 15082. https://doi.org/10.1038/npjpcrm.2015.82
dc.identifier.citedreferenceIdani E, Raji H, Madadizadeh F, Cheraghian B, Haddadzadeh Shoshtari M, Dastoorpoor M. Prevalence of asthma and other allergic conditions in adults in Khuzestan, southwest Iran, 2018. BMC Public Health. 2019; 19 ( 1 ): 303. https://doi.org/10.1186/s12889-019-6491-0
dc.identifier.citedreferenceReijula J, Latvala J, Makela M, Siitonen S, Saario M, Haahtela T. Long-term trends of asthma, allergic rhinitis and atopic eczema in young Finnish men: a retrospective analysis, 1926-2017. Eur Respir J. 2020; 56 ( 6 ): 1902144. https://doi.org/10.1183/13993003.02144-2019
dc.identifier.citedreferenceMaio S, Baldacci S, Carrozzi L, et al. Respiratory symptoms/diseases prevalence is still increasing: a 25-yr population study. Respir Med. 2016; 110: 58 - 65. https://doi.org/10.1016/j.rmed.2015.11.006
dc.identifier.citedreferenceJanson C, Johannessen A, Franklin K, et al. Change in the prevalence asthma, rhinitis and respiratory symptom over a 20 year period: associations to year of birth, life style and sleep related symptoms. BMC Pulm Med. 2018; 18 ( 1 ): 152. https://doi.org/10.1186/s12890-018-0690-9
dc.identifier.citedreferenceSucharew H, Ryan PH, Bernstein D, et al. Exposure to traffic exhaust and night cough during early childhood: the CCAAPS birth cohort. Pediatr Allergy Immunol. 2010; 21 (2 pt 1): 253 - 259. https://doi.org/10.1111/j.1399-3038.2009.00952.x
dc.identifier.citedreferenceHerr M, Clarisse B, Nikasinovic L, et al. Does allergic rhinitis exist in infancy? Findings from the PARIS birth cohort. Allergy. 2011; 66 ( 2 ): 214 - 221. https://doi.org/10.1111/j.1398-9995.2010.02467.x
dc.identifier.citedreferenceKulig M, Klettke U, Wahn V, Forster J, Bauer CP, Wahn U. Development of seasonal allergic rhinitis during the first 7 years of life. J Allergy Clin Immunol. 2000; 106 ( 5 ): 832 - 839. https://doi.org/10.1067/mai.2000.110098
dc.identifier.citedreferenceWestman M, Stjarne P, Asarnoj A, et al. Natural course and comorbidities of allergic and nonallergic rhinitis in children. J Allergy Clin Immunol. 2012; 129 ( 2 ): 403 - 408. https://doi.org/10.1016/j.jaci.2011.09.036
dc.identifier.citedreferenceAit-Khaled N, Pearce N, Anderson HR, et al. Global map of the prevalence of symptoms of rhinoconjunctivitis in children: The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three. Allergy. 2009; 64 ( 1 ): 123 - 148. https://doi.org/10.1111/j.1398-9995.2008.01884.x
dc.identifier.citedreferenceBjorksten B, Clayton T, Ellwood P, Stewart A, Strachan D, Group IPIS. Worldwide time trends for symptoms of rhinitis and conjunctivitis: Phase III of the International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol. 2008; 19 ( 2 ): 110 - 124. https://doi.org/10.1111/j.1399-3038.2007.00601.x
dc.identifier.citedreferenceMallol J, Crane J, von Mutius E, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: a global synthesis. Allergol Immunopathol (Madr). 2013; 41 ( 2 ): 73 - 85. https://doi.org/10.1016/j.aller.2012.03.001
dc.identifier.citedreferenceStrachan D, Sibbald B, Weiland S, et al. Worldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Allergy Immunol. 1997; 8 ( 4 ): 161 - 176. https://doi.org/10.1111/j.1399-3038.1997.tb00156.x
dc.identifier.citedreferenceSoto-Martinez ME, Yock-Corrales A, Camacho-Badilla K, et al. The current prevalence of asthma, allergic rhinitis, and eczema related symptoms in school-aged children in Costa Rica. J Asthma. 2019; 56 ( 4 ): 360 - 368. https://doi.org/10.1080/02770903.2018.1455860
dc.identifier.citedreferenceMorikawa E, Sasaki M, Yoshida K, Adachi Y, Odajima H, Akasawa A. Nationwide survey of the prevalence of wheeze, rhino-conjunctivitis, and eczema among Japanese children in 2015. Allergol Int. 2020; 69 ( 1 ): 98 - 103. https://doi.org/10.1016/j.alit.2019.08.010
dc.identifier.citedreferenceIbrahim NM, Almarzouqi FI, Al Melaih FA, Farouk H, Alsayed M, AlJassim FM. Prevalence of asthma and allergies among children in the United Arab Emirates: a cross-sectional study. World Allergy Organ J. 2021; 14 ( 10 ): 100588. https://doi.org/10.1016/j.waojou.2021.100588
dc.identifier.citedreferenceOzoh OB, Aderibigbe SA, Ayuk AC, et al. The prevalence of asthma and allergic rhinitis in Nigeria: a nationwide survey among children, adolescents and adults. PLoS One. 2019; 14 ( 9 ): e0222281. https://doi.org/10.1371/journal.pone.0222281
dc.identifier.citedreferencede Oliveira TB, Moscon JG, Ferreira E, da Veiga ABG. Prevalence of symptoms of asthma and allergic rhinitis in children in Southern Brazil: a ten-year monitoring study. J Asthma. 2020; 57 ( 4 ): 373 - 380. https://doi.org/10.1080/02770903.2019.1573253
dc.identifier.citedreferenceOchoa-Aviles C, Morillo D, Rodriguez A, et al. Prevalence and risk factors for asthma, rhinitis, eczema, and atopy among preschool children in an Andean city. PLoS One. 2020; 15 ( 7 ): e0234633. https://doi.org/10.1371/journal.pone.0234633
dc.identifier.citedreferenceTong H, Gao L, Deng Y, et al. Prevalence of allergic rhinitis and associated risk factors in 6 to 12 years schoolchildren from Wuhan in Central China: a cross-sectional study. Am J Rhinol Allergy. 2020; 34 ( 5 ): 632 - 641. https://doi.org/10.1177/1945892420920499
dc.identifier.citedreferenceZhang HL, Wang BY, Luo Y, et al. Association of pet-keeping in home with self-reported asthma and asthma-related symptoms in 11611 school children from China. J Asthma. 2021; 58 ( 12 ): 1555 - 1564. https://doi.org/10.1080/02770903.2020.1818772
dc.identifier.citedreferencePols DH, Wartna JB, Moed H, van Alphen EI, Bohnen AM, Bindels PJ. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand J Prim Health Care. 2016; 34 ( 2 ): 143 - 150. https://doi.org/10.3109/02813432.2016.1160629
dc.identifier.citedreferenceVan Wonderen KE, Van Der Mark LB, Mohrs J, Bindels PJ, Van Aalderen WM, Ter Riet G. Different definitions in childhood asthma: how dependable is the dependent variable? Eur Respir J. 2010; 36 ( 1 ): 48 - 56. https://doi.org/10.1183/09031936.00154409
dc.identifier.citedreferencePols DHJ, Nielen MMJ, Korevaar JC, Bindels PJE, Bohnen AM. Reliably estimating prevalences of atopic children: an epidemiological study in an extensive and representative primary care database. NPJ Prim Care Respir Med. 2017; 27 ( 1 ): 23. https://doi.org/10.1038/s41533-017-0025-y
dc.identifier.citedreferenceKurukulaaratchy RJ, Karmaus W, Raza A, Matthews S, Roberts G, Arshad SH. The influence of gender and atopy on the natural history of rhinitis in the first 18 years of life. Clin Exp Allergy. 2011; 41 ( 6 ): 851 - 859. https://doi.org/10.1111/j.1365-2222.2011.03765.x
dc.identifier.citedreferencede Jong NW, Elbert NJ, Mensink-Bout SM, et al. Parental and child factors associated with inhalant and food allergy in a population-based prospective cohort study: the Generation R Study. Eur J Pediatr. 2019; 178 ( 10 ): 1507 - 1517. https://doi.org/10.1007/s00431-019-03441-5
dc.identifier.citedreferenceStrachan DP, Rutter CE, Asher MI, et al. Worldwide time trends in prevalence of symptoms of rhinoconjunctivitis in children: Global Asthma Network Phase I. Pediatr Allergy Immunol. 2022; 33 ( 1 ): e13656. https://doi.org/10.1111/pai.13656
dc.identifier.citedreferenceBousquet PJ, Leynaert B, Neukirch F, et al. Geographical distribution of atopic rhinitis in the European Community Respiratory Health Survey I. Allergy. 2008; 63 ( 10 ): 1301 - 1309. https://doi.org/10.1111/j.1398-9995.2008.01824.x
dc.identifier.citedreferenceVariations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J. 1996; 9 ( 4 ): 687 - 695. https://doi.org/10.1183/09031936.96.09040687
dc.identifier.citedreferenceWeinmayr G, Forastiere F, Weiland SK, et al. International variation in prevalence of rhinitis and its relationship with sensitisation to perennial and seasonal allergens. Eur Respir J. 2008; 32 ( 5 ): 1250 - 1261. https://doi.org/10.1183/09031936.00157807
dc.identifier.citedreferenceWang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016; 71 ( 8 ): 1170 - 1180. https://doi.org/10.1111/all.12874
dc.identifier.citedreferenceAnderegg WRL, Abatzoglou JT, Anderegg LDL, Bielory L, Kinney PL, Ziska L. Anthropogenic climate change is worsening North American pollen seasons. Proc Natl Acad Sci U S A. 2021; 118 ( 7 ): e2013284118. https://doi.org/10.1073/pnas.2013284118
dc.identifier.citedreferenceLake IR, Jones NR, Agnew M, et al. Climate change and future pollen allergy in Europe. Environ Health Perspect. 2017; 125 ( 3 ): 385 - 391. https://doi.org/10.1289/EHP173
dc.identifier.citedreferenceErbas B, Lowe AJ, Lodge CJ, et al. Persistent pollen exposure during infancy is associated with increased risk of subsequent childhood asthma and hayfever. Clin Exp Allergy. 2013; 43 ( 3 ): 337 - 343. https://doi.org/10.1111/cea.12071
dc.identifier.citedreferenceToth I, Peternel R, Gajnik D, Vojnikovic B. Micro-regional hypersensitivity variations to inhalant allergens in the city of Zagreb and Zagreb County. Coll Antropol. 2011; 35 (suppl 2 ): 31 - 37.
dc.identifier.citedreferenceKim J, Han Y, Seo SC, et al. Association of carbon monoxide levels with allergic diseases in children. Allergy Asthma Proc. 2016; 37 ( 1 ): e1 - e7. https://doi.org/10.2500/aap.2016.37.3918
dc.identifier.citedreferenceLi CW, Chen DD, Zhong JT, et al. Epidemiological characterization and risk factors of allergic rhinitis in the general population in Guangzhou City in China. PLoS One. 2014; 9 ( 12 ): e114950. https://doi.org/10.1371/journal.pone.0114950
dc.identifier.citedreferenceAhn JC, Kim JW, Lee CH, Rhee CS. Prevalence and risk factors of chronic rhinosinusitus, allergic rhinitis, and nasal septal deviation: results of the Korean National Health and Nutrition Survey 2008-2012. JAMA Otolaryngol Head Neck Surg. 2016; 142 ( 2 ): 162 - 167. https://doi.org/10.1001/jamaoto.2015.3142
dc.identifier.citedreferenceSong WJ, Sohn KH, Kang MG, et al. Urban-rural differences in the prevalence of allergen sensitization and self-reported rhinitis in the elderly population. Ann Allergy Asthma Immunol. 2015; 114 ( 6 ): 455 - 461. https://doi.org/10.1016/j.anai.2015.03.008
dc.identifier.citedreferenceZheng M, Wang X, Wang M, et al. Clinical characteristics of allergic rhinitis patients in 13 metropolitan cities of China. Allergy. 2021; 76 ( 2 ): 577 - 581. https://doi.org/10.1111/all.14561
dc.identifier.citedreferenceBeggs PJ, Katelaris CH, Medek D, et al. Differences in grass pollen allergen exposure across Australia. Aust N Z J Public Health. 2015; 39 ( 1 ): 51 - 55. https://doi.org/10.1111/1753-6405.12325
dc.identifier.citedreferenceThomsen SF, Ulrik CS, Kyvik KO, et al. Genetic and environmental contributions to hay fever among young adult twins. Respir Med. 2006; 100 ( 12 ): 2177 - 2182. https://doi.org/10.1016/j.rmed.2006.03.013
dc.identifier.citedreferenceRasanen M, Laitinen T, Kaprio J, Koskenvuo M, Laitinen LA. Hay fever – a Finnish nationwide study of adolescent twins and their parents. Allergy. 1998; 53 ( 9 ): 885 - 890. https://doi.org/10.1111/j.1398-9995.1998.tb03996.x
dc.identifier.citedreferenceFerreira MA, Matheson MC, Tang CS, et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol. 2014; 133 ( 6 ): 1564 - 1571. https://doi.org/10.1016/j.jaci.2013.10.030
dc.identifier.citedreferenceHinds DA, McMahon G, Kiefer AK, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013; 45 ( 8 ): 907 - 911. https://doi.org/10.1038/ng.2686
dc.identifier.citedreferenceRamasamy A, Curjuric I, Coin LJ, et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol. 2011; 128 ( 5 ): 996 - 1005. https://doi.org/10.1016/j.jaci.2011.08.030
dc.identifier.citedreferenceJohansson A, Rask-Andersen M, Karlsson T, Ek WE. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum Mol Genet. 2019; 28 ( 23 ): 4022 - 4041. https://doi.org/10.1093/hmg/ddz175
dc.identifier.citedreferenceWaage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018; 50 ( 8 ): 1072 - 1080. https://doi.org/10.1038/s41588-018-0157-1
dc.identifier.citedreferenceFerreira MA, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011; 378 ( 9795 ): 1006 - 1014. https://doi.org/10.1016/S0140-6736(11)60874-X
dc.identifier.citedreferenceWeidinger S, Willis-Owen SA, Kamatani Y, et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet. 2013; 22 ( 23 ): 4841 - 4856. https://doi.org/10.1093/hmg/ddt317
dc.identifier.citedreferenceMarenholz I, Esparza-Gordillo J, Ruschendorf F, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015; 6: 8804. https://doi.org/10.1038/ncomms9804
dc.identifier.citedreferenceStockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol. 2009; 39 ( 12 ): 3315 - 3322. https://doi.org/10.1002/eji.200939684
dc.identifier.citedreferenceBonnelykke K, Matheson MC, Pers TH, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013; 45 ( 8 ): 902 - 906. https://doi.org/10.1038/ng.2694
dc.identifier.citedreferenceFerreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017; 49 ( 12 ): 1752 - 1757. https://doi.org/10.1038/ng.3985
dc.identifier.citedreferenceFerreira MAR, Vonk JM, Baurecht H, et al. Eleven loci with new reproducible genetic associations with allergic disease risk. J Allergy Clin Immunol. 2019; 143 ( 2 ): 691 - 699. https://doi.org/10.1016/j.jaci.2018.03.012
dc.identifier.citedreferenceBackman JD, Li AH, Marcketta A, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021; 599 ( 7886 ): 628 - 634. https://doi.org/10.1038/s41586-021-04103-z
dc.identifier.citedreferenceDavila I, Mullol J, Ferrer M, et al. Genetic aspects of allergic rhinitis. J Investig Allergol Clin Immunol. 2009; 19 (suppl 1 ): 25 - 31.
dc.identifier.citedreferenceAndiappan AK, Nilsson D, Hallden C, et al. Investigating highly replicated asthma genes as candidate genes for allergic rhinitis. BMC Med Genet. 2013; 14: 51. https://doi.org/10.1186/1471-2350-14-51
dc.identifier.citedreferenceNilsson D, Andiappan AK, Hallden C, et al. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study. BMC Med Genet. 2012; 13: 66. https://doi.org/10.1186/1471-2350-13-66
dc.identifier.citedreferenceKang I, Oh YK, Lee SH, Jung HM, Chae SC, Lee JH. Identification of polymorphisms in the Toll-like receptor gene and the association with allergic rhinitis. Eur Arch Otorhinolaryngol. 2010; 267 ( 3 ): 385 - 389. https://doi.org/10.1007/s00405-009-1100-y
dc.identifier.citedreferenceKormann MS, Ferstl R, Depner M, et al. Rare TLR2 mutations reduce TLR2 receptor function and can increase atopy risk. Allergy. 2009; 64 ( 4 ): 636 - 642. https://doi.org/10.1111/j.1398-9995.2008.01891.x
dc.identifier.citedreferenceMoller-Larsen S, Nyegaard M, Haagerup A, Vestbo J, Kruse TA, Borglum AD. Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax. 2008; 63 ( 12 ): 1064 - 1069. https://doi.org/10.1136/thx.2007.094128
dc.identifier.citedreferenceSun Q, Liu Y, Zhang S, et al. Thymic stromal lymphopoietin polymorphisms and allergic rhinitis risk: a systematic review and meta-analysis with 6351 cases and 11472 controls. Int J Clin Exp Med. 2015; 8 ( 9 ): 15752 - 15758.
dc.identifier.citedreferenceNilsson D, Andiappan AK, Hallden C, et al. Poor reproducibility of allergic rhinitis SNP associations. PLoS One. 2013; 8 ( 1 ): e53975. https://doi.org/10.1371/journal.pone.0053975
dc.identifier.citedreferenceVercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008; 8 ( 3 ): 169 - 182. https://doi.org/10.1038/nri2257
dc.identifier.citedreferenceLondon SJ, Melen E. Genomic interactions with exposure to inhaled pollutants. J Allergy Clin Immunol. 2019; 143 ( 6 ): 2011 - 2013.e1. https://doi.org/10.1016/j.jaci.2019.04.008
dc.identifier.citedreferenceGruzieva O, Xu CJ, Breton CV, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO 2 air pollution exposure. Environ Health Perspect. 2017; 125 ( 1 ): 104 - 110. https://doi.org/10.1289/EHP36
dc.identifier.citedreferenceMerid SK, Novoloaca A, Sharp GC, et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 2020; 12 ( 1 ): 25. https://doi.org/10.1186/s13073-020-0716-9
dc.identifier.citedreferenceLi JY, Zhang Y, Lin XP, et al. Association between DNA hypomethylation at IL13 gene and allergic rhinitis in house dust mite-sensitized subjects. Clin Exp Allergy. 2016; 46 ( 2 ): 298 - 307. https://doi.org/10.1111/cea.12647
dc.identifier.citedreferenceNestor CE, Barrenas F, Wang H, et al. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014; 10 ( 1 ): e1004059. https://doi.org/10.1371/journal.pgen.1004059
dc.identifier.citedreferenceSarnowski C, Laprise C, Malerba G, et al. DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. J Allergy Clin Immunol. 2016; 138 ( 3 ): 748 - 753. https://doi.org/10.1016/j.jaci.2015.12.1341
dc.identifier.citedreferenceLiang L, Willis-Owen SAG, Laprise C, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015; 520 ( 7549 ): 670 - 674. https://doi.org/10.1038/nature14125
dc.identifier.citedreferenceEverson TM, Lyons G, Zhang H, et al. DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Med. 2015; 7: 89. https://doi.org/10.1186/s13073-015-0213-8
dc.identifier.citedreferenceQi C, Jiang Y, Yang IV, et al. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol. 2020; 145 ( 6 ): 1655 - 1663. https://doi.org/10.1016/j.jaci.2019.12.911
dc.identifier.citedreferenceXu CJ, Gruzieva O, Qi C, et al. Shared DNA methylation signatures in childhood allergy: the MeDALL study. J Allergy Clin Immunol. 2021; 147 ( 3 ): 1031 - 1040. https://doi.org/10.1016/j.jaci.2020.11.044
dc.identifier.citedreferenceAndiappan AK, de Wang Y, Anantharaman R, et al. Genome-wide association study for atopy and allergic rhinitis in a Singapore Chinese population. PLoS One. 2011; 6 ( 5 ): e19719. https://doi.org/10.1371/journal.pone.0019719
dc.identifier.citedreferenceBunyavanich S, Schadt EE, Himes BE, et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med Genomics. 2014; 7: 48. https://doi.org/10.1186/1755-8794-7-48
dc.identifier.citedreferenceSakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021; 53 ( 10 ): 1415 - 1424. https://doi.org/10.1038/s41588-021-00931-x
dc.identifier.citedreferenceToelle BG, Ng KK, Crisafulli D, et al. Eight-year outcomes of the Childhood Asthma Prevention Study. J Allergy Clin Immunol. 2010; 126 ( 2 ): 388 - 389. 389.e1-3. https://doi.org/10.1016/j.jaci.2010.04.031
dc.identifier.citedreferenceMarks GB, Mihrshahi S, Kemp AS, et al. Prevention of asthma during the first 5 years of life: a randomized controlled trial. J Allergy Clin Immunol. 2006; 118 ( 1 ): 53 - 61. https://doi.org/10.1016/j.jaci.2006.04.004
dc.identifier.citedreferenceGehring U, de Jongste JC, Kerkhof M, et al. The 8-year follow-up of the PIAMA intervention study assessing the effect of mite-impermeable mattress covers. Allergy. 2012; 67 ( 2 ): 248 - 256. https://doi.org/10.1111/j.1398-9995.2011.02739.x
dc.identifier.citedreferenceGabet S, Ranciere F, Just J, et al. Asthma and allergic rhinitis risk depends on house dust mite specific IgE levels in PARIS birth cohort children. World Allergy Organ J. 2019; 12 ( 9 ): 100057. https://doi.org/10.1016/j.waojou.2019.100057
dc.identifier.citedreferenceArshad SH, Bateman B, Sadeghnejad A, Gant C, Matthews SM. Prevention of allergic disease during childhood by allergen avoidance: the Isle of Wight prevention study. J Allergy Clin Immunol. 2007; 119 ( 2 ): 307 - 313. https://doi.org/10.1016/j.jaci.2006.12.621
dc.identifier.citedreferenceChan-Yeung M, Ferguson A, Watson W, et al. The Canadian Childhood Asthma Primary Prevention Study: outcomes at 7 years of age. J Allergy Clin Immunol. 2005; 116 ( 1 ): 49 - 55. https://doi.org/10.1016/j.jaci.2005.03.029
dc.identifier.citedreferenceCalderon MA, Linneberg A, Kleine-Tebbe J, et al. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015; 136 ( 1 ): 38 - 48. https://doi.org/10.1016/j.jaci.2014.10.012
dc.identifier.citedreferenceWahn U, Lau S, Bergmann R, et al. Indoor allergen exposure is a risk factor for sensitization during the first three years of life. J Allergy Clin Immunol. 1997; 99 (6 pt 1): 763 - 769. https://doi.org/10.1016/s0091-6749(97)80009-7
dc.identifier.citedreferenceTovey ER, Almqvist C, Li Q, Crisafulli D, Marks GB. Nonlinear relationship of mite allergen exposure to mite sensitization and asthma in a birth cohort. J Allergy Clin Immunol. 2008; 122 ( 1 ): 114 - 118. 118.e1-5. https://doi.org/10.1016/j.jaci.2008.05.010
dc.identifier.citedreferenceSchram-Bijkerk D, Doekes G, Boeve M, et al. Nonlinear relations between house dust mite allergen levels and mite sensitization in farm and nonfarm children. Allergy. 2006; 61 ( 5 ): 640 - 647. https://doi.org/10.1111/j.1398-9995.2006.01079.x
dc.identifier.citedreferenceTorrent M, Sunyer J, Munoz L, et al. Early-life domestic aeroallergen exposure and IgE sensitization at age 4 years. J Allergy Clin Immunol. 2006; 118 ( 3 ): 742 - 748. https://doi.org/10.1016/j.jaci.2006.04.059
dc.identifier.citedreferenceCullinan P, MacNeill SJ, Harris JM, et al. Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax. 2004; 59 ( 10 ): 855 - 861. https://doi.org/10.1136/thx.2003.019877
dc.identifier.citedreferenceLau S, Falkenhorst G, Weber A, et al. High mite-allergen exposure increases the risk of sensitization in atopic children and young adults. J Allergy Clin Immunol. 1989; 84 (5 pt 1): 718 - 725. https://doi.org/10.1016/0091-6749(89)90300-x
dc.identifier.citedreferenceKuehr J, Frischer T, Meinert R, et al. Mite allergen exposure is a risk for the incidence of specific sensitization. J Allergy Clin Immunol. 1994; 94 ( 1 ): 44 - 52. https://doi.org/10.1016/0091-6749(94)90070-1
dc.identifier.citedreferenceLodge CJ, Lowe AJ, Gurrin LC, et al. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J Allergy Clin Immunol. 2011; 128 ( 4 ): 782 - 788.e9. https://doi.org/10.1016/j.jaci.2011.06.038
dc.identifier.citedreferenceSchoos AM, Chawes BL, Jelding-Dannemand E, Elfman LB, Bisgaard H. Early indoor aeroallergen exposure is not associated with development of sensitization or allergic rhinitis in high-risk children. Allergy. 2016; 71 ( 5 ): 684 - 691. https://doi.org/10.1111/all.12853
dc.identifier.citedreferenceIlli S, Weber J, Zutavern A, et al. Perinatal influences on the development of asthma and atopy in childhood. Ann Allergy Asthma Immunol. 2014; 112 ( 2 ): 132 - 139.e1. https://doi.org/10.1016/j.anai.2013.11.019
dc.identifier.citedreferenceKihlstrom A, Lilja G, Pershagen G, Hedlin G. Exposure to birch pollen in infancy and development of atopic disease in childhood. J Allergy Clin Immunol. 2002; 110 ( 1 ): 78 - 84. https://doi.org/10.1067/mai.2002.125829
dc.identifier.citedreferenceScadding GK, Smith PK, Blaiss M, et al. Allergic Rhinitis in Childhood and the New EUFOREA Algorithm. Front Allergy. 2021; 2: 706589. https://doi.org/10.3389/falgy.2021.706589
dc.identifier.citedreferenceLipiec A, Sybilski A, Komorowski J, et al. Sensitisation to airborne allergens as a risk factor for allergic rhinitis and asthma in the Polish population. Postepy Dermatol Alergol. 2020; 37 ( 5 ): 751 - 759. https://doi.org/10.5114/ada.2019.84231
dc.identifier.citedreferenceHatzler L, Panetta V, Lau S, et al. Molecular spreading and predictive value of preclinical IgE response to Phleum pratense in children with hay fever. J Allergy Clin Immunol. 2012; 130 ( 4 ): 894 - 901.e5. https://doi.org/10.1016/j.jaci.2012.05.053
dc.identifier.citedreferenceGough H, Grabenhenrich L, Reich A, et al. Allergic multimorbidity of asthma, rhinitis and eczema over 20 years in the German birth cohort MAS. Pediatr Allergy Immunol. 2015; 26 ( 5 ): 431 - 437. https://doi.org/10.1111/pai.12410
dc.identifier.citedreferenceGrabenhenrich LB, Keil T, Reich A, et al. Prediction and prevention of allergic rhinitis: a birth cohort study of 20 years. J Allergy Clin Immunol. 2015; 136 ( 4 ): 932 - 940.e12. https://doi.org/10.1016/j.jaci.2015.03.040
dc.identifier.citedreferenceLee KS, Kim K, Choi YJ, et al. Increased sensitization rates to tree pollens in allergic children and adolescents and a change in the pollen season in the metropolitan area of Seoul, Korea. Pediatr Allergy Immunol. 2021; 32 ( 5 ): 872 - 879. https://doi.org/10.1111/pai.13472
dc.identifier.citedreferenceWestman M, Aberg K, Apostolovic D, et al. Sensitization to grass pollen allergen molecules in a birth cohort-natural Phl p 4 as an early indicator of grass pollen allergy. J Allergy Clin Immunol. 2020; 145 ( 4 ): 1174 - 1181.e6. https://doi.org/10.1016/j.jaci.2020.01.006
dc.identifier.citedreferenceWestman M, Lupinek C, Bousquet J, et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J Allergy Clin Immunol. 2015; 135 ( 5 ):1199-1206.e1-11. https://doi.org/10.1016/j.jaci.2014.10.042
dc.identifier.citedreferenceGao X, Yin M, Yang P, et al. Effect of exposure to cats and dogs on the risk of asthma and allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2020; 34 ( 5 ): 703 - 714. https://doi.org/10.1177/1945892420932487
dc.identifier.citedreferenceOjwang V, Nwaru BI, Takkinen HM, et al. Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatr Allergy Immunol. 2020; 31 ( 3 ): 265 - 272. https://doi.org/10.1111/pai.13186
dc.identifier.citedreferenceAl-Tamprouri C, Malin B, Bill H, Lennart B, Anna S. Cat and dog ownership during/after the first year of life and risk for sensitization and reported allergy symptoms at age 13. Immun Inflamm Dis. 2019; 7 ( 4 ): 250 - 257. https://doi.org/10.1002/iid3.267
dc.identifier.citedreferenceSultesz M, Horvath A, Molnar D, et al. Prevalence of allergic rhinitis, related comorbidities and risk factors in schoolchildren. Allergy Asthma Clin Immunol. 2020; 16 ( 1 ): 98. https://doi.org/10.1186/s13223-020-00495-1
dc.identifier.citedreferenceHo CL, Wu WF. Risk factor analysis of allergic rhinitis in 6-8 year-old children in Taipei. PLoS One. 2021; 16 ( 4 ): e0249572.
dc.identifier.citedreferenceAlm B, Goksor E, Thengilsdottir H, et al. Early protective and risk factors for allergic rhinitis at age 4(1/2) yr. Pediatr Allergy Immunol. 2011; 22 ( 4 ): 398 - 404. https://doi.org/10.1111/j.1399-3038.2011.01153.x
dc.identifier.citedreferenceDunlop J, Matsui E, Sharma HP. Allergic rhinitis: environmental determinants. Immunol Allergy Clin North Am. 2016; 36 ( 2 ): 367 - 377. https://doi.org/10.1016/j.iac.2015.12.012
dc.identifier.citedreferenceSandini U, Kukkonen AK, Poussa T, Sandini L, Savilahti E, Kuitunen M. Protective and risk factors for allergic diseases in high-risk children at the ages of two and five years. Int Arch Allergy Immunol. 2011; 156 ( 3 ): 339 - 348. https://doi.org/10.1159/000323907
dc.identifier.citedreferenceFasce L, Tosca MA, Silvestri M, Olcese R, Pistorio A, Rossi GA. “Early” cat ownership and the risk of sensitization and allergic rhinitis in Ligurian children with respiratory symptoms. Ann Allergy Asthma Immunol. 2005; 94 ( 5 ): 561 - 565. https://doi.org/10.1016/S1081-1206(10)61134-9
dc.identifier.citedreferenceDimich-Ward H, Chow Y, Chung J, Trask C. Contact with livestock–a protective effect against allergies and asthma? Clin Exp Allergy. 2006; 36 ( 9 ): 1122 - 1129. https://doi.org/10.1111/j.1365-2222.2006.02556.x
dc.identifier.citedreferenceMajkowska-Wojciechowska B, Pelka J, Korzon L, et al. Prevalence of allergy, patterns of allergic sensitization and allergy risk factors in rural and urban children. Allergy. 2007; 62 ( 9 ): 1044 - 1050. https://doi.org/10.1111/j.1398-9995.2007.01457.x
dc.identifier.citedreferenceMatheson MC, Dharmage SC, Abramson MJ, et al. Early-life risk factors and incidence of rhinitis: results from the European Community Respiratory Health Study – an international population-based cohort study. J Allergy Clin Immunol. 2011; 128 ( 4 ): 816 - 823.e5. https://doi.org/10.1016/j.jaci.2011.05.039
dc.identifier.citedreferencePerkin MR, Bader T, Rudnicka AR, Strachan DP, Owen CG. Inter-relationship between rhinitis and conjunctivitis in allergic rhinoconjunctivitis and associated risk factors in rural UK children. PLoS One. 2015; 10 ( 11 ): e0143651. https://doi.org/10.1371/journal.pone.0143651
dc.identifier.citedreferenceVargas C, Bustos P, Diaz PV, Amigo H, Rona RJ. Childhood environment and atopic conditions, with emphasis on asthma in a Chilean agricultural area. J Asthma. 2008; 45 ( 1 ): 73 - 78. https://doi.org/10.1080/02770900701752540
dc.identifier.citedreferenceLampi J, Canoy D, Jarvis D, et al. Farming environment and prevalence of atopy at age 31: prospective birth cohort study in Finland. Clin Exp Allergy. 2011; 41 ( 7 ): 987 - 993. https://doi.org/10.1111/j.1365-2222.2011.03777.x
dc.identifier.citedreferencePerzanowski MS, Chew GL, Divjan A, et al. Cat ownership is a risk factor for the development of anti-cat IgE but not current wheeze at age 5 years in an inner-city cohort. J Allergy Clin Immunol. 2008; 121 ( 4 ): 1047 - 1052. https://doi.org/10.1016/j.jaci.2008.02.005
dc.identifier.citedreferenceNafstad P, Magnus P, Gaarder PI, Jaakkola JJ. Exposure to pets and atopy-related diseases in the first 4 years of life. Allergy. 2001; 56 ( 4 ): 307 - 312. https://doi.org/10.1034/j.1398-9995.2001.00881.x
dc.identifier.citedreferenceTamay Z, Akcay A, Ones U, Guler N, Kilic G, Zencir M. Prevalence and risk factors for allergic rhinitis in primary school children. Int J Pediatr Otorhinolaryngol. 2007; 71 ( 3 ): 463 - 471. https://doi.org/10.1016/j.ijporl.2006.11.013
dc.identifier.citedreferenceBatlles-Garrido J, Torres-Borrego J, Rubi-Ruiz T, et al. Prevalence and factors linked to allergic rhinitis in 10 and 11-year-old children in Almeria. Isaac Phase II, Spain. Allergol Immunopathol (Madr). 2010; 38 ( 3 ): 135 - 141. https://doi.org/10.1016/j.aller.2009.09.005
dc.identifier.citedreferenceLombardi E, Simoni M, La Grutta S, et al. Effects of pet exposure in the first year of life on respiratory and allergic symptoms in 7-yr-old children. The SIDRIA-2 study. Pediatr Allergy Immunol. 2010; 21 (2 pt 1): 268 - 276. https://doi.org/10.1111/j.1399-3038.2009.00910.x
dc.identifier.citedreferenceIbargoyen-Roteta N, Aguinaga-Ontoso I, Fernandez-Benitez M, et al. Role of the home environment in rhinoconjunctivitis and eczema in schoolchildren in Pamplona, Spain. J Investig Allergol Clin Immunol. 2007; 17 ( 3 ): 137 - 144.
dc.identifier.citedreferenceKurosaka F, Terada T, Tanaka A, et al. Risk factors for wheezing, eczema and rhinoconjunctivitis in the previous 12 months among six-year-old children in Himeji City, Japan: food allergy, older siblings, day-care attendance and parental allergy history. Allergol Int. 2011; 60 ( 3 ): 317 - 330. https://doi.org/10.2332/allergolint.10-OA-0246
dc.identifier.citedreferenceBrunekreef B, Von Mutius E, Wong G, et al. Exposure to cats and dogs, and symptoms of asthma, rhinoconjunctivitis, and eczema. Epidemiology. 2012; 23 ( 5 ): 742 - 750. https://doi.org/10.1097/EDE.0b013e318261f040
dc.identifier.citedreferenceTamay Z, Akcay A, Ergin A, Guler N. Prevalence of allergic rhinitis and risk factors in 6- to 7-yearold children in Istanbul, Turkey. Turk J Pediatr. 2014; 56 ( 1 ): 31 - 40.
dc.identifier.citedreferenceYang SI, Lee E, Jung YH, et al. Effect of antibiotic use and mold exposure in infancy on allergic rhinitis in susceptible adolescents. Ann Allergy Asthma Immunol. 2014; 113 ( 2 ): 160 - 165.e1. https://doi.org/10.1016/j.anai.2014.05.019
dc.identifier.citedreferenceHesselmar B, Aberg N, Aberg B, Eriksson B, Bjorksten B. Does early exposure to cat or dog protect against later allergy development? Clin Exp Allergy. 1999; 29 ( 5 ): 611 - 617. https://doi.org/10.1046/j.1365-2222.1999.00534.x
dc.identifier.citedreferenceLeynaert B, Neukirch C, Jarvis D, et al. Does living on a farm during childhood protect against asthma, allergic rhinitis, and atopy in adulthood? Am J Respir Crit Care Med. 2001; 164 (10 pt 1): 1829 - 1834. https://doi.org/10.1164/ajrccm.164.10.2103137
dc.identifier.citedreferenceAnyo G, Brunekreef B, de Meer G, Aarts F, Janssen NA, van Vliet P. Early, current and past pet ownership: associations with sensitization, bronchial responsiveness and allergic symptoms in school children. Clin Exp Allergy. 2002; 32 ( 3 ): 361 - 366. https://doi.org/10.1046/j.1365-2222.2002.01254.x
dc.identifier.citedreferenceWaser M, von Mutius E, Riedler J, et al. Exposure to pets, and the association with hay fever, asthma, and atopic sensitization in rural children. Allergy. 2005; 60 ( 2 ): 177 - 184. https://doi.org/10.1111/j.1398-9995.2004.00645.x
dc.identifier.citedreferenceSultesz M, Katona G, Hirschberg A, Galffy G. Prevalence and risk factors for allergic rhinitis in primary schoolchildren in Budapest. Int J Pediatr Otorhinolaryngol. 2010; 74 ( 5 ): 503 - 509. https://doi.org/10.1016/j.ijporl.2010.02.008
dc.identifier.citedreferenceKim WK, Kwon JW, Seo JH, et al. Interaction between IL13 genotype and environmental factors in the risk for allergic rhinitis in Korean children. J Allergy Clin Immunol. 2012; 130 ( 2 ): 421 - 426.e5. https://doi.org/10.1016/j.jaci.2012.04.052
dc.identifier.citedreferenceLam A, Wong GW, Poon CM, Lee SS. A GIS-based assessment of environmental influences on allergy development in children. Asia Pac J Public Health. 2014; 26 ( 6 ): 575 - 587. https://doi.org/10.1177/1010539511428488
dc.identifier.citedreferenceTorfi Y, Bitarafan N, Rajabi M. Impact of socioeconomic and environmental factors on atopic eczema and allergic rhinitis: a cross sectional study. EXCLI J. 2015; 14: 1040 - 1048. https://doi.org/10.17179/excli2015-519
dc.identifier.citedreferenceKellberger J, Dressel H, Vogelberg C, et al. Prediction of the incidence and persistence allergic rhinitis in adolescence: a prospective cohort study. J Allergy Clin Immunol. 2012; 129 ( 2 ): 397 - 402, 402.e1-3. https://doi.org/10.1016/j.jaci.2011.08.016
dc.identifier.citedreferenceLodrup Carlsen KC, Roll S, Carlsen KH, et al. Does pet ownership in infancy lead to asthma or allergy at school age? Pooled analysis of individual participant data from 11 European birth cohorts. PLoS One. 2012; 7 ( 8 ): e43214. https://doi.org/10.1371/journal.pone.0043214
dc.identifier.citedreferenceChen CM, Morgenstern V, Bischof W, et al. Dog ownership and contact during childhood and later allergy development. Eur Respir J. 2008; 31 ( 5 ): 963 - 973. https://doi.org/10.1183/09031936.00092807
dc.identifier.citedreferenceChen CM, Rzehak P, Zutavern A, et al. Longitudinal study on cat allergen exposure and the development of allergy in young children. J Allergy Clin Immunol. 2007; 119 ( 5 ): 1148 - 1155. https://doi.org/10.1016/j.jaci.2007.02.017
dc.identifier.citedreferenceTischer CG, Hohmann C, Thiering E, et al. Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy. 2011; 66 ( 12 ): 1570 - 1579. https://doi.org/10.1111/j.1398-9995.2011.02712.x
dc.identifier.citedreferenceBehbod B, Sordillo JE, Hoffman EB, et al. Asthma and allergy development: contrasting influences of yeasts and other fungal exposures. Clin Exp Allergy. 2015; 45 ( 1 ): 154 - 163. https://doi.org/10.1111/cea.12401
dc.identifier.citedreferenceEllie AS, Sun Y, Hou J, Wang P, Zhang Q, Sundell J. Prevalence of childhood asthma and allergies and their associations with perinatal exposure to home environmental factors: a cross-sectional study in Tianjin, China. Int J Environ Res Public Health. 2021; 18 ( 8 ): 4131. https://doi.org/10.3390/ijerph18084131
dc.identifier.citedreferenceCaillaud D, Leynaert B, Keirsbulck M, Nadif R, Anses Working Group – mould. Indoor mould exposure, asthma and rhinitis: findings from systematic reviews and recent longitudinal studies. Eur Respir Rev. 2018; 27 ( 148 ): 170137. https://doi.org/10.1183/16000617.0137-2017
dc.identifier.citedreferenceNevalainen A, Taubel M, Hyvarinen A. Indoor fungi: companions and contaminants. Indoor Air. 2015; 25 ( 2 ): 125 - 156. https://doi.org/10.1111/ina.12182
dc.identifier.citedreferenceDeng Q, Lu C, Ou C, Chen L, Yuan H. Preconceptional, prenatal and postnatal exposure to outdoor and indoor environmental factors on allergic diseases/symptoms in preschool children. Chemosphere. 2016; 152: 459 - 467. https://doi.org/10.1016/j.chemosphere.2016.03.032
dc.identifier.citedreferenceLin Z, Norback D, Wang T, et al. The first 2-year home environment in relation to the new onset and remission of asthmatic and allergic symptoms in 4246 preschool children. Sci Total Environ. 2016; 553: 204 - 210. https://doi.org/10.1016/j.scitotenv.2016.02.040
dc.identifier.citedreferenceKuyucu S, Saraclar Y, Tuncer A, et al. Epidemiologic characteristics of rhinitis in Turkish children: the International Study of Asthma and Allergies in Childhood (ISAAC) phase 2. Pediatr Allergy Immunol. 2006; 17 ( 4 ): 269 - 277. https://doi.org/10.1111/j.1399-3038.2006.00407.x
dc.identifier.citedreferenceBornehag CG, Sundell J, Hagerhed-Engman L, et al. ’ Dampness’ at home and its association with airway, nose, and skin symptoms among 10,851 preschool children in Sweden: a cross-sectional study. Indoor Air. 2005; 15 (suppl 10 ): 48 - 55. https://doi.org/10.1111/j.1600-0668.2005.00306.x
dc.identifier.citedreferenceThacher JD, Gruzieva O, Pershagen G, et al. Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort. Allergy. 2017; 72 ( 6 ): 967 - 974. https://doi.org/10.1111/all.13102
dc.identifier.citedreferenceBiagini JM, LeMasters GK, Ryan PH, et al. Environmental risk factors of rhinitis in early infancy. Pediatr Allergy Immunol. 2006; 17 ( 4 ): 278 - 84. https://doi.org/10.1111/j.1399-3038.2006.00386.x
dc.identifier.citedreferenceTesta D, DI Bari M, Nunziata M, et al. Allergic rhinitis and asthma assessment of risk factors in pediatric patients: a systematic review. Int J Pediatr Otorhinolaryngol. 2020; 129: 109759. https://doi.org/10.1016/j.ijporl.2019.109759
dc.identifier.citedreferenceHardjojo A, Shek LP, van Bever HP, Lee BW. Rhinitis in children less than 6 years of age: current knowledge and challenges. Asia Pac Allergy. 2011; 1 ( 3 ): 115 - 122. https://doi.org/10.5415/apallergy.2011.1.3.115
dc.identifier.citedreferenceIerodiakonou D, Garcia-Larsen V, Logan A, et al. Timing of allergenic food introduction to the infant diet and risk of allergic or autoimmune disease: a systematic review and meta-analysis. JAMA. 2016; 316 ( 11 ): 1181 - 1192. https://doi.org/10.1001/jama.2016.12623
dc.identifier.citedreferencedu Toit G, Sayre PH, Roberts G, et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J Allergy Clin Immunol. 2018; 141 ( 4 ): 1343 - 1353. https://doi.org/10.1016/j.jaci.2017.09.034
dc.identifier.citedreferenceFong WCG, Chan A, Zhang H, et al. Childhood food allergy and food allergen sensitisation are associated with adult airways disease: a birth cohort study. Pediatr Allergy Immunol. 2021; 32 ( 8 ): 1764 - 1772. https://doi.org/10.1111/pai.13592
dc.identifier.citedreferenceErkkola M, Kaila M, Nwaru BI, et al. Maternal vitamin D intake during pregnancy is inversely associated with asthma and allergic rhinitis in 5-year-old children. Clin Exp Allergy. 2009; 39 ( 6 ): 875 - 82. https://doi.org/10.1111/j.1365-2222.2009.03234.x
dc.identifier.citedreferenceOien T, Schjelvaag A, Storro O, Johnsen R, Simpson MR. Fish Consumption at one year of age reduces the risk of eczema, asthma and wheeze at six years of age. Nutrients. 2019; 11 ( 9 ): 1969. https://doi.org/10.3390/nu11091969
dc.identifier.citedreferenceMarkevych I, Standl M, Lehmann I, von Berg A, Heinrich J. Food diversity during the first year of life and allergic diseases until 15 years. J Allergy Clin Immunol. 2017; 140 ( 6 ): 1751 - 1754.e4. https://doi.org/10.1016/j.jaci.2017.08.011
dc.identifier.citedreferenceMaslova E, Granstrom C, Hansen S, et al. Peanut and tree nut consumption during pregnancy and allergic disease in children-should mothers decrease their intake? Longitudinal evidence from the Danish National Birth Cohort. J Allergy Clin Immunol. 2012; 130 ( 3 ): 724 - 732. https://doi.org/10.1016/j.jaci.2012.05.014
dc.identifier.citedreferenceMaslova E, Strom M, Oken E, et al. Fish intake during pregnancy and the risk of child asthma and allergic rhinitis - longitudinal evidence from the Danish National Birth Cohort. Br J Nutr. 2013; 110 ( 7 ): 1313 - 1325. https://doi.org/10.1017/S000711451300038X
dc.identifier.citedreferenceWillers SM, Wijga AH, Brunekreef B, et al. Maternal food consumption during pregnancy and the longitudinal development of childhood asthma. Am J Respir Crit Care Med. 2008; 178 ( 2 ): 124 - 131. https://doi.org/10.1164/rccm.200710-1544OC
dc.identifier.citedreferenceNwaru BI, Takkinen HM, Kaila M, et al. Food diversity in infancy and the risk of childhood asthma and allergies. J Allergy Clin Immunol. 2014; 133 ( 4 ): 1084 - 1091. https://doi.org/10.1016/j.jaci.2013.12.1069
dc.identifier.citedreferenceRoduit C, Frei R, Depner M, et al. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014; 133 ( 4 ): 1056 - 1064. https://doi.org/10.1016/j.jaci.2013.12.1044
dc.identifier.citedreferenceNwaru BI, Takkinen HM, Niemela O, et al. Timing of infant feeding in relation to childhood asthma and allergic diseases. J Allergy Clin Immunol. 2013; 131 ( 1 ): 78 - 86. https://doi.org/10.1016/j.jaci.2012.10.028
dc.identifier.citedreferenceVirtanen SM, Kaila M, Pekkanen J, et al. Early introduction of oats associated with decreased risk of persistent asthma and early introduction of fish with decreased risk of allergic rhinitis. Br J Nutr. 2010; 103 ( 2 ): 266 - 273. https://doi.org/10.1017/S0007114509991541
dc.identifier.citedreferenceZeiger RS, Heller S. The development and prediction of atopy in high-risk children: follow-up at age seven years in a prospective randomized study of combined maternal and infant food allergen avoidance. J Allergy Clin Immunol. 1995; 95 ( 6 ): 1179 - 1190. https://doi.org/10.1016/s0091-6749(95)70074-9
dc.identifier.citedreferenceLilja G, Dannaeus A, Foucard T, Graff-Lonnevig V, Johansson SG, Oman H. Effects of maternal diet during late pregnancy and lactation on the development of atopic diseases in infants up to 18 months of age – in-vivo results. Clin Exp Allergy. 1989; 19 ( 4 ): 473 - 479. https://doi.org/10.1111/j.1365-2222.1989.tb02416.x
dc.identifier.citedreferenceFalth-Magnusson K, Kjellman NI. Development of atopic disease in babies whose mothers were receiving exclusion diet during pregnancy – a randomized study. J Allergy Clin Immunol. 1987; 80 ( 6 ): 868 - 875. https://doi.org/10.1016/s0091-6749(87)80279-8
dc.identifier.citedreferenceWillers SM, Devereux G, Craig LC, et al. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax. 2007; 62 ( 9 ): 773 - 779. https://doi.org/10.1136/thx.2006.074187
dc.identifier.citedreferenceAlduraywish SA, Lodge CJ, Campbell B, et al. The march from early life food sensitization to allergic disease: a systematic review and meta-analyses of birth cohort studies. Allergy. 2016; 71 ( 1 ): 77 - 89. https://doi.org/10.1111/all.12784
dc.identifier.citedreferenceBrockow I, Zutavern A, Hoffmann U, et al. Early allergic sensitizations and their relevance to atopic diseases in children aged 6 years: results of the GINI study. J Investig Allergol Clin Immunol. 2009; 19 ( 3 ): 180 - 187.
dc.identifier.citedreferenceGarden FL, Simpson JM, Marks GB, Investigators C. Atopy phenotypes in the Childhood Asthma Prevention Study (CAPS) cohort and the relationship with allergic disease: clinical mechanisms in allergic disease. Clin Exp Allergy. 2013; 43 ( 6 ): 633 - 641. https://doi.org/10.1111/cea.12095
dc.identifier.citedreferenceKulig M, Bergmann R, Tacke U, Wahn U, Guggenmoos-Holzmann I. Long-lasting sensitization to food during the first two years precedes allergic airway disease. The MAS Study Group, Germany. Pediatr Allergy Immunol. 1998; 9 ( 2 ): 61 - 67. https://doi.org/10.1111/j.1399-3038.1998.tb00305.x
dc.identifier.citedreferenceChiu CY, Huang YL, Tsai MH, et al. Sensitization to food and inhalant allergens in relation to atopic diseases in early childhood: a birth cohort study. PLoS One. 2014; 9 ( 7 ): e102809. https://doi.org/10.1371/journal.pone.0102809
dc.identifier.citedreferenceKjaer HF, Eller E, Andersen KE, Host A, Bindslev-Jensen C. The association between early sensitization patterns and subsequent allergic disease. The DARC birth cohort study. Pediatr Allergy Immunol. 2009; 20 ( 8 ): 726 - 734. https://doi.org/10.1111/j.1399-3038.2009.00862.x
dc.identifier.citedreferenceZutavern A, Brockow I, Schaaf B, et al. Timing of solid food introduction in relation to eczema, asthma, allergic rhinitis, and food and inhalant sensitization at the age of 6 years: results from the prospective birth cohort study LISA. Pediatrics. 2008; 121 ( 1 ): e44 - e52. https://doi.org/10.1542/peds.2006-3553
dc.identifier.citedreferenceEkelund L, Gloppen I, Oien T, Simpson MR. Duration of breastfeeding, age at introduction of complementary foods and allergy-related diseases: a prospective cohort study. Int Breastfeed J. 2021; 16 ( 1 ): 5. https://doi.org/10.1186/s13006-020-00352-2
dc.identifier.citedreferenceVenter C, Agostoni C, Arshad SH, et al. Dietary factors during pregnancy and atopic outcomes in childhood: a systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr Allergy Immunol. 2020; 31 ( 8 ): 889 - 912. https://doi.org/10.1111/pai.13303
dc.identifier.citedreferenceFleischer DM, Spergel JM, Assa’ad AH, Pongracic JA. Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract. 2013; 1 ( 1 ): 29 - 36. https://doi.org/10.1016/j.jaip.2012.09.003
dc.identifier.citedreferenceGreer FR, Sicherer SH, Burks AW, American Academy of Pediatrics Committee on Nutrition, American Academy of Pediatrics Section on Allergy and Immunology. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics. 2008; 121 ( 1 ): 183 - 191. https://doi.org/10.1542/peds.2007-3022
dc.identifier.citedreferenceDonovan S, Dewey K, Novotny R, et al. Maternal Diet during Pregnancy and Lactation and Risk of Child Food Allergies and Atopic Allergic Diseases: A Systematic Review [Internet]. Alexandria (VA): USDA Nutrition Evidence Systematic Review; 2020 Jul. https://doi.org/10.52570/NESR.DGAC2020.SR0207
dc.identifier.citedreferenceKramer MS, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database Syst Rev. 2012;( 9 ): CD000133. https://doi.org/10.1002/14651858.CD000133.pub3
dc.identifier.citedreferenceAir pollution. Accessed November 18, 2021. https://www.who.int/health-topics/air-pollution
dc.identifier.citedreferenceGorr MW, Falvo MJ, Wold LE. Air pollution and other environmental modulators of cardiac function. Compr Physiol. 2017; 7 ( 4 ): 1479 - 1495. https://doi.org/10.1002/cphy.c170017
dc.identifier.citedreferenceLi J, Sun S, Tang R, et al. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016; 11: 3079 - 3091. https://doi.org/10.2147/COPD.S122282
dc.identifier.citedreferenceCarlsten C, Blomberg A, Pui M, et al. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study. Thorax. 2016; 71 ( 1 ): 35 - 44. https://doi.org/10.1136/thoraxjnl-2015-207399
dc.identifier.citedreferenceHernandez M, Brickey WJ, Alexis NE, et al. Airway cells from atopic asthmatic patients exposed to ozone display an enhanced innate immune gene profile. J Allergy Clin Immunol. 2012; 129 ( 1 ):259-261.e1-2. https://doi.org/10.1016/j.jaci.2011.11.007
dc.identifier.citedreferenceAnderson HR, Ruggles R, Pandey KD, et al. Ambient particulate pollution and the world-wide prevalence of asthma, rhinoconjunctivitis and eczema in children: phase one of the International Study of Asthma and Allergies in Childhood (ISAAC). Occup Environ Med. 2010; 67 ( 5 ): 293 - 300. https://doi.org/10.1136/oem.2009.048785
dc.identifier.citedreferenceChiang TY, Yuan TH, Shie RH, Chen CF, Chan CC. Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution. Environ Int. 2016; 96: 1 - 7. https://doi.org/10.1016/j.envint.2016.08.009
dc.identifier.citedreferenceSingh S, Sharma BB, Salvi S, et al. Allergic rhinitis, rhinoconjunctivitis, and eczema: prevalence and associated factors in children. Clin Respir J. 2018; 12 ( 2 ): 547 - 556. https://doi.org/10.1111/crj.12561
dc.identifier.citedreferenceJung DY, Leem JH, Kim HC, et al. Effect of traffic-related air pollution on allergic disease: results of the children’s health and environmental research. Allergy Asthma Immunol Res. 2015; 7 ( 4 ): 359 - 366. https://doi.org/10.4168/aair.2015.7.4.359
dc.identifier.citedreferenceShirinde J, Wichmann J, Voyi K. Allergic rhinitis, rhinoconjunctivitis and hayfever symptoms among children are associated with frequency of truck traffic near residences: a cross sectional study. Environ Health. 2015; 14: 84. https://doi.org/10.1186/s12940-015-0072-1
dc.identifier.citedreferenceKim BJ, Kwon JW, Seo JH, et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization. Ann Allergy Asthma Immunol. 2011; 107 ( 3 ): 214 - 219.e1. https://doi.org/10.1016/j.anai.2011.05.025
dc.identifier.citedreferenceCodispoti CD, LeMasters GK, Levin L, et al. Traffic pollution is associated with early childhood aeroallergen sensitization. Ann Allergy Asthma Immunol. 2015; 114 ( 2 ): 126 - 133. https://doi.org/10.1016/j.anai.2014.10.020
dc.identifier.citedreferenceGehring U, Wijga AH, Hoek G, et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med. 2015; 3 ( 12 ): 933 - 942. https://doi.org/10.1016/S2213-2600(15)00426-9
dc.identifier.citedreferenceLi S, Wu W, Wang G, et al. Association between exposure to air pollution and risk of allergic rhinitis: a systematic review and meta-analysis. Environ Res. 2022; 205: 112472. https://doi.org/10.1016/j.envres.2021.112472
dc.identifier.citedreferenceBurte E, Leynaert B, Marcon A, et al. Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J Allergy Clin Immunol. 2020; 145 ( 3 ): 834 - 842.e6. https://doi.org/10.1016/j.jaci.2019.11.040
dc.identifier.citedreferenceTeng B, Zhang X, Yi C, et al. The association between ambient air pollution and allergic rhinitis: further epidemiological evidence from Changchun, Northeastern China. Int J Environ Res Public Health. 2017; 14 ( 3 ): 226. https://doi.org/10.3390/ijerph14030226
dc.identifier.citedreferenceTo T, Zhu J, Stieb D, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J. 2020; 55 ( 2 ): 1900913. https://doi.org/10.1183/13993003.00913-2019
dc.identifier.citedreferenceZou QY, Shen Y, Ke X, Hong SL, Kang HY. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: a meta-analysis. Int J Pediatr Otorhinolaryngol. 2018; 112: 82 - 90. https://doi.org/10.1016/j.ijporl.2018.06.039
dc.identifier.citedreferenceLin L, Li T, Sun M, et al. Effect of particulate matter exposure on the prevalence of allergic rhinitis in children: a systematic review and meta-analysis. Chemosphere. 2021; 268: 128841. https://doi.org/10.1016/j.chemosphere.2020.128841
dc.identifier.citedreferenceCiprandi G, Silvestri M, Pistorio A, Tosca MA, Cirillo I. Clustering analysis in outpatients with allergic rhinitis in clinical practice. Allergy. 2019; 74 ( 3 ): 607 - 610. https://doi.org/10.1111/all.13645
dc.identifier.citedreferenceHao S, Yuan F, Pang P, Yang B, Jiang X, Yan A. Early childhood traffic-related air pollution and risk of allergic rhinitis at 2-4 years of age modification by family stress and male gender: a case-control study in Shenyang, China. Environ Health Prev Med. 2021; 26 ( 1 ): 48. https://doi.org/10.1186/s12199-021-00969-7
dc.identifier.citedreferenceMookherjee N, Piyadasa H, Ryu MH, et al. Inhaled diesel exhaust alters the allergen-induced bronchial secretome in humans. Eur Respir J. 2018; 51 ( 1 ): 1701385. https://doi.org/10.1183/13993003.01385-2017
dc.identifier.citedreferenceClifford RL, Jones MJ, MacIsaac JL, et al. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol. 2017; 139 ( 1 ): 112 - 121. https://doi.org/10.1016/j.jaci.2016.03.046
dc.identifier.citedreferenceWooding DJ, Ryu MH, Huls A, et al. Particle depletion does not remediate acute effects of traffic-related air pollution and allergen. A randomized, double-blind crossover study. Am J Respir Crit Care Med. 2019; 200 ( 5 ): 565 - 574. https://doi.org/10.1164/rccm.201809-1657OC
dc.identifier.citedreferenceEllis AK, Murrieta-Aguttes M, Furey S, Picard P, Carlsten C. Effect of fexofenadine hydrochloride on allergic rhinitis aggravated by air pollutants. ERJ Open Res. 2021; 7 ( 2 ): 00806 - 2020. https://doi.org/10.1183/23120541.00806-2020
dc.identifier.citedreferenceBousquet J, Anto JM, Annesi-Maesano I, et al. POLLAR: Impact of air POLLution on Asthma and Rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project. Clin Transl Allergy. 2018; 8: 36. https://doi.org/10.1186/s13601-018-0221-z
dc.identifier.citedreferenceNaclerio R, Ansotegui IJ, Bousquet J, et al. International expert consensus on the management of allergic rhinitis (AR) aggravated by air pollutants: impact of air pollution on patients with AR: current knowledge and future strategies. World Allergy Organ J. 2020; 13 ( 3 ): 100106. https://doi.org/10.1016/j.waojou.2020.100106
dc.identifier.citedreferenceChung HY, Hsieh CJ, Tseng CC, Yiin LM. Association between the first occurrence of allergic rhinitis in preschool children and air pollution in Taiwan. Int J Environ Res Public Health. 2016; 13 ( 3 ): 268. https://doi.org/10.3390/ijerph13030268
dc.identifier.citedreferenceLiu W, Huang C, Hu Y, et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: a retrospective cohort study. Environ Int. 2016; 92-93: 284 - 293. https://doi.org/10.1016/j.envint.2016.04.019
dc.identifier.citedreferenceWang IJ, Tung TH, Tang CS, Zhao ZH. Allergens, air pollutants, and childhood allergic diseases. Int J Hyg Environ Health. 2016; 219 ( 1 ): 66 - 71. https://doi.org/10.1016/j.ijheh.2015.09.001
dc.identifier.citedreferenceKim HH, Lee CS, Yu SD, et al. Near-road exposure and impact of air pollution on allergic diseases in elementary school children: a cross-sectional study. Yonsei Med J. 2016; 57 ( 3 ): 698 - 713. https://doi.org/10.3349/ymj.2016.57.3.698
dc.identifier.citedreferenceHur K, Liang J, Lin SY. The role of secondhand smoke in sinusitis: a systematic review. Int Forum Allergy Rhinol. 2014; 4 ( 1 ): 22 - 28. https://doi.org/10.1002/alr.21232
dc.identifier.citedreferenceSaulyte J, Regueira C, Montes-Martinez A, Khudyakov P, Takkouche B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med. 2014; 11 ( 3 ): e1001611. https://doi.org/10.1371/journal.pmed.1001611
dc.identifier.citedreferenceKeil T, Lau S, Roll S, et al. Maternal smoking increases risk of allergic sensitization and wheezing only in children with allergic predisposition: longitudinal analysis from birth to 10 years. Allergy. 2009; 64 ( 3 ): 445 - 451. https://doi.org/10.1111/j.1398-9995.2008.01867.x
dc.identifier.citedreferenceLin SY, Reh DD, Clipp S, Irani L, Navas-Acien A. Allergic rhinitis and secondhand tobacco smoke: a population-based study. Am J Rhinol Allergy. 2011; 25 ( 2 ): e66 - e71. https://doi.org/10.2500/ajra.2011.25.3580
dc.identifier.citedreferenceBendtsen P, Gronbaek M, Kjaer SK, Munk C, Linneberg A, Tolstrup JS. Alcohol consumption and the risk of self-reported perennial and seasonal allergic rhinitis in young adult women in a population-based cohort study. Clin Exp Allergy. 2008; 38 ( 7 ): 1179 - 1185. https://doi.org/10.1111/j.1365-2222.2008.02945.x
dc.identifier.citedreferenceGangl K, Reininger R, Bernhard D, et al. Cigarette smoke facilitates allergen penetration across respiratory epithelium. Allergy. 2009; 64 ( 3 ): 398 - 405. https://doi.org/10.1111/j.1398-9995.2008.01861.x
dc.identifier.citedreferenceUeha R, Ueha S, Kondo K, Nishijima H, Yamasoba T. Effects of cigarette smoke on the nasal respiratory and olfactory mucosa in allergic rhinitis mice. Front Neurosci. 2020; 14: 126. https://doi.org/10.3389/fnins.2020.00126
dc.identifier.citedreferenceMishra NC, Rir-Sima-Ah J, Langley RJ, et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J Immunol. 2008; 180 ( 11 ): 7655 - 7663. https://doi.org/10.4049/jimmunol.180.11.7655
dc.identifier.citedreferenceSkaaby T, Taylor AE, Jacobsen RK, et al. Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium. Sci Rep. 2017; 7 ( 1 ): 2224. https://doi.org/10.1038/s41598-017-01977-w
dc.identifier.citedreferenceZhou Y, Chen J, Dong Y, et al. Maternal tobacco exposure during pregnancy and allergic rhinitis in offspring: a systematic review and meta-analysis. Medicine (Baltimore). 2021; 100 ( 34 ): e26986. https://doi.org/10.1097/MD.0000000000026986
dc.identifier.citedreferenceThacher JD, Gehring U, Gruzieva O, et al. Maternal smoking during pregnancy and early childhood and development of asthma and rhinoconjunctivitis – a MeDALL Project. Environ Health Perspect. 2018; 126 ( 4 ): 047005. https://doi.org/10.1289/EHP2738
dc.identifier.citedreferenceChung SJ, Kim BK, Oh JH, et al. Novel tobacco products including electronic cigarette and heated tobacco products increase risk of allergic rhinitis and asthma in adolescents: analysis of Korean youth survey. Allergy. 2020; 75 ( 7 ): 1640 - 1648. https://doi.org/10.1111/all.14212
dc.identifier.citedreferenceWaite KJ. Blackley and the development of hay fever as a disease of civilization in the nineteenth century. Med Hist. 1995; 39 ( 2 ): 186 - 196. https://doi.org/10.1017/s0025727300059834
dc.identifier.citedreferenceStrachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax. 2000; 55 (suppl 1 ): S2 - S10. https://doi.org/10.1136/thorax.55.suppl_1.s2
dc.identifier.citedreferenceWee JH, Park MW, Min C, Park IS, Park B, Choi HG. The association between high hygiene scores and allergic rhinitis in Korean adolescents. Int Forum Allergy Rhinol. 2020; 10 ( 8 ): 1024 - 1030. https://doi.org/10.1002/alr.22569
dc.identifier.citedreferenceChen JT, Krieger N, Van Den Eeden SK, Quesenberry CP. Different slopes for different folks: socioeconomic and racial/ethnic disparities in asthma and hay fever among 173,859 U.S. men and women. Environ Health Perspect. 2002; 110 (Suppl 2 ): 211 - 216. https://doi.org/10.1289/ehp.02110s2211
dc.identifier.citedreferenceLi F, Zhou Y, Li S, et al. Prevalence and risk factors of childhood allergic diseases in eight metropolitan cities in China: a multicenter study. BMC Public Health. 2011; 11: 437. https://doi.org/10.1186/1471-2458-11-437
dc.identifier.citedreferenceHammer-Helmich L, Linneberg A, Thomsen SF, Glumer C. Association between parental socioeconomic position and prevalence of asthma, atopic eczema and hay fever in children. Scand J Public Health. 2014; 42 ( 2 ): 120 - 127. https://doi.org/10.1177/1403494813505727
dc.identifier.citedreferenceMercer MJ, Joubert G, Ehrlich RI, et al. Socioeconomic status and prevalence of allergic rhinitis and atopic eczema symptoms in young adolescents. Pediatr Allergy Immunol. 2004; 15 ( 3 ): 234 - 241. https://doi.org/10.1111/j.1399-3038.2004.00125.x
dc.identifier.citedreferenceTalay F, Kurt B, Tug T, Kurt OK, Goksugur N, Yasar Z. The prevalence of asthma and allergic diseases among adults 30-49 years of age in Bolu, Western Black Sea Region of Turkey. Clin Ter. 2014; 165 ( 1 ): e59 - e63. https://doi.org/10.7471/CT.2014.1673
dc.identifier.citedreferenceLewis SA, Weiss ST, Platts-Mills TA, Syring M, Gold DR. Association of specific allergen sensitization with socioeconomic factors and allergic disease in a population of Boston women. J Allergy Clin Immunol. 2001; 107 ( 4 ): 615 - 622. https://doi.org/10.1067/mai.2001.113523
dc.identifier.citedreferenceAlmqvist C, Pershagen G, Wickman M. Low socioeconomic status as a risk factor for asthma, rhinitis and sensitization at 4 years in a birth cohort. Clin Exp Allergy. 2005; 35 ( 5 ): 612 - 618. https://doi.org/10.1111/j.1365-2222.2005.02243.x
dc.identifier.citedreferenceLee KS, Rha YH, Oh IH, Choi YS, Choi SH. Socioeconomic and sociodemographic factors related to allergic diseases in Korean adolescents based on the Seventh Korea Youth Risk Behavior Web-based Survey: a cross-sectional study. BMC Pediatr. 2016; 16: 19. https://doi.org/10.1186/s12887-016-0549-2
dc.identifier.citedreferenceBraback L, Hjern A, Rasmussen F. Social class in asthma and allergic rhinitis: a national cohort study over three decades. Eur Respir J. 2005; 26 ( 6 ): 1064 - 1068. https://doi.org/10.1183/09031936.05.00022105
dc.identifier.citedreferencePenaranda A, Garcia E, Barragan AM, et al. Factors associated with allergic rhinitis in Colombian subpopulations aged 1 to 17 and 18 to 59. Rhinology. 2016; 54 ( 1 ): 56 - 67. https://doi.org/10.4193/Rhino14.234
dc.identifier.citedreferenceBergmann RL, Edenharter G, Bergmann KE, Lau S, Wahn U. Socioeconomic status is a risk factor for allergy in parents but not in their children. Clin Exp Allergy. 2000; 30 ( 12 ): 1740 - 1745. https://doi.org/10.1046/j.1365-2222.2000.00927.x
dc.identifier.citedreferenceLewis SA, Britton JR. Consistent effects of high socioeconomic status and low birth order, and the modifying effect of maternal smoking on the risk of allergic disease during childhood. Respir Med. 1998; 92 ( 10 ): 1237 - 1244. https://doi.org/10.1016/s0954-6111(98)90427-9
dc.identifier.citedreferenceGoh DY, Chew FT, Quek SC, Lee BW. Prevalence and severity of asthma, rhinitis, and eczema in Singapore schoolchildren. Arch Dis Child. 1996; 74 ( 2 ): 131 - 135. https://doi.org/10.1136/adc.74.2.131
dc.identifier.citedreferenceBion V, Lockett GA, Soto-Ramirez N, et al. Evaluating the efficacy of breastfeeding guidelines on long-term outcomes for allergic disease. Allergy. 2016; 71 ( 5 ): 661 - 670. https://doi.org/10.1111/all.12833
dc.identifier.citedreferenceMuraro A, Halken S, Arshad SH, et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy. 2014; 69 ( 5 ): 590 - 601. https://doi.org/10.1111/all.12398
dc.identifier.citedreferenceHoppu U, Kalliomaki M, Laiho K, Isolauri E. Breast milk – immunomodulatory signals against allergic diseases. Allergy. 2001; 56 (suppl 67 ): 23 - 26. https://doi.org/10.1034/j.1398-9995.2001.00908.x
dc.identifier.citedreferenceFriedman NJ, Zeiger RS. The role of breast-feeding in the development of allergies and asthma. J Allergy Clin Immunol. 2005; 115 ( 6 ): 1238 - 1248. https://doi.org/10.1016/j.jaci.2005.01.069
dc.identifier.citedreferenceHoang MP, Samuthpongtorn J, Seresirikachorn K, Snidvongs K. Prolonged breastfeeding and protective effects against the development of allergic rhinitis: a systematic review and meta-analysis. Rhinology. 2022; 60 ( 2 ): 82 - 91. https://doi.org/10.4193/Rhin21.274
dc.identifier.citedreferenceGungor D, Nadaud P, LaPergola CC, et al. Infant milk-feeding practices and food allergies, allergic rhinitis, atopic dermatitis, and asthma throughout the life span: a systematic review. Am J Clin Nutr. 2019; 109 (suppl_ 7 ): 772S - 799S. https://doi.org/10.1093/ajcn/nqy283
dc.identifier.citedreferenceCodispoti CD, Levin L, LeMasters GK, et al. Breast-feeding, aeroallergen sensitization, and environmental exposures during infancy are determinants of childhood allergic rhinitis. J Allergy Clin Immunol. 2010; 125 ( 5 ): 1054 - 1060.e1. https://doi.org/10.1016/j.jaci.2010.02.004
dc.identifier.citedreferenceHuang C, Liu W, Cai J, et al. Breastfeeding and timing of first dietary introduction in relation to childhood asthma, allergies, and airway diseases: a cross-sectional study. J Asthma. 2017; 54 ( 5 ): 488 - 497. https://doi.org/10.1080/02770903.2016.1231203
dc.identifier.citedreferenceHan DH, Shin JM, An S, et al. Long-term breastfeeding in the prevention of allergic rhinitis: Allergic Rhinitis Cohort Study for Kids (ARCO-Kids Study). Clin Exp Otorhinolaryngol. 2019; 12 ( 3 ): 301 - 307. https://doi.org/10.21053/ceo.2018.01781
dc.identifier.citedreferenceEk WE, Karlsson T, Hernandes CA, Rask-Andersen M, Johansson A. Breast-feeding and risk of asthma, hay fever, and eczema. J Allergy Clin Immunol. 2018; 141 ( 3 ): 1157 - 1159.e9. https://doi.org/10.1016/j.jaci.2017.10.022
dc.identifier.citedreferenceHeinrich J. Modulation of allergy risk by breast feeding. Curr Opin Clin Nutr Metab Care. 2017; 20 ( 3 ): 217 - 221. https://doi.org/10.1097/MCO.0000000000000366
dc.identifier.citedreferenceNuzzi G, Di Cicco ME, Peroni DG. Breastfeeding and allergic diseases: what’s new? Children (Basel). 2021; 8 ( 5 ): 330. https://doi.org/10.3390/children8050330
dc.identifier.citedreferenceLodge CJ, Tan DJ, Lau MX, et al. Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatr. 2015; 104 ( 467 ): 38 - 53. https://doi.org/10.1111/apa.13132
dc.identifier.citedreferenceBrozek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010; 126 ( 3 ): 466 - 476. https://doi.org/10.1016/j.jaci.2010.06.047
dc.identifier.citedreferenceSeidman MD, Gurgel RK, Lin SY, et al. Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg. 2015; 152 ( 1 suppl): S1 - S43. https://doi.org/10.1177/0194599814561600
dc.identifier.citedreferenceLodge CJ, Lowe AJ, Gurrin LC, et al. Pets at birth do not increase allergic disease in at-risk children. Clin Exp Allergy. 2012; 42 ( 9 ): 1377 - 1385. https://doi.org/10.1111/j.1365-2222.2012.04032.x
dc.identifier.citedreferenceTakkouche B, Gonzalez-Barcala FJ, Etminan M, Fitzgerald M. Exposure to furry pets and the risk of asthma and allergic rhinitis: a meta-analysis. Allergy. 2008; 63 ( 7 ): 857 - 864. https://doi.org/10.1111/j.1398-9995.2008.01732.x
dc.identifier.citedreferenceLodge CJ, Allen KJ, Lowe AJ, et al. Perinatal cat and dog exposure and the risk of asthma and allergy in the urban environment: a systematic review of longitudinal studies. Clin Dev Immunol. 2012; 2012: 176484. https://doi.org/10.1155/2012/176484
dc.identifier.citedreferenceLuo S, Sun Y, Hou J, et al. Pet keeping in childhood and asthma and allergy among children in Tianjin area, China. PLoS One. 2018; 13 ( 5 ): e0197274. https://doi.org/10.1371/journal.pone.0197274
dc.identifier.citedreferenceChen CM, Heinrich J. Re: exposure to furry pets and the risk of asthma and allergic rhinitis: a meta-analysis. Allergy. 2009; 64 ( 3 ): 494 - 495. https://doi.org/10.1111/j.1398-9995.2008.01930.x
dc.identifier.citedreferenceHolt PG, Sly PD. Non-atopic intrinsic asthma and the ‘family tree’ of chronic respiratory disease syndromes. Clin Exp Allergy. 2009; 39 ( 6 ): 807 - 811. https://doi.org/10.1111/j.1365-2222.2009.03258.x
dc.identifier.citedreferenceDharmage SC, Lodge CL, Matheson MC, Campbell B, Lowe AJ. Exposure to cats: update on risks for sensitization and allergic diseases. Curr Allergy Asthma Rep. 2012; 12 ( 5 ): 413 - 423. https://doi.org/10.1007/s11882-012-0288-x
dc.identifier.citedreferenceStrachan DP. Hay fever, hygiene, and household size. BMJ. 1989; 299 ( 6710 ): 1259 - 1260. https://doi.org/10.1136/bmj.299.6710.1259
dc.identifier.citedreferencevon Hertzen L, Hanski I, Haahtela T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 2011; 12 ( 11 ): 1089 - 1093. https://doi.org/10.1038/embor.2011.195
dc.identifier.citedreferenceKarmaus W, Botezan C. Does a higher number of siblings protect against the development of allergy and asthma? A review. J Epidemiol Community Health. 2002; 56 ( 3 ): 209 - 217. https://doi.org/10.1136/jech.56.3.209
dc.identifier.citedreferenceStrachan DP, Ait-Khaled N, Foliaki S, et al. Siblings, asthma, rhinoconjunctivitis and eczema: a worldwide perspective from the International Study of Asthma and Allergies in Childhood. Clin Exp Allergy. 2015; 45 ( 1 ): 126 - 136. https://doi.org/10.1111/cea.12349
dc.identifier.citedreferenceCampbell BE, Lodge CJ, Lowe AJ, Burgess JA, Matheson MC, Dharmage SC. Exposure to ‘farming’ and objective markers of atopy: a systematic review and meta-analysis. Clin Exp Allergy. 2015; 45 ( 4 ): 744 - 757. https://doi.org/10.1111/cea.12429
dc.identifier.citedreferenceHouse JS, Wyss AB, Hoppin JA, et al. Early-life farm exposures and adult asthma and atopy in the Agricultural Lung Health Study. J Allergy Clin Immunol. 2017; 140 ( 1 ): 249 - 256.e14. https://doi.org/10.1016/j.jaci.2016.09.036
dc.identifier.citedreferenceRiedler J, Eder W, Oberfeld G, Schreuer M. Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy. 2000; 30 ( 2 ): 194 - 200. https://doi.org/10.1046/j.1365-2222.2000.00799.x
dc.identifier.citedreferenceVon Ehrenstein OS, Von Mutius E, Illi S, Baumann L, Bohm O, von Kries R. Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy. 2000; 30 ( 2 ): 187 - 193. https://doi.org/10.1046/j.1365-2222.2000.00801.x
dc.identifier.citedreferenceKim DK, Han DH. Impact of allergic rhinitis on quality of life after adenotonsillectomy for pediatric sleep-disordered breathing. Int Forum Allergy Rhinol. 2015; 5 ( 8 ): 741 - 746. https://doi.org/10.1002/alr.21529
dc.identifier.citedreferenceRiedler J, Braun-Fahrlander C, Eder W, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001; 358 ( 9288 ): 1129 - 1133. https://doi.org/10.1016/S0140-6736(01)06252-3
dc.identifier.citedreferenceBarnes M, Cullinan P, Athanasaki P, et al. Crete: does farming explain urban and rural differences in atopy? Clin Exp Allergy. 2001; 31 ( 12 ): 1822 - 1828. https://doi.org/10.1046/j.1365-2222.2001.01240.x
dc.identifier.citedreferenceDowns SH, Marks GB, Mitakakis TZ, Leuppi JD, Car NG, Peat JK. Having lived on a farm and protection against allergic diseases in Australia. Clin Exp Allergy. 2001; 31 ( 4 ): 570 - 575. https://doi.org/10.1046/j.1365-2222.2001.01070.x
dc.identifier.citedreferenceWickens K, Lane JM, Fitzharris P, et al. Farm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy. 2002; 57 ( 12 ): 1171 - 1179. https://doi.org/10.1034/j.1398-9995.2002.t01-1-23644.x
dc.identifier.citedreferenceRemes ST, Pekkanen J, Soininen L, Kajosaari M, Husman T, Koivikko A. Does heredity modify the association between farming and allergy in children? Acta Paediatr. 2002; 91 ( 11 ): 1163 - 1169. https://doi.org/10.1111/j.1651-2227.2002.tb00122.x
dc.identifier.citedreferenceRemes ST, Iivanainen K, Koskela H, Pekkanen J. Which factors explain the lower prevalence of atopy amongst farmers’ children? Clin Exp Allergy. 2003; 33 ( 4 ): 427 - 434. https://doi.org/10.1046/j.1365-2222.2003.01566.x
dc.identifier.citedreferenceMartinez FD, Holt PG. Role of microbial burden in aetiology of allergy and asthma. Lancet. 1999; 354 (suppl 2 ): SII12 - SII15. https://doi.org/10.1016/s0140-6736(99)90437-3
dc.identifier.citedreferenceSimpson A, Martinez FD. The role of lipopolysaccharide in the development of atopy in humans. Clin Exp Allergy. 2010; 40 ( 2 ): 209 - 223. https://doi.org/10.1111/j.1365-2222.2009.03391.x
dc.identifier.citedreferenceTischer C, Gehring U, Chen CM, et al. Respiratory health in children, and indoor exposure to (1,3)-beta-D-glucan, EPS mould components and endotoxin. Eur Respir J. 2011; 37 ( 5 ): 1050 - 1059. https://doi.org/10.1183/09031936.00091210
dc.identifier.citedreferenceArrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015; 7 ( 307 ): 307ra152. https://doi.org/10.1126/scitranslmed.aab2271
dc.identifier.citedreferenceHanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A. 2012; 109 ( 21 ): 8334 - 8339. https://doi.org/10.1073/pnas.1205624109
dc.identifier.citedreferenceFyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol. 2014; 134 ( 6 ): 1301 - 1309. e11. https://doi.org/10.1016/j.jaci.2014.07.059
dc.identifier.citedreferenceStsepetova J, Sepp E, Julge K, Vaughan E, Mikelsaar M, de Vos WM. Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol Med Microbiol. 2007; 51 ( 2 ): 260 - 269. https://doi.org/10.1111/j.1574-695X.2007.00306.x
dc.identifier.citedreferenceCuello-Garcia CA, Brozek JL, Fiocchi A, et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2015; 136 ( 4 ): 952 - 961. https://doi.org/10.1016/j.jaci.2015.04.031
dc.identifier.citedreferenceHolster IL, Vila AM, Caudri D, et al. The impact of Helicobacter pylori on atopic disorders in childhood. Helicobacter. 2012; 17 ( 3 ): 232 - 237. https://doi.org/10.1111/j.1523-5378.2012.00934.x
dc.identifier.citedreferenceAkiner U, Yener HM, Gozen ED, Kuzu SB, Canakcioglu S. Helicobacter pylori in allergic and non-allergic rhinitis does play a protective or causative role? Eur Arch Otorhinolaryngol. 2020; 277 ( 1 ): 141 - 145. https://doi.org/10.1007/s00405-019-05659-3
dc.identifier.citedreferenceLionetti E, Leonardi S, Lanzafame A, et al. Helicobacter pylori infection and atopic diseases: is there a relationship? A systematic review and meta-analysis. World J Gastroenterol. 2014; 20 ( 46 ): 17635 - 17647. https://doi.org/10.3748/wjg.v20.i46.17635
dc.identifier.citedreferenceRuokolainen L, Paalanen L, Karkman A, et al. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin Exp Allergy. 2017; 47 ( 5 ): 665 - 674. https://doi.org/10.1111/cea.12895
dc.identifier.citedreferenceValkonen M, Wouters IM, Taubel M, et al. Bacterial exposures and associations with atopy and asthma in children. PLoS One. 2015; 10 ( 6 ): e0131594. https://doi.org/10.1371/journal.pone.0131594
dc.identifier.citedreferenceEge MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011; 364 ( 8 ): 701 - 709. https://doi.org/10.1056/NEJMoa1007302
dc.identifier.citedreferencevon Hertzen L, Laatikainen T, Pitkanen T, et al. Microbial content of drinking water in Finnish and Russian Karelia – implications for atopy prevalence. Allergy. 2007; 62 ( 3 ): 288 - 292. https://doi.org/10.1111/j.1398-9995.2006.01281.x
dc.identifier.citedreferenceChen R, Zheng D, Zhang Y, Sima G. Efficacy and safety of twice-daily olopatadine-mometasone combination nasal spray (GSP301) in the treatment of allergic rhinitis: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2022; 279 ( 4 ): 1691 - 1699. https://doi.org/10.1007/s00405-021-07085-w
dc.identifier.citedreferenceZhang K, Li AR, Miglani A, Nguyen SA, Schlosser RJ. Effect of medical therapy in allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2022; 36 ( 2 ): 269 - 280. https://doi.org/10.1177/19458924211041438
dc.identifier.citedreferenceLi AR, Zhang K, Reddy PD, et al. Systematic review of measures of disease severity in rhinitis. Int Forum Allergy Rhinol. 2021; 11 ( 9 ): 1367 - 1377. https://doi.org/10.1002/alr.22794
dc.identifier.citedreferenceCalderon MA, Casale TB, Demoly P. Validation of Patient-reported outcomes for clinical trials in allergic rhinitis: a systematic review. J Allergy Clin Immunol Pract. 2019; 7 ( 5 ): 1450 - 1461.e6. https://doi.org/10.1016/j.jaip.2019.01.015
dc.identifier.citedreferenceLinneberg A, Dam Petersen K, Hahn-Pedersen J, Hammerby E, Serup-Hansen N, Boxall N. Burden of allergic respiratory disease: a systematic review. Clin Mol Allergy. 2016; 14: 12. https://doi.org/10.1186/s12948-016-0049-9
dc.identifier.citedreferenceHahn-Pedersen J, Boxall N, Maier W, Linneberg A, Serup-Hansen N. Systematic literature review assessing data on the burden of allergic rhinitis from a cost and quality of life perspective. Value Health. 2014; 17 ( 7 ): A602. https://doi.org/10.1016/j.jval.2014.08.2087
dc.identifier.citedreferenceJuniper EF, Guyatt GH. Development and testing of a new measure of health status for clinical trials in rhinoconjunctivitis. Clin Exp Allergy. 1991; 21 ( 1 ): 77 - 83. https://doi.org/10.1111/j.1365-2222.1991.tb00807.x
dc.identifier.citedreferenceMcHorney CA, Ware JE, Jr., Lu JF, Sherbourne CD. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care. 1994; 32 ( 1 ): 40 - 66. https://doi.org/10.1097/00005650-199401000-00004
dc.identifier.citedreferenceWare J, Jr., Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996; 34 ( 3 ): 220 - 233. https://doi.org/10.1097/00005650-199603000-00003
dc.identifier.citedreferenceHusain Q, Hoehle L, Phillips K, Caradonna DS, Gray ST, Sedaghat AR. The 22-Item Sinonasal Outcome Test as a tool for the assessment of quality of life and symptom control in allergic rhinitis. Am J Rhinol Allergy. 2020; 34 ( 2 ): 209 - 216. https://doi.org/10.1177/1945892419884789
dc.identifier.citedreferencePassali FM, Passali GC, Passali D, Ciprandi G. Smell impairment in patients with allergic rhinitis. Int Forum Allergy Rhinol. 2021; 11 ( 6 ): 1031 - 1032. https://doi.org/10.1002/alr.22786
dc.identifier.citedreferenceYamada T, Yamamoto H, Kubo S, et al. Efficacy of mometasone furoate nasal spray for nasal symptoms, quality of life, rhinitis-disturbed sleep, and nasal nitric oxide in patients with perennial allergic rhinitis. Allergy Asthma Proc. 2012; 33 ( 2 ): e9 - e16. https://doi.org/10.2500/aap.2012.33.3509
dc.identifier.citedreferenceBousquet J, Zuberbier T, Canonica GW, Fokkens WJ, Gopalan G, Shekar T. Randomized controlled trial of desloratadine for persistent allergic rhinitis: correlations between symptom improvement and quality of life. Allergy Asthma Proc. 2013; 34 ( 3 ): 274 - 282. https://doi.org/10.2500/aap.2013.34.3668
dc.identifier.citedreferenceHolmberg K, Tonnel AB, Dreyfus I, et al. Desloratadine relieves nasal congestion and improves quality-of-life in persistent allergic rhinitis. Allergy. 2009; 64 ( 11 ): 1663 - 1670. https://doi.org/10.1111/j.1398-9995.2009.02096.x
dc.identifier.citedreferenceWalter Canonica G, Bousquet J, Van Hammee G, et al. Levocetirizine improves health-related quality of life and health status in persistent allergic rhinitis. Respir Med. 2006; 100 ( 10 ): 1706 - 1715. https://doi.org/10.1016/j.rmed.2006.03.039
dc.identifier.citedreferenceBachert C, Bousquet J, Canonica GW, et al. Levocetirizine improves quality of life and reduces costs in long-term management of persistent allergic rhinitis. J Allergy Clin Immunol. 2004; 114 ( 4 ): 838 - 844. https://doi.org/10.1016/j.jaci.2004.05.070
dc.identifier.citedreferencePedregal-Mallo D, Pacheco E, Rodrigo JP, Llorente JL, Alvarez-Marcos C. Impact of immunotherapy on quality of life in patients with house dust mite allergic rhinitis. Allergy. 2020; 75 ( 7 ): 1783 - 1785. https://doi.org/10.1111/all.14215
dc.identifier.citedreferenceHoiby AS, Strand V, Robinson DS, Sager A, Rak S. Efficacy, safety, and immunological effects of a 2-year immunotherapy with Depigoid birch pollen extract: a randomized, double-blind, placebo-controlled study. Clin Exp Allergy. 2010; 40 ( 7 ): 1062 - 1070. https://doi.org/10.1111/j.1365-2222.2010.03521.x
dc.identifier.citedreferenceDi Rienzo V, Pucci S, D’Alo S, et al. Effects of high-dose sublingual immunotherapy on quality of life in patients with cypress-induced rhinitis: a placebo-controlled study. Clin Exp Allergy Reviews. 2006; 6 ( 3 ): 67 - 70.
dc.identifier.citedreferenceColas C, Monzon S, Venturini M, Lezaun A. Double-blind, placebo-controlled study with a modified therapeutic vaccine of Salsola kali (Russian thistle) administered through use of a cluster schedule. J Allergy Clin Immunol. 2006; 117 ( 4 ): 810 - 816. https://doi.org/10.1016/j.jaci.2005.11.039
dc.identifier.citedreferenceJuel-Berg N, Darling P, Bolvig J, et al. Intranasal corticosteroids compared with oral antihistamines in allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2017; 31 ( 1 ): 19 - 28. https://doi.org/10.2500/ajra.2016.30.4397
dc.identifier.citedreferenceTatar EC, Surenoglu UA, Ozdek A, Saylam G, Korkmaz H. The effect of combined medical treatment on quality of life in persistent allergic rhinitis. Indian J Otolaryngol Head Neck Surg. 2013; 65 (suppl 2 ): 333 - 337. https://doi.org/10.1007/s12070-012-0486-9
dc.identifier.citedreferenceFasola S, Montalbano L, Ferrante G, et al. RAPP-children: a new tool for assessing quality of life in patients with asthma and rhinitis. Clin Exp Allergy. 2020; 50 ( 6 ): 662 - 671. https://doi.org/10.1111/cea.13599
dc.identifier.citedreferenceBosnic-Anticevich S, Smith P, Abramson M, et al. Impact of allergic rhinitis on the day-to-day lives of children: insights from an Australian cross-sectional study. BMJ Open. 2020; 10 ( 11 ): e038870. https://doi.org/10.1136/bmjopen-2020-038870
dc.identifier.citedreferenceHwang TY, Kim SK, Kim SH, Kim M. A cross sectional survey on health-related quality of life among parents of children with allergic symptoms using the EQ-5D-5L. J Asthma. 2019; 56 ( 11 ): 1239 - 1245. https://doi.org/10.1080/02770903.2019.1571086
dc.identifier.citedreferenceValls-Mateus M, Marino-Sanchez F, Ruiz-Echevarria K, et al. Nasal obstructive disorders impair health-related quality of life in adolescents with persistent allergic rhinitis: a real-life study. Pediatr Allergy Immunol. 2017; 28 ( 5 ): 438 - 445. https://doi.org/10.1111/pai.12724
dc.identifier.citedreferenceSikorska-Szaflik H, Sozanska B. Quality of life in allergic rhinitis – children’s and their parents’ perspective in polish urban and rural population. Health Qual Life Outcomes. 2020; 18 ( 1 ): 64. https://doi.org/10.1186/s12955-020-01315-1
dc.identifier.citedreferenceRavens-Sieberer U, Bullinger M. Assessing health-related quality of life in chronically ill children with the German KINDL: first psychometric and content analytical results. Qual Life Res. 1998; 7 ( 5 ): 399 - 407. https://doi.org/10.1023/a:1008853819715
dc.identifier.citedreferenceJuniper EF, Howland WC, Roberts NB, Thompson AK, King DR. Measuring quality of life in children with rhinoconjunctivitis. J Allergy Clin Immunol. 1998; 101 (2 pt 1): 163 - 170. https://doi.org/10.1016/s0091-6749(98)70380-x
dc.identifier.citedreferenceSegall N, Prenner B, Lumry W, Caracta CF, Tantry SK. Long-term safety and efficacy of olopatadine-mometasone combination nasal spray in patients with perennial allergic rhinitis. Allergy Asthma Proc. 2019; 40 ( 5 ): 301 - 310. https://doi.org/10.2500/aap.2019.40.4233
dc.identifier.citedreferenceMajani G, Baiardini I, Giardini A, et al. Health-related quality of life assessment in young adults with seasonal allergic rhinitis. Allergy. 2001; 56 ( 4 ): 313 - 317. https://doi.org/10.1034/j.1398-9995.2001.00852.x
dc.identifier.citedreferenceAruthra R, Kumar M. To study the impact of allergic rhinitis on quality of life in a tertiary care hospital. Intern J Cur Res Rev. 2021; 13 ( 2 ): 118 - 120.
dc.identifier.citedreferenceZhu R, Wang J, Wu Y, et al. The Allergic Rhinitis Control Test Questionnaire is valuable in guiding step-down pharmacotherapy treatment of allergic rhinitis. J Allergy Clin Immunol Pract. 2019; 7 ( 1 ): 272 - 278. https://doi.org/10.1016/j.jaip.2018.05.028
dc.identifier.citedreferenceBousquet J, Arnavielhe S, Bedbrook A, et al. The Allergic Rhinitis and its Impact on Asthma (ARIA) score of allergic rhinitis using mobile technology correlates with quality of life: The MASK study. Allergy. 2018; 73 ( 2 ): 505 - 510. https://doi.org/10.1111/all.13307
dc.identifier.citedreferenceHoehle LP, Speth MM, Phillips KM, et al. Association between symptoms of allergic rhinitis with decreased general health-related quality of life. Am J Rhinol Allergy. 2017; 31 ( 4 ): 235 - 239. https://doi.org/10.2500/ajra.2017.31.4444
dc.identifier.citedreferenceFilanowicz M, Szynkiewicz E, Cegla B, Bartuzi Z. Analysis of the quality of life of patients with asthma and allergic rhinitis after immunotherapy. Postepy Dermatol Alergol. 2016; 33 ( 2 ): 134 - 141. https://doi.org/10.5114/pdia.2015.48061
dc.identifier.citedreferenceJaruvongvanich V, Mongkolpathumrat P, Chantaphakul H, Klaewsongkram J. Extranasal symptoms of allergic rhinitis are difficult to treat and affect quality of life. Allergol Int. 2016; 65 ( 2 ): 199 - 203. https://doi.org/10.1016/j.alit.2015.11.006
dc.identifier.citedreferenceSong Y, Wang M, Xie J, et al. Prevalence of allergic rhinitis among elementary and middle school students in Changsha city and its impact on quality of life. J Laryngol Otol. 2015; 129 ( 11 ): 1108 - 1114. https://doi.org/10.1017/S0022215115002492
dc.identifier.citedreferenceBousquet PJ, Demoly P, Devillier P, Mesbah K, Bousquet J. Impact of allergic rhinitis symptoms on quality of life in primary care. Int Arch Allergy Immunol. 2013; 160 ( 4 ): 393 - 400. https://doi.org/10.1159/000342991
dc.identifier.citedreferenceKatelaris CH, Sacks R, Theron PN. Allergic rhinoconjunctivitis in the Australian population: burden of disease and attitudes to intranasal corticosteroid treatment. Am J Rhinol Allergy. 2013; 27 ( 6 ): 506 - 509. https://doi.org/10.2500/ajra.2013.27.3965
dc.identifier.citedreferencede la Hoz Caballer B, Rodriguez M, Fraj J, Cerecedo I, Antolin-Amerigo D, Colas C. Allergic rhinitis and its impact on work productivity in primary care practice and a comparison with other common diseases: the Cross-sectional study to evAluate work Productivity in allergic Rhinitis compared with other common dIseases (CAPRI) study. Am J Rhinol Allergy. 2012; 26 ( 5 ): 390 - 394. https://doi.org/10.2500/ajra.2012.26.3799
dc.identifier.citedreferenceMeltzer EO, Gross GN, Katial R, Storms WW. Allergic rhinitis substantially impacts patient quality of life: findings from the Nasal Allergy Survey Assessing Limitations. J Fam Pract. 2012; 61 (2 suppl): S5 - S10.
dc.identifier.citedreferenceStull DE, Schaefer M, Crespi S, Sandor DW. Relative strength of relationships of nasal congestion and ocular symptoms with sleep, mood and productivity. Curr Med Res Opin. 2009; 25 ( 7 ): 1785 - 1792. https://doi.org/10.1185/03007990903021968
dc.identifier.citedreferenceWitt CM, Reinhold T, Jena S, Brinkhaus B, Willich SN. Cost-effectiveness of acupuncture in women and men with allergic rhinitis: a randomized controlled study in usual care. Am J Epidemiol. 2009; 169 ( 5 ): 562 - 571. https://doi.org/10.1093/aje/kwn370
dc.identifier.citedreferenceBrinkhaus B, Witt CM, Jena S, Liecker B, Wegscheider K, Willich SN. Acupuncture in patients with allergic rhinitis: a pragmatic randomized trial. Ann Allergy Asthma Immunol. 2008; 101 ( 5 ): 535 - 543. https://doi.org/10.1016/S1081-1206(10)60294-3
dc.identifier.citedreferencePetersen KD, Kronborg C, Gyrd-Hansen D, Dahl R, Larsen JN, Lowenstein H. Quality of life in rhinoconjunctivitis assessed with generic and disease-specific questionnaires. Allergy. 2008; 63 ( 3 ): 284 - 291. https://doi.org/10.1111/j.1398-9995.2007.01583.x
dc.identifier.citedreferenceCiprandi G, Klersy C, Cirillo I, Marseglia GL. Quality of life in allergic rhinitis: relationship with clinical, immunological, and functional aspects. Clin Exp Allergy. 2007; 37 ( 10 ): 1528 - 1535. https://doi.org/10.1111/j.1365-2222.2007.02809.x
dc.identifier.citedreferenceSchatz M. A survey of the burden of allergic rhinitis in the USA. Allergy. 2007; 62 (suppl 85): 9 - 16. https://doi.org/10.1111/j.1398-9995.2007.01548.x
dc.identifier.citedreferenceRadcliffe MJ, Lewith GT, Turner RG, Prescott P, Church MK, Holgate ST. Enzyme potentiated desensitisation in treatment of seasonal allergic rhinitis: double blind randomised controlled study. BMJ. 2003; 327 ( 7409 ): 251 - 254. https://doi.org/10.1136/bmj.327.7409.251
dc.identifier.citedreferenceGerth Van Wijk R, Terreehorst IT, Mulder PG, Garrelds IM, Blom HM, Popering S. Intranasal capsaicin is lacking therapeutic effect in perennial allergic rhinitis to house dust mite. A placebo-controlled study. Clin Exp Allergy. 2000; 30 ( 12 ): 1792 - 1798. https://doi.org/10.1046/j.1365-2222.2000.00920.x
dc.identifier.citedreferenceLeynaert B, Neukirch C, Liard R, Bousquet J, Neukirch F. Quality of life in allergic rhinitis and asthma. A population-based study of young adults. Am J Respir Crit Care Med. 2000; 162 (4 pt 1): 1391 - 1396. https://doi.org/10.1164/ajrccm.162.4.9912033
dc.identifier.citedreferenceCuesta-Herranz J, Laguna JJ, Mielgo R, et al. Quality of life improvement with allergen immunotherapy treatment in patients with rhinoconjunctivitis in real life conditions. Results of an observational prospective study (ICARA). Eur Ann Allergy Clin Immunol. 2019; 51 ( 5 ). https://doi.org/10.23822/EurAnnACI.1764-1489.104
dc.identifier.citedreferenceGillman GS, Staltari GV, Chang YF, Mattos JL. A prospective study of outcomes of septoplasty with turbinate reductions in patients with allergic rhinitis. Otolaryngol Head Neck Surg. 2019; 160 ( 6 ): 1118 - 1123. https://doi.org/10.1177/0194599819838761
dc.identifier.citedreferenceBaiardini I, Fasola S, Montalbano L, et al. RHINASTHMA-Children: a new quality of life tool for patients with respiratory allergy. Pediatr Allergy Immunol. 2017; 28 ( 1 ): 102 - 105. https://doi.org/10.1111/pai.12667
dc.identifier.citedreferenceNovakova SM, Staevska MT, Novakova PI, et al. Quality of life improvement after a three-year course of sublingual immunotherapy in patients with house dust mite and grass pollen induced allergic rhinitis: results from real-life. Health Qual Life Outcomes. 2017; 15 ( 1 ): 189. https://doi.org/10.1186/s12955-017-0764-z
dc.identifier.citedreferenceSchwanke T, Carragee E, Bremberg M, Reisacher WR. Quality-of-life outcomes in patients who underwent subcutaneous immunotherapy and sublingual immunotherapy in a real-world clinical setting. Am J Rhinol Allergy. 2017; 31 ( 5 ): 310 - 316. https://doi.org/10.2500/ajra.2017.31.4465
dc.identifier.citedreferenceBukstein D, Parikh R, Eid S, Ferro T, Morello JP. Beclomethasone Dipropionate Nasal Aerosol in Patients with Perennial Allergic Rhinitis (BALANCE) study: 6-month results. Allergy Asthma Proc. 2016; 37 ( 2 ): 121 - 130. https://doi.org/10.2500/aap.2016.37.3939
dc.identifier.citedreferenceCingi C, Oghan F, Eskiizmir G, Yaz A, Ural A, Erdogmus N. Desloratadine-montelukast combination improves quality of life and decreases nasal obstruction in patients with perennial allergic rhinitis. Int Forum Allergy Rhinol. 2013; 3 ( 10 ): 801 - 806. https://doi.org/10.1002/alr.21185
dc.identifier.citedreferenceDemoly P, Bousquet PJ, Mesbah K, Bousquet J, Devillier P. Visual analogue scale in patients treated for allergic rhinitis: an observational prospective study in primary care: asthma and rhinitis. Clin Exp Allergy. 2013; 43 ( 8 ): 881 - 888. https://doi.org/10.1111/cea.12121
dc.identifier.citedreferenceCiprandi G, Cadario G, Valle C, et al. Sublingual immunotherapy in polysensitized patients: effect on quality of life. J Investig Allergol Clin Immunol. 2010; 20 ( 4 ): 274 - 279.
dc.identifier.citedreferenceCadario G, Ciprandi G, Di Cara G, et al. Comparison between continuous or intermittent schedules of sublingual immunotherapy for house dust mites: effects on compliance, patients satisfaction, quality of life and safety. Int J Immunopathol Pharmacol. 2008; 21 ( 2 ): 471 - 473. https://doi.org/10.1177/039463200802100229
dc.identifier.citedreferenceLaforest L, Bousquet J, Neukirch F, et al. Influence of sociodemographic factors on quality of life during pollen season in seasonal allergic rhinitis patients. Ann Allergy Asthma Immunol. 2005; 95 ( 1 ): 26 - 32. https://doi.org/10.1016/S1081-1206(10)61184-2
dc.identifier.citedreferenceZheng M, Wang X, Ge S, et al. Allergic and non-allergic rhinitis are common in obstructive sleep apnea but not associated with disease severity. J Clin Sleep Med. 2017; 13 ( 8 ): 959 - 966. https://doi.org/10.5664/jcsm.6694
dc.identifier.citedreferenceLiu J, Wu Y, Wu P, Xu Z, Ni X. Analysis of the impact of allergic rhinitis on the children with sleep disordered breathing. Int J Pediatr Otorhinolaryngol. 2020; 138: 110380. https://doi.org/10.1016/j.ijporl.2020.110380
dc.identifier.citedreferenceShanqun L, Shenyuan L, Zhou J, Bai C. The role of montelukast and intranasal budesonide on OSAHS and allergic rhinitis. Allergy. 2009; 64: 591.
dc.identifier.citedreferenceGurevich F, Glass C, Davies M, et al. The effect of intranasal steroid budesonide on the congestion-related sleep disturbance and daytime somnolence in patients with perennial allergic rhinitis. Allergy Asthma Proc. 2005; 26 ( 4 ): 268 - 274.
dc.identifier.citedreferenceHughes K, Glass C, Ripchinski M, et al. Efficacy of the topical nasal steroid budesonide on improving sleep and daytime somnolence in patients with perennial allergic rhinitis. Allergy. 2003; 58 ( 5 ): 380 - 385. https://doi.org/10.1034/j.1398-9995.2003.00093.x
dc.identifier.citedreferenceCraig TJ, Teets S, Lehman EB, Chinchilli VM, Zwillich C. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol. 1998; 101 ( 5 ): 633 - 637. https://doi.org/10.1016/s0091-6749(98)70171-x
dc.identifier.citedreferenceMansfield LE, Posey CR. Daytime sleepiness and cognitive performance improve in seasonal allergic rhinitis treated with intranasal fluticasone propionate. Allergy Asthma Proc. 2007; 28 ( 2 ): 226 - 229. https://doi.org/10.2500/aap.2007.28.2950
dc.identifier.citedreferenceBilgilisoy Filiz M, Filiz S, Baran RT, et al. Restless legs syndrome in children with allergic rhinitis: a comparative study on frequency, severity and sleep quality. Turk J Phys Med Rehabil. 2018; 64 ( 3 ): 198 - 204. https://doi.org/10.5606/tftrd.2018.2265
dc.identifier.citedreferenceLai PH, Yang PS, Lai WY, Lin CL, Hsu CY, Wei CC. Allergic rhinitis and the associated risk of nocturnal enuresis in children: a population-based cohort study. Int Forum Allergy Rhinol. 2018; 8 ( 11 ): 1260 - 1266. https://doi.org/10.1002/alr.22219
dc.identifier.citedreferenceKrouse HJ, Davis JE, Krouse JH. Immune mediators in allergic rhinitis and sleep. Otolaryngol Head Neck Surg. 2002; 126 ( 6 ): 607 - 613. https://doi.org/10.1067/mhn.2002.125300
dc.identifier.citedreferenceMcNicholas WT, Tarlo S, Cole P, et al. Obstructive apneas during sleep in patients with seasonal allergic rhinitis. Am Rev Respir Dis. 1982; 126 ( 4 ): 625 - 628. https://doi.org/10.1164/arrd.1982.126.4.625
dc.identifier.citedreferenceAcar M, Cingi C, Sakallioglu O, San T, Fatih Yimenicioglu M, Bal C. The effects of mometasone furoate and desloratadine in obstructive sleep apnea syndrome patients with allergic rhinitis. Am J Rhinol Allergy. 2013; 27 ( 4 ): e113 - e116. https://doi.org/10.2500/ajra.2013.27.3921
dc.identifier.citedreferenceYoung T, Finn L, Kim H. Nasal obstruction as a risk factor for sleep-disordered breathing. The University of Wisconsin Sleep and Respiratory Research Group. J Allergy Clin Immunol. 1997; 99 ( 2 ): S757 - S762. https://doi.org/10.1016/s0091-6749(97)70124-6
dc.identifier.citedreferenceLavigne F, Petrof BJ, Johnson JR, et al. Effect of topical corticosteroids on allergic airway inflammation and disease severity in obstructive sleep apnoea. Clin Exp Allergy. 2013; 43 ( 10 ): 1124 - 1133. https://doi.org/10.1111/cea.12158
dc.identifier.citedreferenceLavie P, Gertner R, Zomer J, Podoshin L. Breathing disorders in sleep associated with "microarousals’ in patients with allergic rhinitis. Acta Otolaryngol. 1981; 92 ( 5-6 ): 529 - 533. https://doi.org/10.3109/00016488109133292
dc.identifier.citedreferenceBerson SR, Klimczak J, Prezio EA, Hu S, Abraham M. Clinical associations between allergies and rapid eye movement sleep disturbances. Int Forum Allergy Rhinol. 2018; 8 ( 7 ): 817 - 824. https://doi.org/10.1002/alr.22099
dc.identifier.citedreferenceLiu J, Zhang X, Zhao Y, Wang Y. The association between allergic rhinitis and sleep: a systematic review and meta-analysis of observational studies. PLoS One. 2020; 15 ( 2 ): e0228533. https://doi.org/10.1371/journal.pone.0228533
dc.identifier.citedreferenceBerson SR, Klimczak JA, Prezio EA, Abraham MT. House dust mite related allergic rhinitis and REM sleep disturbances. Am J Otolaryngol. 2020; 41 ( 6 ): 102709. https://doi.org/10.1016/j.amjoto.2020.102709
dc.identifier.citedreferencePace A, Iannella G, Rossetti V, et al. Diagnosis of obstructive sleep apnea in patients with allergic and non-allergic rhinitis. Medicina (Kaunas). 2020; 56 ( 9 ): 454. https://doi.org/10.3390/medicina56090454
dc.identifier.citedreferenceMeng J, Xuan J, Qiao X, et al. Assessment of sleep impairment in persistent allergic rhinitis patients using polysomnography. Int Arch Allergy Immunol. 2011; 155 ( 1 ): 57 - 62. https://doi.org/10.1159/000317244
dc.identifier.citedreferenceBozkurt B, Serife Ugur K, Karamanli H, Kucuker F, Ozol D. Polysomnographic findings in persistent allergic rhinitis. Sleep Breath. 2017; 21 ( 2 ): 255 - 261. https://doi.org/10.1007/s11325-016-1390-4
dc.identifier.citedreferenceThompson A, Sardana N, Craig TJ. Sleep impairment and daytime sleepiness in patients with allergic rhinitis: the role of congestion and inflammation. Ann Allergy Asthma Immunol. 2013; 111 ( 6 ): 446 - 451. https://doi.org/10.1016/j.anai.2013.05.020
dc.identifier.citedreferenceRimmer J, Downie S, Bartlett DJ, Gralton J, Salome C. Sleep disturbance in persistent allergic rhinitis measured using actigraphy. Ann Allergy Asthma Immunol. 2009; 103 ( 3 ): 190 - 194. https://doi.org/10.1016/S1081-1206(10)60180-9
dc.identifier.citedreferenceCamhi SL, Morgan WJ, Pernisco N, Quan SF. Factors affecting sleep disturbances in children and adolescents. Sleep Med. 2000; 1 ( 2 ): 117 - 123. https://doi.org/10.1016/s1389-9457(99)00005-2
dc.identifier.citedreferenceParikh NG, Junaid I, Sheinkopf L, Randhawa I, Santiago SM, Klaustermeyer WB. Clinical control in the dual diagnosis of obstructive sleep apnea syndrome and rhinitis: a prospective analysis. Am J Rhinol Allergy. 2014; 28 ( 1 ): e52 - e55. https://doi.org/10.2500/ajra.2014.28.3977
dc.identifier.citedreferenceFried J, Yuen E, Zhang K, et al. Impact of treatment for nasal cavity disorders on sleep quality: systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2022; 166 ( 4 ): 633 - 642. https://doi.org/10.1177/01945998211029527
dc.identifier.citedreferenceMunoz-Cano R, Ribo P, Araujo G, Giralt E, Sanchez-Lopez J, Valero A. Severity of allergic rhinitis impacts sleep and anxiety: results from a large Spanish cohort. Clin Transl Allergy. 2018; 8: 23. https://doi.org/10.1186/s13601-018-0212-0
dc.identifier.citedreferenceColas C, Galera H, Anibarro B, et al. Disease severity impairs sleep quality in allergic rhinitis (The SOMNIAAR study). Clin Exp Allergy. 2012; 42 ( 7 ): 1080 - 1087. https://doi.org/10.1111/j.1365-2222.2011.03935.x
dc.identifier.citedreferenceRomano M, James S, Farrington E, Perry R, Elliott L. The impact of perennial allergic rhinitis with/without allergic asthma on sleep, work and activity level. Allergy Asthma Clin Immunol. 2019; 15: 81. https://doi.org/10.1186/s13223-019-0391-9
dc.identifier.citedreferenceRoxbury CR, Qiu M, Shargorodsky J, Lin SY. Association between allergic rhinitis and poor sleep parameters in U.S. adults. Int Forum Allergy Rhinol. 2018; 8 ( 10 ): 1098 - 1106. https://doi.org/10.1002/alr.22174
dc.identifier.citedreferenceLeger D, Bonnefoy B, Pigearias B, de La Giclais B, Chartier A. Poor sleep is highly associated with house dust mite allergic rhinitis in adults and children. Allergy Asthma Clin Immunol. 2017; 13: 36. https://doi.org/10.1186/s13223-017-0208-7
dc.identifier.citedreferenceGadi G, Wali S, Koshak E, et al. The prevalence of allergic rhinitis and atopic markers in obstructive sleep apnea. J Epidemiol Glob Health. 2017; 7 ( 1 ): 37 - 44. https://doi.org/10.1016/j.jegh.2016.06.001
dc.identifier.citedreferencePark CE, Shin SY, Lee KH, Cho JS, Kim SW. The effect of allergic rhinitis on the degree of stress, fatigue and quality of life in OSA patients. Eur Arch Otorhinolaryngol. 2012; 269 ( 9 ): 2061 - 2064. https://doi.org/10.1007/s00405-011-1888-0
dc.identifier.citedreferenceUdaka T, Suzuki H, Fujimura T, et al. Chronic nasal obstruction causes daytime sleepiness and decreased quality of life even in the absence of snoring. Am J Rhinol. 2007; 21 ( 5 ): 564 - 569. https://doi.org/10.2500/ajr.2007.21.3087
dc.identifier.citedreferenceLeger D, Annesi-Maesano I, Carat F, et al. Allergic rhinitis and its consequences on quality of sleep: an unexplored area. Arch Intern Med. 2006; 166 ( 16 ): 1744 - 1748. https://doi.org/10.1001/archinte.166.16.1744
dc.identifier.citedreferenceCanova CR, Downs SH, Knoblauch A, Andersson M, Tamm M, Leuppi JD. Increased prevalence of perennial allergic rhinitis in patients with obstructive sleep apnea. Respiration. 2004; 71 ( 2 ): 138 - 143. https://doi.org/10.1159/000076674
dc.identifier.citedreferenceMintz M, Garcia J, Diener P, Liao Y, Dupclay L, Georges G. Triamcinolone acetonide aqueous nasal spray improves nocturnal rhinitis-related quality of life in patients treated in a primary care setting: the Quality of Sleep in Allergic Rhinitis study. Ann Allergy Asthma Immunol. 2004; 92 ( 2 ): 255 - 261. https://doi.org/10.1016/S1081-1206(10)61557-8
dc.identifier.citedreferenceStuck BA, Czajkowski J, Hagner AE, et al. Changes in daytime sleepiness, quality of life, and objective sleep patterns in seasonal allergic rhinitis: a controlled clinical trial. J Allergy Clin Immunol. 2004; 113 ( 4 ): 663 - 638. https://doi.org/10.1016/j.jaci.2003.12.589
dc.identifier.citedreferenceJanson C, De Backer W, Gislason T, et al. Increased prevalence of sleep disturbances and daytime sleepiness in subjects with bronchial asthma: a population study of young adults in three European countries. Eur Respir J. 1996; 9 ( 10 ): 2132 - 2138. https://doi.org/10.1183/09031936.96.09102132
dc.identifier.citedreferenceLin SY, Melvin TA, Boss EF, Ishman SL. The association between allergic rhinitis and sleep-disordered breathing in children: a systematic review. Int Forum Allergy Rhinol. 2013; 3 ( 6 ): 504 - 509. https://doi.org/10.1002/alr.21123
dc.identifier.citedreferenceLee K, Choi IH, Hong Y, Lee H, Lee SH, Kim TH. Association between allergic rhinitis-related factors and sleep duration in adolescents: Korea National Health and Nutrition Examination Survey V (2010–2012). Int J Pediatr Otorhinolaryngol. 2021; 142: 110613. https://doi.org/10.1016/j.ijporl.2021.110613
dc.identifier.citedreferenceGiraldo-Cadavid LF, Perdomo-Sanchez K, Cordoba-Gravini JL, et al. Allergic rhinitis and OSA in children residing at a high altitude. Chest. 2020; 157 ( 2 ): 384 - 393. https://doi.org/10.1016/j.chest.2019.09.018
dc.identifier.citedreferencePerikleous E, Steiropoulos P, Nena E, et al. Association of asthma and allergic rhinitis with sleep-disordered breathing in childhood. Front Pediatr. 2018; 6: 250. https://doi.org/10.3389/fped.2018.00250
dc.identifier.citedreferenceDi Francesco RC, Alvarez J. Allergic rhinitis affects the duration of rapid eye movement sleep in children with sleep-disordered breathing without sleep apnea. Int Forum Allergy Rhinol. 2016; 6 ( 5 ): 465 - 471. https://doi.org/10.1002/alr.21689
dc.identifier.citedreferenceChimenz R, Manti S, Fede C, et al. Primary nocturnal enuresis in children with allergic rhinitis and severe adenotonsillar hypertrophy: a single center pilot study. J Biol Regul Homeost Agents. 2015; 29 (2 suppl 1): 73 - 79.
dc.identifier.citedreferenceKoinis-Mitchell D, Kopel SJ, Boergers J, et al. Asthma, allergic rhinitis, and sleep problems in urban children. J Clin Sleep Med. 2015; 11 ( 2 ): 101 - 110. https://doi.org/10.5664/jcsm.4450
dc.identifier.citedreferencePoachanukoon O, Kitcharoensakkul M. Snoring and sleep problems in children with and without allergic rhinitis: a case control study. J Med Assoc Thai. 2015; 98 (suppl 2): S138 - S144.
dc.identifier.citedreferenceKwon JA, Lee M, Yoo KB, Park EC. Does the duration and time of sleep increase the risk of allergic rhinitis? Results of the 6-year nationwide Korea youth risk behavior web-based survey. PLoS One. 2013; 8 ( 8 ): e72507. https://doi.org/10.1371/journal.pone.0072507
dc.identifier.citedreferenceBhattacharjee R, Kheirandish-Gozal L, Spruyt K, et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med. 2010; 182 ( 5 ): 676 - 683. https://doi.org/10.1164/rccm.200912-1930OC
dc.identifier.citedreferenceLi AM, Au CT, So HK, Lau J, Ng PC, Wing YK. Prevalence and risk factors of habitual snoring in primary school children. Chest. 2010; 138 ( 3 ): 519 - 527. https://doi.org/10.1378/chest.09-1926
dc.identifier.citedreferenceVichyanond P, Suratannon C, Lertbunnaphong P, Jirapongsananuruk O, Visitsunthorn N. Clinical characteristics of children with non-allergic rhinitis vs with allergic rhinitis. Asian Pac J Allergy Immunol. 2010; 28 ( 4 ): 270 - 274.
dc.identifier.citedreferenceBarone JG, Hanson C, DaJusta DG, Gioia K, England SJ, Schneider D. Nocturnal enuresis and overweight are associated with obstructive sleep apnea. Pediatrics. 2009; 124 ( 1 ): e53 - e59. https://doi.org/10.1542/peds.2008-2805
dc.identifier.citedreferenceSogut A, Yilmaz O, Dinc G, Yuksel H. Prevalence of habitual snoring and symptoms of sleep-disordered breathing in adolescents. Int J Pediatr Otorhinolaryngol. 2009; 73 ( 12 ): 1769 - 1773. https://doi.org/10.1016/j.ijporl.2009.09.026
dc.identifier.citedreferenceLiukkonen K, Virkkula P, Aronen ET, Kirjavainen T, Pitkaranta A. All snoring is not adenoids in young children. Int J Pediatr Otorhinolaryngol. 2008; 72 ( 6 ): 879 - 884. https://doi.org/10.1016/j.ijporl.2008.02.018
dc.identifier.citedreferenceKalra M, Lemasters G, Bernstein D, et al. Atopy as a risk factor for habitual snoring at age 1 year. Chest. 2006; 129 ( 4 ): 942 - 946. https://doi.org/10.1378/chest.129.4.942
dc.identifier.citedreferenceGoldbart AD, Goldman JL, Veling MC, Gozal D. Leukotriene modifier therapy for mild sleep-disordered breathing in children. Am J Respir Crit Care Med. 2005; 172 ( 3 ): 364 - 370. https://doi.org/10.1164/rccm.200408-1064OC
dc.identifier.citedreferenceNg DK, Kwok KL, Cheung JM, et al. Prevalence of sleep problems in Hong Kong primary school children: a community-based telephone survey. Chest. 2005; 128 ( 3 ): 1315 - 1323. https://doi.org/10.1378/chest.128.3.1315
dc.identifier.citedreferenceSogut A, Altin R, Uzun L, et al. Prevalence of obstructive sleep apnea syndrome and associated symptoms in 3–11-year-old Turkish children. Pediatr Pulmonol. 2005; 39 ( 3 ): 251 - 256. https://doi.org/10.1002/ppul.20179
dc.identifier.citedreferenceChng SY, Goh DY, Wang XS, Tan TN, Ong NB. Snoring and atopic disease: a strong association. Pediatr Pulmonol. 2004; 38 ( 3 ): 210 - 216. https://doi.org/10.1002/ppul.20075
dc.identifier.citedreferenceKidon MI, See Y, Goh A, Chay OM, Balakrishnan A. Aeroallergen sensitization in pediatric allergic rhinitis in Singapore: is air-conditioning a factor in the tropics? Pediatr Allergy Immunol. 2004; 15 ( 4 ): 340 - 343. https://doi.org/10.1111/j.1399-3038.2004.00152.x
dc.identifier.citedreferenceMansfield LE, Diaz G, Posey CR, Flores-Neder J. Sleep disordered breathing and daytime quality of life in children with allergic rhinitis during treatment with intranasal budesonide. Ann Allergy Asthma Immunol. 2004; 92 ( 2 ): 240 - 244. https://doi.org/10.1016/S1081-1206(10)61554-2
dc.identifier.citedreferenceAnuntaseree W, Rookkapan K, Kuasirikul S, Thongsuksai P. Snoring and obstructive sleep apnea in Thai school-age children: prevalence and predisposing factors. Pediatr Pulmonol. 2001; 32 ( 3 ): 222 - 227. https://doi.org/10.1002/ppul.1112
dc.identifier.citedreferenceMcColley SA, Carroll JL, Curtis S, Loughlin GM, Sampson HA. High prevalence of allergic sensitization in children with habitual snoring and obstructive sleep apnea. Chest. 1997; 111 ( 1 ): 170 - 173. https://doi.org/10.1378/chest.111.1.170
dc.identifier.citedreferenceBrozek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines–2016 revision. J Allergy Clin Immunol. 2017; 140 ( 4 ): 950 - 958. https://doi.org/10.1016/j.jaci.2017.03.050
dc.identifier.citedreferenceKatelaris CH, Lee BW, Potter PC, et al. Prevalence and diversity of allergic rhinitis in regions of the world beyond Europe and North America. Clin Exp Allergy. 2012; 42 ( 2 ): 186 - 207. https://doi.org/10.1111/j.1365-2222.2011.03891.x
dc.identifier.citedreferenceDierick BJH, van der Molen T, Flokstra-de Blok BMJ, et al. Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Rev Pharmacoecon Outcomes Res. 2020; 20 ( 5 ): 437 - 453. https://doi.org/10.1080/14737167.2020.1819793
dc.identifier.citedreferenceKritikos V, Price D, Papi A, et al. The burden of self-reported rhinitis and associated risk for exacerbations with moderate-severe asthma in primary care patients. J Asthma Allergy. 2020; 13: 415 - 428. https://doi.org/10.2147/JAA.S266204
dc.identifier.citedreferenceStrozek J, Samolinski BK, Klak A, et al. The indirect costs of allergic diseases. Int J Occup Med Environ Health. 2019; 32 ( 3 ): 281 - 290. https://doi.org/10.13075/ijomeh.1896.01275
dc.identifier.citedreferenceAl-Digheari A, Mahboub B, Tarraf H, et al. The clinical burden of allergic rhinitis in five Middle Eastern countries: results of the SNAPSHOT program. Allergy Asthma Clin Immunol. 2018; 14: 63. https://doi.org/10.1186/s13223-018-0298-x
dc.identifier.citedreferenceGoetzel RZ, Long SR, Ozminkowski RJ, Hawkins K, Wang S, Lynch W. Health, absence, disability, and presenteeism cost estimates of certain physical and mental health conditions affecting U.S. employers. J Occup Environ Med. 2004; 46 ( 4 ): 398 - 412. https://doi.org/10.1097/01.jom.0000121151.40413.bd
dc.identifier.citedreferenceWorkman AD, Dattilo L, Rathi VK, Bhattacharyya N. Contemporary incremental healthcare costs for allergic rhinitis in the United States. Laryngoscope. 2021; https://doi.org/10.1002/lary.29846
dc.identifier.citedreferenceRoland LT, Wise SK, Wang H, Zhang P, Mehta C, Levy JM. The cost of rhinitis in the United States: a national insurance claims analysis. Int Forum Allergy Rhinol. 2021; 11 ( 5 ): 946 - 948. https://doi.org/10.1002/alr.22748
dc.identifier.citedreferenceMeltzer EO, Bukstein DA. The economic impact of allergic rhinitis and current guidelines for treatment. Ann Allergy Asthma Immunol. 2011; 106 (2 suppl): S12 - S16. https://doi.org/10.1016/j.anai.2010.10.014
dc.identifier.citedreferenceLaw AW, Reed SD, Sundy JS, Schulman KA. Direct costs of allergic rhinitis in the United States: estimates from the 1996 Medical Expenditure Panel Survey. J Allergy Clin Immunol. 2003; 111 ( 2 ): 296 - 300. https://doi.org/10.1067/mai.2003.68
dc.identifier.citedreferenceReed SD, Lee TA, McCrory DC. The economic burden of allergic rhinitis: a critical evaluation of the literature. Pharmacoeconomics. 2004; 22 ( 6 ): 345 - 361. https://doi.org/10.2165/00019053-200422060-00002
dc.identifier.citedreferenceAvdeeva KS, Reitsma S, Fokkens WJ. Direct and indirect costs of allergic and non-allergic rhinitis in the Netherlands. Allergy. 2020; 75 ( 11 ): 2993 - 2996. https://doi.org/10.1111/all.14457
dc.identifier.citedreferenceBousquet J, Schroder-Bernhardi D, Bachert C, et al. Heterogeneity of the pharmacologic treatment of allergic rhinitis in Europe based on MIDAS and OTCims platforms. Clin Exp Allergy. 2021; 51 ( 8 ): 1033 - 1045. https://doi.org/10.1111/cea.13884
dc.identifier.citedreferenceSmith P, Price D, Harvey R, et al. Medication-related costs of rhinitis in Australia: a NostraData cross-sectional study of pharmacy purchases. J Asthma Allergy. 2017; 10: 153 - 161. https://doi.org/10.2147/JAA.S128431
dc.identifier.citedreferenceBousquet J, Devillier P, Anto JM, et al. Daily allergic multimorbidity in rhinitis using mobile technology: a novel concept of the MASK study. Allergy. 2018; 73 ( 8 ): 1622 - 1631. https://doi.org/10.1111/all.13448
dc.identifier.citedreferenceBousquet J, Schunemann HJ, Togias A, et al. Next-generation Allergic Rhinitis and Its Impact on Asthma (ARIA) guidelines for allergic rhinitis based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) and real-world evidence. J Allergy Clin Immunol. 2020; 145 ( 1 ): 70 - 80.e3. https://doi.org/10.1016/j.jaci.2019.06.049
dc.identifier.citedreferencePrice D, Scadding G, Ryan D, et al. The hidden burden of adult allergic rhinitis: UK healthcare resource utilisation survey. Clin Transl Allergy. 2015; 5: 39. https://doi.org/10.1186/s13601-015-0083-6
dc.identifier.citedreferenceBelhassen M, Demoly P, Bloch-Morot E, et al. Costs of perennial allergic rhinitis and allergic asthma increase with severity and poor disease control. Allergy. 2017; 72 ( 6 ): 948 - 958. https://doi.org/10.1111/all.13098
dc.identifier.citedreferenceCelik G, Mungan D, Abadoglu O, Pinar NM, Misirligil Z. Direct cost assessments in subjects with seasonal allergic rhinitis living in Ankara, Turkey. Allergy Asthma Proc. 2004; 25 ( 2 ): 107 - 113.
dc.identifier.citedreferenceYoo KH, Ahn HR, Park JK, et al. Burden of respiratory disease in Korea: an observational study on allergic rhinitis, asthma, COPD, and rhinosinusitis. Allergy Asthma Immunol Res. 2016; 8 ( 6 ): 527 - 534. https://doi.org/10.4168/aair.2016.8.6.527
dc.identifier.citedreferenceKim SY, Yoon SJ, Jo MW, Kim EJ, Kim HJ, Oh IH. Economic burden of allergic rhinitis in Korea. Am J Rhinol Allergy. 2010; 24 ( 5 ): e110 - e113. https://doi.org/10.2500/ajra.2010.24.3513
dc.identifier.citedreferenceGhoshal AG, Ravindran GD, Gangwal P, et al. The burden of segregated respiratory diseases in India and the quality of care in these patients: results from the Asia-Pacific Burden of Respiratory Diseases study. Lung India. 2016; 33 ( 6 ): 611 - 619. https://doi.org/10.4103/0970-2113.192878
dc.identifier.citedreferenceNathan RA. The burden of allergic rhinitis. Allergy Asthma Proc. 2007; 28 ( 1 ): 3 - 9. https://doi.org/10.2500/aap.2007.28.2934
dc.identifier.citedreferenceCrystal-Peters J, Crown WH, Goetzel RZ, Schutt DC. The cost of productivity losses associated with allergic rhinitis. Am J Manag Care. 2000; 6 ( 3 ): 373 - 378.
dc.identifier.citedreferenceFineman SM. The burden of allergic rhinitis: beyond dollars and cents. Ann Allergy Asthma Immunol. 2002; 88 (4 suppl 1): 2 - 7. https://doi.org/10.1016/s1081-1206(10)62022-4
dc.identifier.citedreferenceColas C, Brosa M, Anton E, et al. Estimate of the total costs of allergic rhinitis in specialized care based on real-world data: the FERIN Study. Allergy. 2017; 72 ( 6 ): 959 - 966. https://doi.org/10.1111/all.13099
dc.identifier.citedreferenceCanonica GW, Klimek L, Acaster S, et al. Burden of allergic rhinitis and impact of MP-AzeFlu from the patient perspective: pan European patient survey. Curr Med Res Opin. 2021; 37 ( 7 ): 1259 - 1272. https://doi.org/10.1080/03007995.2021.1911973
dc.identifier.citedreferenceVandenplas O, Vinnikov D, Blanc PD, et al. Impact of rhinitis on work productivity: a systematic review. J Allergy Clin Immunol Pract. 2018; 6 ( 4 ): 1274 - 1286.e9. https://doi.org/10.1016/j.jaip.2017.09.002
dc.identifier.citedreferenceLamb CE, Ratner PH, Johnson CE, et al. Economic impact of workplace productivity losses due to allergic rhinitis compared with select medical conditions in the United States from an employer perspective. Curr Med Res Opin. 2006; 22 ( 6 ): 1203 - 1210. https://doi.org/10.1185/030079906X112552
dc.identifier.citedreferenceHellgren J, Cervin A, Nordling S, Bergman A, Cardell LO. Allergic rhinitis and the common cold–high cost to society. Allergy. 2010; 65 ( 6 ): 776 - 783. https://doi.org/10.1111/j.1398-9995.2009.02269.x
dc.identifier.citedreferenceRoger A, Arcala Campillo E, Torres MC, et al. Reduced work/academic performance and quality of life in patients with allergic rhinitis and impact of allergen immunotherapy. Allergy Asthma Clin Immunol. 2016; 12: 40. https://doi.org/10.1186/s13223-016-0146-9
dc.identifier.citedreferenceJauregui I, Mullol J, Davila I, et al. Allergic rhinitis and school performance. J Investig Allergol Clin Immunol. 2009; 19 (suppl 1): 32 - 39.
dc.identifier.citedreferenceSchoenwetter WF, Dupclay Jr L, Appajosyula S, Botteman MF, Pashos CL. Economic impact and quality-of-life burden of allergic rhinitis. Curr Med Res Opin. 2004; 20 ( 3 ): 305 - 317. https://doi.org/10.1185/030079903125003053
dc.identifier.citedreferenceMir E, Panjabi C, Shah A. Impact of allergic rhinitis in school going children. Asia Pac Allergy. 2012; 2 ( 2 ): 93 - 100. https://doi.org/10.5415/apallergy.2012.2.2.93
dc.identifier.citedreferenceTrikojat K, Buske-Kirschbaum A, Plessow F, Schmitt J, Fischer R. Memory and multitasking performance during acute allergic inflammation in seasonal allergic rhinitis. Clin Exp Allergy. 2017; 47 ( 4 ): 479 - 487. https://doi.org/10.1111/cea.12893
dc.identifier.citedreferenceWang J, Xiao D, Chen H, Hu J. Cumulative evidence for association of rhinitis and depression. Allergy Asthma Clin Immunol. 2021; 17 ( 1 ): 111. https://doi.org/10.1186/s13223-021-00615-5
dc.identifier.citedreferenceKlimek L, Bachert C, Pfaar O, et al. ARIA guideline 2019: treatment of allergic rhinitis in the German health system. Allergol Select. 2019; 3 ( 1 ): 22 - 50. https://doi.org/10.5414/ALX02120E
dc.identifier.citedreferenceCingi C, Bayar Muluk N, Scadding GK. Will every child have allergic rhinitis soon? Int J Pediatr Otorhinolaryngol. 2019; 118: 53 - 58. https://doi.org/10.1016/j.ijporl.2018.12.019
dc.identifier.citedreferenceSmall P, Frenkiel A, Becker A, Boisvert P, Bouchard J. The Canadian Rhinitis Working Group: rhinitis – a practical and comprehensive approach to assessment and therapt. J Otolaryngol. 2007; 36 ( 1 ): S5 - S27.
dc.identifier.citedreferenceScadding GK, Kariyawasam HH, Scadding G, et al. BSACI guideline for the diagnosis and management of allergic and non-allergic rhinitis (Revised 2017; First edition 2007). Clin Exp Allergy. 2017; 47 ( 7 ): 856 - 889. https://doi.org/10.1111/cea.12953
dc.identifier.citedreferenceNg ML, Warlow RS, Chrishanthan N, Ellis C, Walls R. Preliminary criteria for the definition of allergic rhinitis: a systematic evaluation of clinical parameters in a disease cohort (I). Clin Exp Allergy. 2000; 30 ( 9 ): 1314 - 1331. https://doi.org/10.1046/j.1365-2222.2000.00853.x
dc.identifier.citedreferenceScadding GK, Hellings PW, Bachert C, et al. Allergic respiratory disease care in the COVID-19 era: A EUFOREA statement. World Allergy Organ J. 2020; 13 ( 5 ): 100124. https://doi.org/10.1016/j.waojou.2020.100124
dc.identifier.citedreferenceCosta DJ, Amouyal M, Lambert P, et al. How representative are clinical study patients with allergic rhinitis in primary care? J Allergy Clin Immunol. 2011; 127 ( 4 ): 920 - 926.e1. https://doi.org/10.1016/j.jaci.2010.10.058
dc.identifier.citedreferenceRaza SN, Yousuf K, Small P, Frenkiel S. Diagnosing allergic rhinitis: effectiveness of the physical examination in comparison to conventional skin testing. J Otolaryngol Head Neck Surg. 2011; 40 ( 5 ): 407 - 412.
dc.identifier.citedreferenceShaker MS, Oppenheimer J, Grayson M, et al. COVID-19: pandemic contingency planning for the allergy and immunology clinic. J Allergy Clin Immunol Pract. 2020; 8 ( 5 ): 1477 - 1488.e5. https://doi.org/10.1016/j.jaip.2020.03.012
dc.identifier.citedreferenceZiade GK, Karami RA, Fakhri GB, et al. Reliability assessment of the endoscopic examination in patients with allergic rhinitis. Allergy Rhinol (Providence). 2016; 7 ( 3 ): 135 - 138. https://doi.org/10.2500/ar.2016.7.0176
dc.identifier.citedreferenceJareoncharsri P, Thitadilok V, Bunnag C, Ungkanont K, Voraprayoon S, Tansuriyawong P. Nasal endoscopic findings in patients with perennial allergic rhinitis. Asian Pac J Allergy Immunol. 1999; 17 ( 4 ): 261 - 267.
dc.identifier.citedreferenceEren E, Aktas A, Arslanoglu S, et al. Diagnosis of allergic rhinitis: inter-rater reliability and predictive value of nasal endoscopic examination: a prospective observational study. Clin Otolaryngol. 2013; 38 ( 6 ): 481 - 486. https://doi.org/10.1111/coa.12171
dc.identifier.citedreferenceAmeli F, Tosca MA, Licari A, Gallo F, Ciprandi G. Can an otorhinolaryngological visit induce the suspect of allergic rhinitis in children? Eur Ann Allergy Clin Immunol. 2019; 51 ( 6 ): 273 - 282. https://doi.org/10.23822/EurAnnACI.1764-1489.105
dc.identifier.citedreferenceAmeli F, Brocchetti F, Tosca MA, Signori A, Ciprandi G. Nasal endoscopy in children with suspected allergic rhinitis. Laryngoscope. 2011; 121 ( 10 ): 2055 - 2059. https://doi.org/10.1002/lary.22156
dc.identifier.citedreferenceWhite LJ, Rotella MR, DelGaudio JM. Polypoid changes of the middle turbinate as an indicator of atopic disease. Int Forum Allergy Rhinol. 2014; 4 ( 5 ): 376 - 380. https://doi.org/10.1002/alr.21290
dc.identifier.citedreferenceHamizan AW, Christensen JM, Ebenzer J, et al. Middle turbinate edema as a diagnostic marker of inhalant allergy. Int Forum Allergy Rhinol. 2017; 7 ( 1 ): 37 - 42. https://doi.org/10.1002/alr.21835
dc.identifier.citedreferenceBrunner JP, Jawad BA, McCoul ED. Polypoid change of the middle turbinate and paranasal sinus polyposis are distinct entities. Otolaryngol Head Neck Surg. 2017; 157 ( 3 ): 519 - 523. https://doi.org/10.1177/0194599817711887
dc.identifier.citedreferenceDelGaudio JM, Loftus PA, Hamizan AW, Harvey RJ, Wise SK. Central compartment atopic disease. Am J Rhinol Allergy. 2017; 31 ( 4 ): 228 - 234. https://doi.org/10.2500/ajra.2017.31.4443
dc.identifier.citedreferenceDelGaudio JM, Levy JM, Wise SK. Central compartment involvement in aspirin-exacerbated respiratory disease: the role of allergy and previous sinus surgery. Int Forum Allergy Rhinol. 2019; 9 ( 9 ): 1017 - 1022. https://doi.org/10.1002/alr.22367
dc.identifier.citedreferenceHamizan AW, Loftus PA, Alvarado R, et al. Allergic phenotype of chronic rhinosinusitis based on radiologic pattern of disease. Laryngoscope. 2018; 128 ( 9 ): 2015 - 2021. https://doi.org/10.1002/lary.27180
dc.identifier.citedreferenceMarcus S, Schertzer J, Roland LT, Wise SK, Levy JM, DelGaudio JM. Central compartment atopic disease: prevalence of allergy and asthma compared with other subtypes of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2020; 10 ( 2 ): 183 - 189. https://doi.org/10.1002/alr.22454
dc.identifier.citedreferenceRoland LT, Marcus S, Schertzer JS, Wise SK, Levy JM, DelGaudio JM. Computed tomography findings can help identify different chronic rhinosinusitis with nasal polyp phenotypes. Am J Rhinol Allergy. 2020; 34 ( 5 ): 679 - 685. https://doi.org/10.1177/1945892420923926
dc.identifier.citedreferenceLee K, Kim TH, Lee SH, Kang CH, Je BK, Oh S. Predictive value of radiologic central compartment atopic disease for identifying allergy and asthma in pediatric patients. Ear Nose Throat J. 2021: 145561321997546. https://doi.org/10.1177/0145561321997546
dc.identifier.citedreferenceAbdullah B, Vengathajalam S, Md Daud MK, Wan Mohammad Z, Hamizan A, Husain S. The clinical and radiological characterizations of the allergic phenotype of chronic rhinosinusitis with nasal polyps. J Asthma Allergy. 2020; 13: 523 - 531. https://doi.org/10.2147/JAA.S275536
dc.identifier.citedreferenceKaymakci M, Erel F, Bulbul E, Yazici H, Acar M, Yanik B. Maxillary sinus aeration in allergic rhinitis. J Craniofac Surg. 2015; 26 ( 4 ): e288 - e290. https://doi.org/10.1097/SCS.0000000000001558
dc.identifier.citedreferenceHizli O, Kayabasi S, Ozkan D. Is Nasal Septal Body Size Associated With Inferior Turbinate Hypertrophy and Allergic Rhinitis? J Craniofac Surg. 2020; 31 ( 3 ): 778 - 781. https://doi.org/10.1097/SCS.0000000000006107
dc.identifier.citedreferencePearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012; 380 ( 9840 ): 499 - 505. https://doi.org/10.1016/S0140-6736(12)60815-0
dc.identifier.citedreferenceMeulepas JM, Ronckers CM, Smets A, et al. Radiation exposure from pediatric CT scans and subsequent cancer risk in the Netherlands. J Natl Cancer Inst. 2019; 111 ( 3 ): 256 - 263. https://doi.org/10.1093/jnci/djy104
dc.identifier.citedreferenceMathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013; 346: f2360. https://doi.org/10.1136/bmj.f2360
dc.identifier.citedreferenceSharhan SSA, Lee EJ, Hwang CS, et al. Radiological comparison of inferior turbinate hypertrophy between allergic and non-allergic rhinitis: does allergy really augment turbinate hypertrophy? Eur Arch Otorhinolaryngol. 2018; 275 ( 4 ): 923 - 929. https://doi.org/10.1007/s00405-018-4893-8
dc.identifier.citedreferenceBrown HM, Su S, Thantrey N. Prick testing for allergens standardized by using a precision needle. Clin Allergy. 1981; 11 ( 1 ): 95 - 98. https://doi.org/10.1111/j.1365-2222.1981.tb01571.x
dc.identifier.citedreferenceAtes A, Kinikli G, Turgay M, Aydogan N, Duman M. The results of skin prick testing in patients with allergic rhinitis: a comparison between a multiple lancet device and a single lancet. Asian Pac J Allergy Immunol. 2004; 22 ( 2-3 ): 109 - 114.
dc.identifier.citedreferencePhagoo SB, Wilson NM, Silverman M. Skin prick testing using allergen-coated lancets: a comparison between a multiple lancet device and a single lancet applied with varying pressures. Clin Exp Allergy. 1991; 21 ( 5 ): 589 - 593. https://doi.org/10.1111/j.1365-2222.1991.tb00851.x
dc.identifier.citedreferenceRhodius R, Wickens K, Cheng S, Crane J. A comparison of two skin test methodologies and allergens from two different manufacturers. Ann Allergy Asthma Immunol. 2002; 88 ( 4 ): 374 - 379. https://doi.org/10.1016/S1081-1206(10)62367-8
dc.identifier.citedreferenceAnon JB. Introduction to in vivo allergy testing. Otolaryngol Head Neck Surg. 1993; 109 (3 pt 2): 593 - 600.
dc.identifier.citedreferenceKim BJ, Mun SK. Objective measurements using the skin prick test in allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2010; 136 ( 11 ): 1104 - 1106. https://doi.org/10.1001/archoto.2010.185
dc.identifier.citedreferencePiette V, Bourret E, Bousquet J, Demoly P. Prick tests to aeroallergens: is it possible simply to wipe the device between tests? Allergy. 2002; 57 ( 10 ): 940 - 942. https://doi.org/10.1034/j.1398-9995.2002.23536.x
dc.identifier.citedreferenceSander I, Fleischer C, Meurer U, Bruning T, Raulf-Heimsoth M. Allergen content of grass pollen preparations for skin prick testing and sublingual immunotherapy. Allergy. 2009; 64 ( 10 ): 1486 - 1492. https://doi.org/10.1111/j.1398-9995.2009.02040.x
dc.identifier.citedreferenceCurin M, Reininger R, Swoboda I, Focke M, Valenta R, Spitzauer S. Skin prick test extracts for dog allergy diagnosis show considerable variations regarding the content of major and minor dog allergens. Int Arch Allergy Immunol. 2011; 154 ( 3 ): 258 - 263. https://doi.org/10.1159/000321113
dc.identifier.citedreferenceBousquet J, Heinzerling L, Bachert C, et al. Practical guide to skin prick tests in allergy to aeroallergens. Allergy. 2012; 67 ( 1 ): 18 - 24. https://doi.org/10.1111/j.1398-9995.2011.02728.x
dc.identifier.citedreferenceCanonica GW, Ansotegui IJ, Pawankar R, et al. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013; 6 ( 1 ): 17. https://doi.org/10.1186/1939-4551-6-17
dc.identifier.citedreferenceBernstein IL, Li JT, Bernstein DI, et al. Allergy diagnostic testing: an updated practice parameter. Ann Allergy Asthma Immunol. 2008; 100 (3 suppl 3): S1 - S148. https://doi.org/10.1016/s1081-1206(10)60305-5
dc.identifier.citedreferenceOppenheimer J, Nelson HS. Skin testing: a survey of allergists. Ann Allergy Asthma Immunol. 2006; 96 ( 1 ): 19 - 23. https://doi.org/10.1016/S1081-1206(10)61034-4
dc.identifier.citedreferenceChafen JJ, Newberry SJ, Riedl MA, et al. Diagnosing and managing common food allergies: a systematic review. JAMA. 2010; 303 ( 18 ): 1848 - 1856. https://doi.org/10.1001/jama.2010.582
dc.identifier.citedreferenceTschopp JM, Sistek D, Schindler C, et al. Current allergic asthma and rhinitis: diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop). Results from 8329 randomized adults from the SAPALDIA Study. Swiss Study on Air Pollution and Lung Diseases in Adults. Allergy. 1998; 53 ( 6 ): 608 - 613. https://doi.org/10.1111/j.1398-9995.1998.tb03937.x
dc.identifier.citedreferenceCorren J, Shapiro G, Reimann J, et al. Allergen skin tests and free IgE levels during reduction and cessation of omalizumab therapy. J Allergy Clin Immunol. 2008; 121 ( 2 ): 506 - 511. https://doi.org/10.1016/j.jaci.2007.11.026
dc.identifier.citedreferenceAnsotegui IJ, Melioli G, Canonica GW, et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J. 2020; 13 ( 2 ): 100080. https://doi.org/10.1016/j.waojou.2019.100080
dc.identifier.citedreferenceNevis IF, Binkley K, Kabali C. Diagnostic accuracy of skin-prick testing for allergic rhinitis: a systematic review and meta-analysis. Allergy Asthma Clin Immunol. 2016; 12: 20. https://doi.org/10.1186/s13223-016-0126-0
dc.identifier.citedreferenceGungor A, Houser SM, Aquino BF, et al. A comparison of skin endpoint titration and skin-prick testing in the diagnosis of allergic rhinitis. Ear Nose Throat J. 2004; 83 ( 1 ): 54 - 60.
dc.identifier.citedreferenceKrouse JH, Shah AG, Kerswill K. Skin testing in predicting response to nasal provocation with alternaria. Laryngoscope. 2004; 114 ( 8 ): 1389 - 1393. https://doi.org/10.1097/00005537-200408000-00013
dc.identifier.citedreferenceKrouse JH, Sadrazodi K, Kerswill K. Sensitivity and specificity of prick and intradermal testing in predicting response to nasal provocation with timothy grass antigen. Otolaryngol Head Neck Surg. 2004; 131 ( 3 ): 215 - 219. https://doi.org/10.1016/j.otohns.2004.03.024
dc.identifier.citedreferenceZarei M, Remer CF, Kaplan MS, et al. Optimal skin prick wheal size for diagnosis of cat allergy. Ann Allergy Asthma Immunol. 2004; 92 ( 6 ): 604 - 610. https://doi.org/10.1016/S1081-1206(10)61425-1
dc.identifier.citedreferencePumhirun P, Jane-Trakoonroj S, Wasuwat P. Comparison of in vitro assay for specific IgE and skin prick test with intradermal test in patients with allergic rhinitis. Asian Pac J Allergy Immunol. 2000; 18 ( 3 ): 157 - 160.
dc.identifier.citedreferenceHeinzerling L, Mari A, Bergmann KC, et al. The skin prick test – European standards. Clin Transl Allergy. 2013; 3 ( 1 ): 3. https://doi.org/10.1186/2045-7022-3-3
dc.identifier.citedreferenceEscudero AI, Sanchez-Guerrero IM, Mora AM, et al. Cost-effectiveness of various methods of diagnosing hypersensitivity to Alternaria. Allergol Immunopathol (Madr). 1993; 21 ( 4 ): 153 - 157.
dc.identifier.citedreferenceTrevino RJ, Veling MC. The importance of quantifying skin reactivity in treating allergic rhinitis with immunotherapy. Ear Nose Throat J. 2000; 79 ( 5 ): 362 - 364, 366.
dc.identifier.citedreferencePeltier J, Ryan MW. Comparison of intradermal dilutional testing, skin prick testing, and modified quantitative testing for common allergens. Otolaryngol Head Neck Surg. 2007; 137 ( 2 ): 246 - 249. https://doi.org/10.1016/j.otohns.2007.05.002
dc.identifier.citedreferenceCalabria CW, Hagan L. The role of intradermal skin testing in inhalant allergy. Ann Allergy Asthma Immunol. 2008; 101 ( 4 ): 337 - 347, quiz 347, 418. https://doi.org/10.1016/S1081-1206(10)60307-9
dc.identifier.citedreferenceNiemeijer NR, Fluks AF, de Monchy JG. Optimization of skin testing. II. Evaluation of concentration and cutoff values, as compared with RAST and clinical history, in a multicenter study. Allergy. 1993; 48 ( 7 ): 498 - 503. https://doi.org/10.1111/j.1398-9995.1993.tb01105.x
dc.identifier.citedreferenceHealth Quality Ontario. Skin testing for allergic rhinitis: a health technology assessment. Ont Health Technol Assess Ser. 2016; 16 ( 10 ): 1 - 45.
dc.identifier.citedreferenceLarrabee YC, Reisacher W. Intradermal testing after negative skin prick testing for patients with high suspicion of allergy. Int Forum Allergy Rhinol. 2015; 5 ( 6 ): 547 - 550. https://doi.org/10.1002/alr.21512
dc.identifier.citedreferenceNelson HS, Oppenheimer J, Buchmeier A, Kordash TR, Freshwater LL. An assessment of the role of intradermal skin testing in the diagnosis of clinically relevant allergy to timothy grass. J Allergy Clin Immunol. 1996; 97 ( 6 ): 1193 - 1201. https://doi.org/10.1016/s0091-6749(96)70184-7
dc.identifier.citedreferenceSchwindt CD, Hutcheson PS, Leu SY, Dykewicz MS. Role of intradermal skin tests in the evaluation of clinically relevant respiratory allergy assessed using patient history and nasal challenges. Ann Allergy Asthma Immunol. 2005; 94 ( 6 ): 627 - 633. https://doi.org/10.1016/S1081-1206(10)61319-1
dc.identifier.citedreferenceLockey RF, Benedict LM, Turkeltaub PC, Bukantz SC. Fatalities from immunotherapy (IT) and skin testing (ST). J Allergy Clin Immunol. 1987; 79 ( 4 ): 660 - 677. https://doi.org/10.1016/s0091-6749(87)80164-1
dc.identifier.citedreferenceSharma HP, Wood RA, Bravo AR, Matsui EC. A comparison of skin prick tests, intradermal skin tests, and specific IgE in the diagnosis of mouse allergy. J Allergy Clin Immunol. 2008; 121 ( 4 ): 933 - 939. https://doi.org/10.1016/j.jaci.2008.01.023
dc.identifier.citedreferenceSimons JP, Rubinstein EN, Kogut VJ, Melfi PJ, Ferguson BJ. Comparison of Multi-Test II skin prick testing to intradermal dilutional testing. Otolaryngol Head Neck Surg. 2004; 130 ( 5 ): 536 - 544. https://doi.org/10.1016/j.otohns.2004.02.005
dc.identifier.citedreferenceNiemeijer NR, Goedewaagen B, Kauffman HF, de Monchy JG. Optimization of skin testing. I. Choosing allergen concentrations and cutoff values by factorial design. Allergy. 1993; 48 ( 7 ): 491 - 497. https://doi.org/10.1111/j.1398-9995.1993.tb01104.x
dc.identifier.citedreferenceHurst DS, McDaniel AB. Clinical relevance and advantages of intradermal test results in 371 patients with allergic rhinitis, asthma and/or otitis media with effusion. Cells. 2021; 10 ( 11 ): 3224. https://doi.org/10.3390/cells10113224
dc.identifier.citedreferenceErel F, Sarioglu N, Kose M, et al. Intradermal skin testing in allergic rhinitis and asthma with negative skin prick tests. Iran J Allergy Asthma Immunol. 2017; 16 ( 3 ): 193 - 197.
dc.identifier.citedreferencePeltier J, Ryan MW. Comparison of intradermal dilutional testing with the Multi-Test II applicator in testing for mold allergy. Otolaryngol Head Neck Surg. 2006; 134 ( 2 ): 240 - 244. https://doi.org/10.1016/j.otohns.2005.10.051
dc.identifier.citedreferenceSeshul M, Pillsbury H, 3rd, Eby T. Use of intradermal dilutional testing and skin prick testing: clinical relevance and cost efficiency. Laryngoscope. 2006; 116 ( 9 ): 1530 - 1538. https://doi.org/10.1097/01.mlg.0000234916.43285.f8
dc.identifier.citedreferencePurohit A, Laffer S, Metz-Favre C, et al. Poor association between allergen-specific serum immunoglobulin E levels, skin sensitivity and basophil degranulation: a study with recombinant birch pollen allergen Bet v 1 and an immunoglobulin E detection system measuring immunoglobulin E capable of binding to Fc epsilon RI. Clin Exp Allergy. 2005; 35 ( 2 ): 186 - 192. https://doi.org/10.1111/j.1365-2222.2005.02156.x
dc.identifier.citedreferenceBrown WG, Halonen MJ, Kaltenborn WT, Barbee RA. The relationship of respiratory allergy, skin test reactivity, and serum IgE in a community population sample. J Allergy Clin Immunol. 1979; 63 ( 5 ): 328 - 335. https://doi.org/10.1016/0091-6749(79)90127-1
dc.identifier.citedreferenceReddy PM, Nagaya H, Pascual HC, et al. Reappraisal of intracutaneous tests in the diagnosis of reaginic allergy. J Allergy Clin Immunol. 1978; 61 ( 1 ): 36 - 41. https://doi.org/10.1016/0091-6749(78)90471-2
dc.identifier.citedreferenceFornadley JA. Skin testing for inhalant allergy. Int Forum Allergy Rhinol. 2014; 4 (Suppl 2): S41 - S45. https://doi.org/10.1002/alr.21393
dc.identifier.citedreferenceKrouse JH, Krouse HJ. Modulation of immune mediators with MQT-based immunotherapy. Otolaryngol Head Neck Surg. 2006; 134 ( 5 ): 746 - 750. https://doi.org/10.1016/j.otohns.2006.01.007
dc.identifier.citedreferenceTantilipikorn P, Danpornprasert P, Ngaotepprutaram P, Assanasen P, Bunnag C, Thinkhamrop B. The correlation between intradermal testing and serum specific IgE to house dust mite in negative skin prick test allergic rhinitis adult patients. Asian Pac J Allergy Immunol. 2015; 33 ( 4 ): 308 - 311. https://doi.org/10.12932/AP0579.33.4.2015
dc.identifier.citedreferenceLewis AF, Franzese C, Stringer SP. Diagnostic evaluation of inhalant allergies: a cost-effectiveness analysis. Am J Rhinol. 2008; 22 ( 3 ): 246 - 252. https://doi.org/10.2500/ajr.2008.22.3163
dc.identifier.citedreferenceLong WF, Taylor RJ, Wagner CJ, Leavengood DC, Nelson HS. Skin test suppression by antihistamines and the development of subsensitivity. J Allergy Clin Immunol. 1985; 76 ( 1 ): 113 - 117. https://doi.org/10.1016/0091-6749(85)90813-9
dc.identifier.citedreferencePhillips MJ, Meyrick Thomas RH, Moodley I, Davies RJ. A comparison of the in vivo effects of ketotifen, clemastine, chlorpheniramine and sodium cromoglycate on histamine and allergen induced weals in human skin. Br J Clin Pharmacol. 1983; 15 ( 3 ): 277 - 286. https://doi.org/10.1111/j.1365-2125.1983.tb01500.x
dc.identifier.citedreferenceSimons FE, Simons KJ. Clinical pharmacology of new histamine H1 receptor antagonists. Clin Pharmacokinet. 1999; 36 ( 5 ): 329 - 352. https://doi.org/10.2165/00003088-199936050-00003
dc.identifier.citedreferenceCook TJ, MacQueen DM, Wittig HJ, Thornby JI, Lantos RL, Virtue CM. Degree and duration of skin test suppression and side effects with antihistamines. A double blind controlled study with five antihistamines. J Allergy Clin Immunol. 1973; 51 ( 2 ): 71 - 77. https://doi.org/10.1016/s0091-6749(73)80002-8
dc.identifier.citedreferenceAlmind M, Dirksen A, Nielsen NH, Svendsen UG. Duration of the inhibitory activity on histamine-induced skin weals of sedative and non-sedative antihistamines. Allergy. 1988; 43 ( 8 ): 593 - 596. https://doi.org/10.1111/j.1398-9995.1988.tb00932.x
dc.identifier.citedreferencePearlman DS, Grossman J, Meltzer EO. Histamine skin test reactivity following single and multiple doses of azelastine nasal spray in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2003; 91 ( 3 ): 258 - 262. https://doi.org/10.1016/S1081-1206(10)63527-2
dc.identifier.citedreferenceMiller J, Nelson HS. Suppression of immediate skin tests by ranitidine. J Allergy Clin Immunol. 1989; 84 (6 pt 1): 895 - 899. https://doi.org/10.1016/0091-6749(89)90386-2
dc.identifier.citedreferenceKupczyk M, Kuprys I, Bochenska-Marciniak M, Gorski P, Kuna P. Ranitidine (150 mg daily) inhibits wheal, flare, and itching reactions in skin-prick tests. Allergy Asthma Proc. 2007; 28 ( 6 ): 711 - 715. https://doi.org/10.2500/aap.2007.28.3064
dc.identifier.citedreferenceHarvey RP, Schocket AL. The effect of H1 and H2 blockade on cutaneous histamine response in man. J Allergy Clin Immunol. 1990; 65 ( 2 ): 136 - 139.
dc.identifier.citedreferenceRao KS, Menon PK, Hilman BC, Sebastian CS, Bairnsfather L. Duration of the suppressive effect of tricyclic antidepressants on histamine-induced wheal-and-flare reactions in human skin. J Allergy Clin Immunol. 1988; 82 (5 pt 1): 752 - 757. https://doi.org/10.1016/0091-6749(88)90075-9
dc.identifier.citedreferenceIsik SR, Celikel S, Karakaya G, Ulug B, Kalyoncu AF. The effects of antidepressants on the results of skin prick tests used in the diagnosis of allergic diseases. Int Arch Allergy Immunol. 2011; 154 ( 1 ): 63 - 68. https://doi.org/10.1159/000319210
dc.identifier.citedreferenceNoga O, Hanf G, Kunkel G. Immunological and clinical changes in allergic asthmatics following treatment with omalizumab. Int Arch Allergy Immunol. 2003; 131 ( 1 ): 46 - 52. https://doi.org/10.1159/000070434
dc.identifier.citedreferenceHill 3rd SL, Krouse JH. The effects of montelukast on intradermal wheal and flare. Otolaryngol Head Neck Surg. 2003; 129 ( 3 ): 199 - 203. https://doi.org/10.1016/S0194-5998(03)00607-7
dc.identifier.citedreferenceSimons FE, Johnston L, Gu X, Simons KJ. Suppression of the early and late cutaneous allergic responses using fexofenadine and montelukast. Ann Allergy Asthma Immunol. 2001; 86 ( 1 ): 44 - 50. https://doi.org/10.1016/S1081-1206(10)62354-X
dc.identifier.citedreferenceCuhadaroglu C, Erelel M, Kiyan E, Ece T, Erkan F. Role of Zafirlukast on skin prick test. Allergol Immunopathol (Madr). 2001; 29 ( 2 ): 66 - 68. https://doi.org/10.1016/s0301-0546(01)79020-9
dc.identifier.citedreferenceDes Roches A, Paradis L, Bougeard YH, Godard P, Bousquet J, Chanez P. Long-term oral corticosteroid therapy does not alter the results of immediate-type allergy skin prick tests. J Allergy Clin Immunol. 1996; 98 ( 3 ): 522 - 527. https://doi.org/10.1016/s0091-6749(96)70085-4
dc.identifier.citedreferenceSlott RI, Zweiman B. A controlled study of the effect of corticosteroids on immediate skin test reactivity. J Allergy Clin Immunol. 1974; 54 ( 4 ): 229 - 234. https://doi.org/10.1016/0091-6749(74)90065-7
dc.identifier.citedreferenceOlson R, Karpink MH, Shelanski S, Atkins PC, Zweiman B. Skin reactivity to codeine and histamine during prolonged corticosteroid therapy. J Allergy Clin Immunol. 1990; 86 ( 2 ): 153 - 159. https://doi.org/10.1016/s0091-6749(05)80060-0
dc.identifier.citedreferenceGeng B, Thakor A, Clayton E, Finkas L, Riedl MA. Factors associated with negative histamine control for penicillin allergy skin testing in the inpatient setting. Ann Allergy Asthma Immunol. 2015; 115 ( 1 ): 33 - 38. https://doi.org/10.1016/j.anai.2015.04.012
dc.identifier.citedreferenceNarasimha SK, Srinivas CR, Mathew AC. Effect of topical corticosteroid application frequency on histamine-induced wheals. Int J Dermatol. 2005; 44 ( 5 ): 425 - 427. https://doi.org/10.1111/j.1365-4632.2005.02482.x
dc.identifier.citedreferenceAndersson M, Pipkorn U. Inhibition of the dermal immediate allergic reaction through prolonged treatment with topical glucocorticosteroids. J Allergy Clin Immunol. 1987; 79 ( 2 ): 345 - 349. https://doi.org/10.1016/0091-6749(87)90153-9
dc.identifier.citedreferencePipkorn U, Hammarlund A, Enerback L. Prolonged treatment with topical glucocorticoids results in an inhibition of the allergen-induced weal-and-flare response and a reduction in skin mast cell numbers and histamine content. Clin Exp Allergy. 1989; 19 ( 1 ): 19 - 25. https://doi.org/10.1111/j.1365-2222.1989.tb02338.x
dc.identifier.citedreferenceGradman J, Wolthers OD. Suppressive effects of topical mometasone furoate and tacrolimus on skin prick testing in children. Pediatr Dermatol. 2008; 25 ( 2 ): 269 - 270. https://doi.org/10.1111/j.1525-1470.2008.00651.x
dc.identifier.citedreferenceShah KM, Rank MA, Dave SA, Oslie CL, Butterfield JH. Predicting which medication classes interfere with allergy skin testing. Allergy Asthma Proc. 2010; 31 ( 6 ): 477 - 482. https://doi.org/10.2500/aap.2010.31.3382
dc.identifier.citedreferenceDuenas-Laita A, Ruiz-Munoz P, Armentia A, Pinacho F, Martin-Armentia B. Successful treatment of chronic drug-resistant urticaria with alprazolam. J Allergy Clin Immunol. 2009; 123 ( 2 ): 504 - 505. https://doi.org/10.1016/j.jaci.2008.12.005
dc.identifier.citedreferenceSpergel JM, Nurse N, Taylor P, ParneixSpake A. Effect of topical pimecrolimus on epicutaneous skin testing. J Allergy Clin Immunol. 2004; 114 ( 3 ): 695 - 697. https://doi.org/10.1016/j.jaci.2004.05.067
dc.identifier.citedreferenceMore DR, Napoli DC, Hagan LL. Herbal supplements and skin testing: the lack of effect of commonly used herbal supplements on histamine skin prick testing. Allergy. 2003; 58 ( 6 ): 492 - 494. https://doi.org/10.1034/j.1398-9995.2003.00140.x
dc.identifier.citedreferenceSimons FE, Simons KJ. Peripheral H1-blockade effect of fexofenadine. Ann Allergy Asthma Immunol. 1997; 79 ( 6 ): 530 - 532. https://doi.org/10.1016/S1081-1206(10)63061-X
dc.identifier.citedreferenceKomarow HD, Arceo S, Young M, Nelson C, Metcalfe DD. Dissociation between history and challenge in patients with physical urticaria. J Allergy Clin Immunol Pract. 2014; 2 ( 6 ): 786 - 790. https://doi.org/10.1016/j.jaip.2014.07.008
dc.identifier.citedreferenceAndo M, Shima M. Serum interleukins 12 and 18 and immunoglobulin E concentrations and allergic symptoms in Japanese schoolchildren. J Investig Allergol Clin Immunol. 2007; 17 ( 1 ): 14 - 19.
dc.identifier.citedreferenceMarinho S, Simpson A, Soderstrom L, Woodcock A, Ahlstedt S, Custovic A. Quantification of atopy and the probability of rhinitis in preschool children: a population-based birth cohort study. Allergy. 2007; 62 ( 12 ): 1379 - 1386. https://doi.org/10.1111/j.1398-9995.2007.01502.x
dc.identifier.citedreferenceSalo PM, Calatroni A, Gergen PJ, et al. Allergy-related outcomes in relation to serum IgE: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol. 2011; 127 ( 5 ): 1226 - 1235.e7. https://doi.org/10.1016/j.jaci.2010.12.1106
dc.identifier.citedreferenceJacobs TS, Forno E, Brehm JM, et al. Underdiagnosis of allergic rhinitis in underserved children. J Allergy Clin Immunol. 2014; 134 ( 3 ): 737 - 739.e6. https://doi.org/10.1016/j.jaci.2014.03.028
dc.identifier.citedreferenceTu YL, Chang SW, Tsai HJ, et al. Total serum IgE in a population-based study of Asian children in Taiwan: reference value and significance in the diagnosis of allergy. PLoS One. 2013; 8 ( 11 ): e80996. https://doi.org/10.1371/journal.pone.0080996
dc.identifier.citedreferencePark SC, Kim JH, Lee KH, Hong SC, Lee HS, Kang JW. Association of serum eosinophilia and total immunoglobulin E concentration with the risk of allergic symptoms and allergic sensitization, respectively: a 2-year follow-up study. Int J Pediatr Otorhinolaryngol. 2016; 86: 167 - 171. https://doi.org/10.1016/j.ijporl.2016.05.005
dc.identifier.citedreferenceKalpaklioglu AF, Kavut AB. Allergic and nonallergic rhinitis: can we find the differences/similarities between the two pictures? J Asthma. 2009; 46 ( 5 ): 481 - 485. https://doi.org/10.1080/02770900902849897
dc.identifier.citedreferenceJung YG, Kim KH, Kim HY, Dhong HJ, Chung SK. Predictive capabilities of serum eosinophil cationic protein, percentage of eosinophils and total immunoglobulin E in allergic rhinitis without bronchial asthma. J Int Med Res. 2011; 39 ( 6 ): 2209 - 2216. https://doi.org/10.1177/147323001103900617
dc.identifier.citedreferenceLi Y, Wu R, Tian Y, Bao T, Tian Z. The correlation of serum eosinophil cationic protein level with eosinophil count, and total IgE level in Korean adult allergic rhinitis patients. Asian Pac J Allergy Immunol. 2016; 34 ( 1 ): 33 - 37. https://doi.org/10.12932/AP0746
dc.identifier.citedreferenceSharma M, Khaitan T, Raman S, Jain R, Kabiraj A. Determination of Serum IgE and Eosinophils as a Diagnostic Indicator in Allergic Rhinitis. Indian J Otolaryngol Head Neck Surg. 2019; 71 (suppl 3): 1957 - 1961. https://doi.org/10.1007/s12070-018-1383-7
dc.identifier.citedreferenceQamar S, Awan N, Cheema KM, Raza N, Ashraf S, Rehman A. Comparative analysis of nasal smear eosinophilia and serum IgE levels for the diagnosis of allergic rhinitis. J Coll Physicians Surg Pak. 2020; 30 ( 12 ): 1297 - 1300. https://doi.org/10.29271/jcpsp.2020.12.1297
dc.identifier.citedreferenceKarli R, Balbaloglu E, Uzun L, Cinar F, Ugur MB. Correlation of symptoms with total IgE and specific IgE levels in patients presenting with allergic rhinitis. Ther Adv Respir Dis. 2013; 7 ( 2 ): 75 - 79. https://doi.org/10.1177/1753465812468500
dc.identifier.citedreferenceChung D, Park KT, Yarlagadda B, Davis EM, Platt M. The significance of serum total immunoglobulin E for in vitro diagnosis of allergic rhinitis. Int Forum Allergy Rhinol. 2014; 4 ( 1 ): 56 - 60. https://doi.org/10.1002/alr.21240
dc.identifier.citedreferenceSatwani H, Rehman A, Ashraf S, Hassan A. Is serum total IgE levels a good predictor of allergies in children? J Pak Med Assoc. 2009; 59 ( 10 ): 698 - 702.
dc.identifier.citedreferenceDemirjian M, Rumbyrt JS, Gowda VC, Klaustermeyer WB. Serum IgE and eosinophil count in allergic rhinitis–analysis using a modified Bayes’ theorem. Allergol Immunopathol (Madr). 2012; 40 ( 5 ): 281 - 287. https://doi.org/10.1016/j.aller.2011.05.016
dc.identifier.citedreferenceShamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy. 2017; 72 ( 8 ): 1156 - 1173. https://doi.org/10.1111/all.13138
dc.identifier.citedreferenceGoodman RE, Chapman MD, Slater JE. The allergen: sources, extracts, and molecules for diagnosis of allergic disease. J Allergy Clin Immunol Pract. 2020; 8 ( 8 ): 2506 - 2514. https://doi.org/10.1016/j.jaip.2020.06.043
dc.identifier.citedreferenceHamilton RG. Clinical laboratory assessment of immediate-type hypersensitivity. J Allergy Clin Immunol. 2010; 125 (2 suppl 2): S284 - S296. https://doi.org/10.1016/j.jaci.2009.09.055
dc.identifier.citedreferenceSteering Committee Authors, Review Panel Members. A WAO - ARIA - GA(2)LEN consensus document on molecular-based allergy diagnosis (PAMD@): update 2020. World Allergy Organ J. 2020; 13 ( 2 ): 100091. https://doi.org/10.1016/j.waojou.2019.100091
dc.identifier.citedreferenceWestwood M, Ramaekers B, Lang S, et al. ImmunoCAP(R) ISAC and Microtest for multiplex allergen testing in people with difficult to manage allergic disease: a systematic review and cost analysis. Health Technol Assess. 2016; 20 ( 67 ): 1 - 178. https://doi.org/10.3310/hta20670
dc.identifier.citedreferenceCox L. Overview of serological-specific IgE antibody testing in children. Curr Allergy Asthma Rep. 2011; 11 ( 6 ): 447 - 453. https://doi.org/10.1007/s11882-011-0226-3
dc.identifier.citedreferenceEmanuel IA. In vitro testing for allergy diagnosis. Otolaryngol Clin North Am. 2003; 36 ( 5 ): 879 - 893. https://doi.org/10.1016/s0030-6665(03)00051-3
dc.identifier.citedreferenceIncorvaia C, Al-Ahmad M, Ansotegui IJ, et al. Personalized medicine for allergy treatment: allergen immunotherapy still a unique and unmatched model. Allergy. 2021; 76 ( 4 ): 1041 - 1052. https://doi.org/10.1111/all.14575
dc.identifier.citedreferenceCorsico AG, De Amici M, Ronzoni V, et al. Allergen-specific immunoglobulin E and allergic rhinitis severity. Allergy Rhinol (Providence). 2017; 8 ( 1 ): 1 - 4. https://doi.org/10.2500/ar.2017.8.0187
dc.identifier.citedreferenceCiprandi G, De Amici M, Giunta V, Marseglia GL. Comparison of serum specific IgE and skin prick test in polysensitized patients. Int J Immunopathol Pharmacol. 2010; 23 ( 4 ): 1293 - 1295. https://doi.org/10.1177/039463201002300438
dc.identifier.citedreferenceChen ST, Sun HL, Lu KH, Lue KH, Chou MC. Correlation of immunoglobulin E, eosinophil cationic protein, and eosinophil count with the severity of childhood perennial allergic rhinitis. J Microbiol Immunol Infect. 2006; 39 ( 3 ): 212 - 218.
dc.identifier.citedreferenceCiprandi G, Comite P, Ferrero F, Fontana V, Bruzzone M, Mussap M. Serum allergen-specific IgE, allergic rhinitis severity, and age. Rhinology. 2016; 54 ( 3 ): 231 - 238. https://doi.org/10.4193/Rhino15.300
dc.identifier.citedreferenceCiprandi G, Comite P, Ferrero F, et al. Birch allergy and oral allergy syndrome: the practical relevance of serum immunoglobulin E to Bet v 1. Allergy Asthma Proc. 2016; 37 ( 1 ): 43 - 49. https://doi.org/10.2500/aap.2016.37.3914
dc.identifier.citedreferenceHowarth P, Malling HJ, Molimard M, Devillier P. Analysis of allergen immunotherapy studies shows increased clinical efficacy in highly symptomatic patients. Allergy. 2012; 67 ( 3 ): 321 - 327. https://doi.org/10.1111/j.1398-9995.2011.02759.x
dc.identifier.citedreferenceKowalski ML, Ansotegui I, Aberer W, et al. Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement. World Allergy Organ J. 2016; 9 ( 1 ): 33. https://doi.org/10.1186/s40413-016-0122-3
dc.identifier.citedreferenceBrown CE, Jones CJ, Stuttaford L, Robertson A, Rashid RS, Smith HE. A qualitative study of the allergy testing experiences, views and preferences of adult patients. Clin Transl Allergy. 2016; 6 ( 1 ): 34. https://doi.org/10.1186/s13601-016-0125-8
dc.identifier.citedreferenceWilliams PB, Barnes JH, Szeinbach SL, Sullivan TJ. Analytic precision and accuracy of commercial immunoassays for specific IgE: establishing a standard. J Allergy Clin Immunol. 2000; 105 (6 pt 1): 1221 - 1230. https://doi.org/10.1067/mai.2000.105219
dc.identifier.citedreferenceWood RA, Segall N, Ahlstedt S, Williams PB. Accuracy of IgE antibody laboratory results. Ann Allergy Asthma Immunol. 2007; 99 ( 1 ): 34 - 41. https://doi.org/10.1016/S1081-1206(10)60618-7
dc.identifier.citedreferenceWang J, Godbold JH, Sampson HA. Correlation of serum allergy (IgE) tests performed by different assay systems. J Allergy Clin Immunol. 2008; 121 ( 5 ): 1219 - 1224. https://doi.org/10.1016/j.jaci.2007.12.1150
dc.identifier.citedreferenceOwnby DR, Bailey J. Comparison of MAST with radioallergosorbent and skin tests for diagnosis of allergy in children. Am J Dis Child. 1986; 140 ( 1 ): 45 - 48. https://doi.org/10.1001/archpedi.1986.02140150047031
dc.identifier.citedreferenceFerguson AC, Murray AB. Predictive value of skin prick tests and radioallergosorbent tests for clinical allergy to dogs and cats. CMAJ. 1986; 134 ( 12 ): 1365 - 1368.
dc.identifier.citedreferenceWide L, Bennich H, Johansson SG. Diagnosis of allergy by an in-vitro test for allergen antibodies. Lancet. 1967; 2 ( 7526 ): 1105 - 1107. https://doi.org/10.1016/s0140-6736(67)90615-0
dc.identifier.citedreferenceTian M, Zhou Y, Zhang W, Cui Y. Der p 1 and Der p 2 specific immunoglobulin E measurement for diagnosis of Dermatophagoides pteronyssinus allergy: a systematic review and meta-analysis. Allergy Asthma Proc. 2017; 38 ( 5 ): 333 - 342. https://doi.org/10.2500/aap.2017.38.4073
dc.identifier.citedreferenceKnight V, Wolf ML, Trikha A, Curran-Everett D, Hiserote M, Harbeck RJ. A comparison of specific IgE and skin prick test results to common environmental allergens using the HYTEC 288. J Immunol Methods. 2018; 462: 9 - 12. https://doi.org/10.1016/j.jim.2018.07.005
dc.identifier.citedreferencevan Hage M, Schmid-Grendelmeier P, Skevaki C, et al. Performance evaluation of ImmunoCAP(R) ISAC 112: a multi-site study. Clin Chem Lab Med. 2017; 55 ( 4 ): 571 - 577. https://doi.org/10.1515/cclm-2016-0586
dc.identifier.citedreferenceChinoy B, Yee E, Bahna SL. Skin testing versus radioallergosorbent testing for indoor allergens. Clin Mol Allergy. 2005; 3 ( 1 ): 4. https://doi.org/10.1186/1476-7961-3-4
dc.identifier.citedreferenceBignardi D, Comite P, Mori I, et al. Allergen-specific IgE: comparison between skin prick test and serum assay in real life. Allergol Select. 2019; 3 ( 1 ): 9 - 14. https://doi.org/10.5414/ALX01891E
dc.identifier.citedreferenceKleinJan A, Godthelp T, van Toornenenbergen AW, Fokkens WJ. Allergen binding to specific IgE in the nasal mucosa of allergic patients. J Allergy Clin Immunol. 1997; 99 ( 4 ): 515 - 521. https://doi.org/10.1016/s0091-6749(97)70079-4
dc.identifier.citedreferenceNaclerio RM, Creticos PS, Norman PS, Lichtenstein LM. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis. 1986; 134 ( 5 ): 1102. https://doi.org/10.1164/arrd.1986.134.5.1102
dc.identifier.citedreferenceAhn JY, Hong SJ, Choi BS. Clinical evaluation of techniques for measuring nasal-specific immunoglobulin E in pediatric patients. J Korean Med Sci. 2017; 32 ( 12 ): 2005 - 2008. https://doi.org/10.3346/jkms.2017.32.12.2005
dc.identifier.citedreferenceCampo P, Del Carmen Plaza-Seron M, Eguiluz-Gracia I, et al. Direct intranasal application of the solid phase of ImmunoCAP(R) increases nasal specific immunoglobulin E detection in local allergic rhinitis patients. Int Forum Allergy Rhinol. 2018; 8 ( 1 ): 15 - 19. https://doi.org/10.1002/alr.22039
dc.identifier.citedreferenceOta Y, Ikemiyagi Y, Sato T, et al. Measuring local immunoglobulin E in the inferior turbinate nasal mucosa in patients with allergic rhinitis. Allergol Int. 2016; 65 ( 4 ): 396 - 399. https://doi.org/10.1016/j.alit.2016.03.009
dc.identifier.citedreferenceHamizan A, Alvarado R, Rimmer J, et al. Nasal mucosal brushing as a diagnostic method for allergic rhinitis. Allergy Asthma Proc. 2019; 40 ( 3 ): 167 - 172. https://doi.org/10.2500/aap.2019.40.4209
dc.identifier.citedreferenceReisacher WR. Mucosal brush biopsy testing of the inferior turbinate to detect local, antigen-specific immunoglobulin E. Int Forum Allergy Rhinol. 2012; 2 ( 1 ): 69 - 74. https://doi.org/10.1002/alr.20103
dc.identifier.citedreferenceHamizan AW, Rimmer J, Alvarado R, et al. Turbinate-specific IgE in normal and rhinitic patients. Am J Rhinol Allergy. 2019; 33 ( 2 ): 178 - 183. https://doi.org/10.1177/1945892418825224
dc.identifier.citedreferenceSaricilar EC, Hamizan A, Alvarado R, et al. Optimizing protein harvest from nasal brushings for determining local allergy responses. Am J Rhinol Allergy. 2018; 32 ( 4 ): 244 - 251. https://doi.org/10.1177/1945892418777668
dc.identifier.citedreferenceFuiano N, Fusilli S, Incorvaia C. A role for measurement of nasal IgE antibodies in diagnosis of Alternaria-induced rhinitis in children. Allergol Immunopathol (Madr). 2012; 40 ( 2 ): 71 - 74. https://doi.org/10.1016/j.aller.2011.03.010
dc.identifier.citedreferenceKrajewska-Wojtys A, Jarzab J, Gawlik R, Bozek A. Local allergic rhinitis to pollens is underdiagnosed in young patients. Am J Rhinol Allergy. 2016; 30 ( 6 ): 198 - 201. https://doi.org/10.2500/ajra.2016.30.4369
dc.identifier.citedreferenceGelardi M, Guglielmi AV, Iannuzzi L, et al. Local allergic rhinitis: entopy or spontaneous response? World Allergy Organ J. 2016; 9 ( 1 ): 39. https://doi.org/10.1186/s40413-016-0126-z
dc.identifier.citedreferenceSantamaria L, Calle A, Tejada-Giraldo Biol M, Calvo V, Sanchez J, Cardona R. Nasal specific IgE to Der p is not an acceptable screening test to predict the outcome of the nasal challenge test in patients with non-allergic rhinitis. World Allergy Organ J. 2020; 13 ( 9 ): 100461. https://doi.org/10.1016/j.waojou.2020.100461
dc.identifier.citedreferenceKim JH, Yoon MG, Seo DH, et al. Detection of allergen specific antibodies from nasal secretion of allergic rhinitis patients. Allergy Asthma Immunol Res. 2016; 8 ( 4 ): 329 - 337. https://doi.org/10.4168/aair.2016.8.4.329
dc.identifier.citedreferenceHamizan AW, Rimmer J, Husain S, et al. Local specific immunoglobulin E among patients with nonallergic rhinitis: a systematic review. Rhinology. 2019; 57 ( 1 ): 10 - 20. https://doi.org/10.4193/Rhin18.074
dc.identifier.citedreferenceEguiluz-Gracia I, Ariza A, Testera-Montes A, Rondon C, Campo P. Allergen Immunotherapy for local respiratory allergy. Curr Allergy Asthma Rep. 2020; 20 ( 7 ): 23. https://doi.org/10.1007/s11882-020-00920-w
dc.identifier.citedreferenceSchiavi L, Brindisi G, De Castro G, et al. Nasal reactivity evaluation in children with allergic rhinitis receiving grass pollen sublingual immunotherapy. Allergy Asthma Proc. 2020; 41 ( 5 ): 357 - 362. https://doi.org/10.2500/aap.2020.41.200063
dc.identifier.citedreferenceLee KS, Yu J, Shim D, et al. Local immune responses in children and adults with allergic and nonallergic rhinitis. PLoS One. 2016; 11 ( 6 ): e0156979. https://doi.org/10.1371/journal.pone.0156979
dc.identifier.citedreferenceSakaida H, Masuda S, Takeuchi K. Measurement of Japanese cedar pollen-specific IgE in nasal secretions. Allergol Int. 2014; 63 ( 3 ): 467 - 473. https://doi.org/10.2332/allergolint.13-OA-0668
dc.identifier.citedreferencePowe DG, Groot Kormelink T, Sisson M, et al. Evidence for the involvement of free light chain immunoglobulins in allergic and nonallergic rhinitis. J Allergy Clin Immunol. 2010; 125 ( 1 ): 139 - 145.e1-3. https://doi.org/10.1016/j.jaci.2009.07.025
dc.identifier.citedreferenceAhn CN, Wise SK, Lathers DM, Mulligan RM, Harvey RJ, Schlosser RJ. Local production of antigen-specific IgE in different anatomic subsites of allergic fungal rhinosinusitis patients. Otolaryngol Head Neck Surg. 2009; 141 ( 1 ): 97 - 103. https://doi.org/10.1016/j.otohns.2009.03.002
dc.identifier.citedreferenceCastelli S, Arasi S, Tripodi S, et al. IgE antibody repertoire in nasal secretions of children and adults with seasonal allergic rhinitis: a molecular analysis. Pediatr Allergy Immunol. 2020; 31 ( 3 ): 273 - 280. https://doi.org/10.1111/pai.13148
dc.identifier.citedreferenceSensi LG, Piacentini GL, Nobile E, et al. Changes in nasal specific IgE to mites after periods of allergen exposure-avoidance: a comparison with serum levels. Clin Exp Allergy. 1994; 24 ( 4 ): 377 - 382. https://doi.org/10.1111/j.1365-2222.1994.tb00250.x
dc.identifier.citedreferenceNelson HS, Lahr J, Buchmeier A, McCormick D. Evaluation of devices for skin prick testing. J Allergy Clin Immunol. 1998; 101 (2 pt 1): 153 - 156. https://doi.org/10.1016/S0091-6749(98)70409-9
dc.identifier.citedreferenceAndersen HH, Lundgaard AC, Petersen AS, et al. The Lancet weight determines wheal diameter in response to skin prick testing with histamine. PLoS One. 2016; 11 ( 5 ): e0156211. https://doi.org/10.1371/journal.pone.0156211
dc.identifier.citedreferenceCarr WW, Martin B, Howard RS, et al. Comparison of test devices for skin prick testing. J Allergy Clin Immunol. 2005; 116 ( 2 ): 341 - 346. https://doi.org/10.1016/j.jaci.2005.03.035
dc.identifier.citedreferenceSeibert SM, King TS, Kline D, Mende C, Craig T. Reliability of skin test results when read at different time points. Allergy Asthma Proc. 2011; 32 ( 3 ): 203 - 205. https://doi.org/10.2500/aap.2011.32.3436
dc.identifier.citedreferencevan der Veen MJ, Mulder M, Witteman AM, et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite (Dermatophagoides pteronyssinus) allergens. J Allergy Clin Immunol. 1996; 98 (6 pt 1): 1028 - 1034. https://doi.org/10.1016/s0091-6749(96)80187-4
dc.identifier.citedreferenceMcCann WA, Ownby DR. The reproducibility of the allergy skin test scoring and interpretation by board-certified/board-eligible allergists. Ann Allergy Asthma Immunol. 2002; 89 ( 4 ): 368 - 371. https://doi.org/10.1016/S1081-1206(10)62037-6
dc.identifier.citedreferenceChoi IS, Koh YI, Koh JS, Lee MG. Sensitivity of the skin prick test and specificity of the serum-specific IgE test for airway responsiveness to house dust mites in asthma. J Asthma. 2005; 42 ( 3 ): 197 - 202.
dc.identifier.citedreferenceJung YG, Cho HJ, Park GY, et al. Comparison of the skin-prick test and Phadia ImmunoCAP as tools to diagnose house-dust mite allergy. Am J Rhinol Allergy. 2010; 24 ( 3 ): 226 - 229. https://doi.org/10.2500/ajra.2010.24.3459
dc.identifier.citedreferencePastorello EA, Incorvaia C, Ortolani C, et al. Studies on the relationship between the level of specific IgE antibodies and the clinical expression of allergy: I. Definition of levels distinguishing patients with symptomatic from patients with asymptomatic allergy to common aeroallergens. J Allergy Clin Immunol. 1995; 96 (5 pt 1): 580 - 587. https://doi.org/10.1016/s0091-6749(95)70255-5
dc.identifier.citedreferenceHaxel BR, Huppertz T, Boessert P, Bast F, Fruth K. Correlation of skin test results and specific immunoglobulin E blood levels with nasal provocation testing for house-dust mite allergies. Am J Rhinol Allergy. 2016; 30 ( 1 ): 60 - 64. https://doi.org/10.2500/ajra.2016.30.4262
dc.identifier.citedreferenceGendo K, Larson EB. Evidence-based diagnostic strategies for evaluating suspected allergic rhinitis. Ann Intern Med. 2004; 140 ( 4 ): 278 - 289. https://doi.org/10.7326/0003-4819-140-4-200402170-00010
dc.identifier.citedreferencede Vos G, Nazari R, Ferastraoaru D, et al. Discordance between aeroallergen specific serum IgE and skin testing in children younger than 4 years. Ann Allergy Asthma Immunol. 2013; 110 ( 6 ): 438 - 443. https://doi.org/10.1016/j.anai.2013.03.006
dc.identifier.citedreferenceHoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 2015; 70 ( 11 ): 1393 - 1405. https://doi.org/10.1111/all.12698
dc.identifier.citedreferenceGonzalez-Munoz M, Villota J, Moneo I. Analysis of basophil activation by flow cytometry in pediatric house dust mite allergy. Pediatr Allergy Immunol. 2008; 19 ( 4 ): 342 - 347. https://doi.org/10.1111/j.1399-3038.2007.00656.x
dc.identifier.citedreferenceOzdemir SK, Guloglu D, Sin BA, Elhan AH, Ikinciogullari A, Misirligil Z. Reliability of basophil activation test using CD203c expression in diagnosis of pollen allergy. Am J Rhinol Allergy. 2011; 25 ( 6 ): e225 - e231. https://doi.org/10.2500/ajra.2011.25.3723
dc.identifier.citedreferenceOgulur I, Kiykim A, Baris S, Ozen A, Yuce EG, Karakoc-Aydiner E. Basophil activation test for inhalant allergens in pediatric patients with allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2017; 97: 197 - 201. https://doi.org/10.1016/j.ijporl.2017.04.006
dc.identifier.citedreferenceZidarn M, Robic M, Krivec A, et al. Clinical and immunological differences between asymptomatic HDM-sensitized and HDM-allergic rhinitis patients. Clin Exp Allergy. 2019; 49 ( 6 ): 808 - 818. https://doi.org/10.1111/cea.13361
dc.identifier.citedreferenceMahmood F, Hetland G, Nentwich I, Mirlashari MR, Ghiasvand R, Nissen-Meyer LSH. Agaricus blazei-based mushroom extract supplementation to birch allergic blood donors: a randomized clinical trial. Nutrients. 2019; 11 ( 10 ): 2339. https://doi.org/10.3390/nu11102339
dc.identifier.citedreferenceSaporta M, Kamei S, Persi L, Bousquet J, Arnoux B. Basophil activation during pollen season in patients monosensitized to grass pollens. Allergy. 2001; 56 ( 5 ): 442 - 445. https://doi.org/10.1034/j.1398-9995.2001.056005442.x
dc.identifier.citedreferenceQiao Y, Chen J. Investigating the inflammatory cascade effect of basophil activation in children with allergic rhinitis or asthma, via the IgE-FcepsilonRI-NF-kappaB signaling pathway. Adv Clin Exp Med. 2021; 30 ( 7 ): 673 - 679. https://doi.org/10.17219/acem/135756
dc.identifier.citedreferenceNagao M, Hiraguchi Y, Hosoki K, et al. Allergen-induced basophil CD203c expression as a biomarker for rush immunotherapy in patients with Japanese cedar pollinosis. Int Arch Allergy Immunol. 2008; 146 (suppl 1): 47 - 53. https://doi.org/10.1159/000126061
dc.identifier.citedreferenceVan Overtvelt L, Baron-Bodo V, Horiot S, et al. Changes in basophil activation during grass-pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy. 2011; 66 ( 12 ): 1530 - 1537. https://doi.org/10.1111/j.1398-9995.2011.02696.x
dc.identifier.citedreferenceSwamy RS, Reshamwala N, Hunter T, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012; 130 ( 1 ): 215 - 224.e7. https://doi.org/10.1016/j.jaci.2012.04.021
dc.identifier.citedreferenceCaruso M, Cibella F, Emma R, et al. Basophil biomarkers as useful predictors for sublingual immunotherapy in allergic rhinitis. Int Immunopharmacol. 2018; 60: 50 - 58. https://doi.org/10.1016/j.intimp.2018.04.034
dc.identifier.citedreferenceKepil Ozdemir S, Sin BA, Guloglu D, Ikinciogullari A, Gencturk Z, Misirligil Z. Short-term preseasonal immunotherapy: is early clinical efficacy related to the basophil response? Int Arch Allergy Immunol. 2014; 164 ( 3 ): 237 - 245. https://doi.org/10.1159/000365628
dc.identifier.citedreferenceZidarn M, Kosnik M, Silar M, Bajrovic N, Korosec P. Sustained effect of grass pollen subcutaneous immunotherapy on suppression of allergen-specific basophil response; a real-life, nonrandomized controlled study. Allergy. 2015; 70 ( 5 ): 547 - 555. https://doi.org/10.1111/all.12581
dc.identifier.citedreferenceSchmid JM, Wurtzen PA, Siddhuraj P, et al. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy. 2021; 76 ( 5 ): 1528 - 1538. https://doi.org/10.1111/all.14264
dc.identifier.citedreferenceKim SH, Kim SH, Chung SJ, et al. Changes in basophil activation during immunotherapy with house dust mite and mugwort in patients with allergic rhinitis. Asia Pac Allergy. 2018; 8 ( 1 ): e6. https://doi.org/10.5415/apallergy.2018.8.e6
dc.identifier.citedreferenceFeng M, Zeng X, Su Q, et al. Allergen Immunotherapy-induced immunoglobulin G4 reduces basophil activation in house dust mite-allergic asthma patients. Front Cell Dev Biol. 2020; 8: 30. https://doi.org/10.3389/fcell.2020.00030
dc.identifier.citedreferenceSoyyigit S, Guloglu D, Ikinciogullari A, et al. Immunologic alterations and efficacy of subcutaneous immunotherapy with Dermatophagoides pteronyssinus in monosensitized and polysensitized patients. Ann Allergy Asthma Immunol. 2016; 116 ( 3 ): 244 - 251.e2. https://doi.org/10.1016/j.anai.2016.01.002
dc.identifier.citedreferenceAasbjerg K, Backer V, Lund G, et al. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy. Clin Exp Allergy. 2014; 44 ( 3 ): 417 - 428. https://doi.org/10.1111/cea.12241
dc.identifier.citedreferenceMa S, Qiao Y. [ Changes of basophil activation before and after treatment in children with allergic rhinitis and its clinical significance ]. Revue Francaise D’Allergologie. 2021; 61 ( 6 ): 393 - 397.
dc.identifier.citedreferenceMatricardi PM, Kleine-Tebbe J, Hoffmann HJ, et al. EAACI molecular allergology user’s guide. Pediatr Allergy Immunol. 2016; 27 (suppl 23): 1 - 250. https://doi.org/10.1111/pai.12563
dc.identifier.citedreferenceSastre-Ibanez M, Sastre J. Molecular allergy diagnosis for the clinical characterization of asthma. Expert Rev Mol Diagn. 2015; 15 ( 6 ): 789 - 799. https://doi.org/10.1586/14737159.2015.1036745
dc.identifier.citedreferenceBarber D, Diaz-Perales A, Escribese MM, et al. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy. 2021; 76 ( 12 ): 3642 - 3658. https://doi.org/10.1111/all.14969
dc.identifier.citedreferenceSastre J, Sastre-Ibanez M. Molecular diagnosis and immunotherapy. Curr Opin Allergy Clin Immunol. 2016; 16 ( 6 ): 565 - 570. https://doi.org/10.1097/ACI.0000000000000318
dc.identifier.citedreferenceSastre J. Molecular diagnosis and immunotherapy. Curr Opin Allergy Clin Immunol. 2013; 13 ( 6 ): 646 - 650. https://doi.org/10.1097/ACI.0b013e328364f4c6
dc.identifier.citedreferenceSaltabayeva U, Garib V, Morenko M, et al. Greater real-life diagnostic efficacy of allergen molecule-based diagnosis for prescription of immunotherapy in an area with multiple pollen exposure. Int Arch Allergy Immunol. 2017; 173 ( 2 ): 93 - 98. https://doi.org/10.1159/000477442
dc.identifier.citedreferenceScala E, Abeni D, Pomponi D, et al. Ole e 1, Ole e 7, and Ole e 9: identifying distinct clinical subsets of olive tree-allergic patients. J Allergy Clin Immunol. 2016; 137 ( 2 ): 629 - 631.e3. https://doi.org/10.1016/j.jaci.2015.07.009
dc.identifier.citedreferenceSastre J, Rodriguez F, Campo P, Laffond E, Marin A, Alonso MD. Adverse reactions to immunotherapy are associated with different patterns of sensitization to grass allergens. Allergy. 2015; 70 ( 5 ): 598 - 600. https://doi.org/10.1111/all.12575
dc.identifier.citedreferencePosa D, Perna S, Resch Y, et al. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. J Allergy Clin Immunol. 2017; 139 ( 2 ): 541 - 549.e8. https://doi.org/10.1016/j.jaci.2016.08.014
dc.identifier.citedreferenceBronnert M, Mancini J, Birnbaum J, et al. Component-resolved diagnosis with commercially available D. pteronyssinus Der p 1, Der p 2 and Der p 10: relevant markers for house dust mite allergy. Clin Exp Allergy. 2012; 42 ( 9 ): 1406 - 1415. https://doi.org/10.1111/j.1365-2222.2012.04035.x
dc.identifier.citedreferenceCeli G, Brusca I, Scala E, et al. House dust mite allergy in Italy-Diagnostic and clinical relevance of Der p 23 (and of minor allergens): a real-life, multicenter study. Allergy. 2019; 74 ( 9 ): 1787 - 1789. https://doi.org/10.1111/all.13776
dc.identifier.citedreferenceBarber D, Arias J, Boquete M, et al. Analysis of mite allergic patients in a diverse territory by improved diagnostic tools. Clin Exp Allergy. 2012; 42 ( 7 ): 1129 - 1138. https://doi.org/10.1111/j.1365-2222.2012.03993.x
dc.identifier.citedreferenceCarvalho Kdos A, de Melo-Neto OP, Magalhaes FB, et al. Blomia tropicalis Blo t 5 and Blo t 21 recombinant allergens might confer higher specificity to serodiagnostic assays than whole mite extract. BMC Immunol. 2013; 14: 11. https://doi.org/10.1186/1471-2172-14-11
dc.identifier.citedreferenceAyuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002; 129 ( 1 ): 38 - 48. https://doi.org/10.1159/000065172
dc.identifier.citedreferenceGamez C, Sanchez-Garcia S, Ibanez MD, et al. Tropomyosin IgE-positive results are a good predictor of shrimp allergy. Allergy. 2011; 66 ( 10 ): 1375 - 1383. https://doi.org/10.1111/j.1398-9995.2011.02663.x
dc.identifier.citedreferenceRodriguez-Dominguez A, Berings M, Rohrbach A, et al. Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy. J Allergy Clin Immunol. 2020; 146 ( 5 ): 1097 - 1108. https://doi.org/10.1016/j.jaci.2020.03.029
dc.identifier.citedreferenceSaarelainen S, Taivainen A, Rytkonen-Nissinen M, et al. Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy. 2004; 34 ( 10 ): 1576 - 1582. https://doi.org/10.1111/j.1365-2222.2004.02071.x
dc.identifier.citedreferenceMattsson L, Lundgren T, Everberg H, Larsson H, Lidholm J. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009; 123 ( 2 ): 362 - 368. https://doi.org/10.1016/j.jaci.2008.11.021
dc.identifier.citedreferenceUriarte SA, Sastre J. Clinical relevance of molecular diagnosis in pet allergy. Allergy. 2016; 71 ( 7 ): 1066 - 1068. https://doi.org/10.1111/all.12917
dc.identifier.citedreferenceSchoos AM, Nwaru BI, Borres MP. Component-resolved diagnostics in pet allergy: current perspectives and future directions. J Allergy Clin Immunol. 2021; 147 ( 4 ): 1164 - 1173. https://doi.org/10.1016/j.jaci.2020.12.640
dc.identifier.citedreferenceWintersand A, Asplund K, Binnmyr J, et al. Allergens in dog extracts: implication for diagnosis and treatment. Allergy. 2019; 74 ( 8 ): 1472 - 1479. https://doi.org/10.1111/all.13785
dc.identifier.citedreferenceEder K, Becker S, San Nicolo M, Berghaus A, Groger M. Usefulness of component resolved analysis of cat allergy in routine clinical practice. Allergy Asthma Clin Immunol. 2016; 12: 58. https://doi.org/10.1186/s13223-016-0163-8
dc.identifier.citedreferenceSmith W, Butler AJ, Hazell LA, et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004; 34 ( 11 ): 1732 - 1738. https://doi.org/10.1111/j.1365-2222.2004.02090.x
dc.identifier.citedreferenceSaarelainen S, Rytkonen-Nissinen M, Rouvinen J, et al. Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity. Clin Exp Allergy. 2008; 38 ( 2 ): 374 - 381. https://doi.org/10.1111/j.1365-2222.2007.02895.x
dc.identifier.citedreferenceArruda LK, Vailes LD, Ferriani VP, Santos AB, Pomes A, Chapman MD. Cockroach allergens and asthma. J Allergy Clin Immunol. 2001; 107 ( 3 ): 419 - 428. https://doi.org/10.1067/mai.2001.112854
dc.identifier.citedreferencePostigo I, Gutierrez-Rodriguez A, Fernandez J, Guisantes JA, Sunen E, Martinez J. Diagnostic value of Alt a 1, fungal enolase and manganese-dependent superoxide dismutase in the component-resolved diagnosis of allergy to Pleosporaceae. Clin Exp Allergy. 2011; 41 ( 3 ): 443 - 451. https://doi.org/10.1111/j.1365-2222.2010.03671.x
dc.identifier.citedreferenceKespohl S, Raulf M. Mould allergens: where do we stand with molecular allergy diagnostics?: Part 13 of the series Molecular Allergology. Allergo J Int. 2014; 23 ( 4 ): 120 - 125. https://doi.org/10.1007/s40629-014-0014-4
dc.identifier.citedreferenceBarber D, Moreno C, Ledesma A, et al. Degree of olive pollen exposure and sensitization patterns. Clinical implications. J Investig Allergol Clin Immunol. 2007; 17 (suppl 1): 11 - 16.
dc.identifier.citedreferenceSastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010; 40 ( 10 ): 1442 - 1460. https://doi.org/10.1111/j.1365-2222.2010.03585.x
dc.identifier.citedreferenceMartinez-Canavate Burgos A, Torres-Borrego J, Molina Teran AB, et al. Molecular sensitization patterns and influence of molecular diagnosis in immunotherapy prescription in children sensitized to both grass and olive pollen. Pediatr Allergy Immunol. 2018; 29 ( 4 ): 369 - 374. https://doi.org/10.1111/pai.12866
dc.identifier.citedreferenceMoreno C, Justicia JL, Quiralte J, et al. Olive, grass or both? Molecular diagnosis for the allergen immunotherapy selection in polysensitized pollinic patients. Allergy. 2014; 69 ( 10 ): 1357 - 1363. https://doi.org/10.1111/all.12474
dc.identifier.citedreferenceStringari G, Tripodi S, Caffarelli C, et al. The effect of component-resolved diagnosis on specific immunotherapy prescription in children with hay fever. J Allergy Clin Immunol. 2014; 134 ( 1 ): 75 - 81. https://doi.org/10.1016/j.jaci.2014.01.042
dc.identifier.citedreferenceLetran A, Espinazo M, Moreno F. Measurement of IgE to pollen allergen components is helpful in selecting patients for immunotherapy. Ann Allergy Asthma Immunol. 2013; 111 ( 4 ): 295 - 297. https://doi.org/10.1016/j.anai.2013.07.005
dc.identifier.citedreferenceNolte M, Barber D, Maloney J, et al. Timothy specific IgE levels are associated with efficacy and safety of timothy grass sublingual immunotherapy tablet. Ann Allergy Asthma Immunol. 2015; 115 ( 6 ): 509 - 515.e2. https://doi.org/10.1016/j.anai.2015.09.018
dc.identifier.citedreferenceRodinkova VV, Yuriev SD, Kryvopustova MV, Mokin VB, Kryzhanovskyi YM, Kurchenko AI. Molecular profile sensitization to house dust mites as an important aspect for predicting the efficiency of allergen immunotherapy. Front Immunol. 2022; 13: 848616. https://doi.org/10.3389/fimmu.2022.848616
dc.identifier.citedreferenceArroabarren E, Echechipia S, Galbete A, Lizaso MT, Olaguibel JM, Tabar AI. Association between component-resolved diagnosis of house dust mite allergy and efficacy and safety of specific immunotherapy. J Investig Allergol Clin Immunol. 2019; 29 ( 2 ): 164 - 167. https://doi.org/10.18176/jiaci.0359
dc.identifier.citedreferenceChen KW, Zieglmayer P, Zieglmayer R, et al. Selection of house dust mite-allergic patients by molecular diagnosis may enhance success of specific immunotherapy. J Allergy Clin Immunol. 2019; 143 ( 3 ): 1248 - 1252.e12. https://doi.org/10.1016/j.jaci.2018.10.048
dc.identifier.citedreferencedi Coste A, Occasi F, De Castro G, et al. Predictivity of clinical efficacy of sublingual immunotherapy (SLIT) based on sensitisation pattern to molecular allergens in children with allergic rhinoconjunctivitis. Allergol Immunopathol (Madr). 2017; 45 ( 5 ): 452 - 456. https://doi.org/10.1016/j.aller.2017.01.001
dc.identifier.citedreferenceDarsow U, Brockow K, Pfab F, et al. Allergens. Heterogeneity of molecular sensitization profiles in grass pollen allergy–implications for immunotherapy? Clin Exp Allergy. 2014; 44 ( 5 ): 778 - 786. https://doi.org/10.1111/cea.12303
dc.identifier.citedreferenceSastre J, Landivar ME, Ruiz-Garcia M, Andregnette-Rosigno MV, Mahillo I. How molecular diagnosis can change allergen-specific immunotherapy prescription in a complex pollen area. Allergy. 2012; 67 ( 5 ): 709 - 711. https://doi.org/10.1111/j.1398-9995.2012.02808.x
dc.identifier.citedreferenceTripodi S, Frediani T, Lucarelli S, et al. Molecular profiles of IgE to Phleum pratense in children with grass pollen allergy: implications for specific immunotherapy. J Allergy Clin Immunol. 2012; 129 ( 3 ): 834 - 839.e8. https://doi.org/10.1016/j.jaci.2011.10.045
dc.identifier.citedreferenceDuffort O, Palomares O, Lombardero M, et al. Variability of Ole e 9 allergen in olive pollen extracts: relevance of minor allergens in immunotherapy treatments. Int Arch Allergy Immunol. 2006; 140 ( 2 ): 131 - 138. https://doi.org/10.1159/000092532
dc.identifier.citedreferencePfaar O, Calderon MA, Andrews CP, et al. Allergen exposure chambers: harmonizing current concepts and projecting the needs for the future – an EAACI Position Paper. Allergy. 2017; 72 ( 7 ): 1035 - 1042. https://doi.org/10.1111/all.13133
dc.identifier.citedreferenceWerfel T, Heratizadeh A, Niebuhr M, et al. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber. J Allergy Clin Immunol. 2015; 136 ( 1 ): 96 - 103.e9. https://doi.org/10.1016/j.jaci.2015.04.015
dc.identifier.citedreferenceBadorrek P, Dick M, Emmert L, et al. Pollen starch granules in bronchial inflammation. Ann Allergy Asthma Immunol. 2012; 109 ( 3 ): 208 - 214.e6. https://doi.org/10.1016/j.anai.2012.06.019
dc.identifier.citedreferenceAhuja SK, Manoharan MS, Harper NL, et al. Preservation of epithelial cell barrier function and muted inflammation in resistance to allergic rhinoconjunctivitis from house dust mite challenge. J Allergy Clin Immunol. 2017; 139 ( 3 ): 844 - 854. https://doi.org/10.1016/j.jaci.2016.08.019
dc.identifier.citedreferenceSmith AM, Ramirez RM, Harper N, et al. Large-scale provocation studies identify maladaptive responses to ubiquitous aeroallergens as a correlate of severe allergic rhinoconjunctivitis and asthma. Allergy. 2022; 77 ( 6 ): 1797 - 1814. https://doi.org/10.1111/all.15124
dc.identifier.citedreferenceSmith AM, Harper N, Meunier JA, et al. Repetitive aeroallergen challenges elucidate maladaptive epithelial and inflammatory traits that underpin allergic airway diseases. J Allergy Clin Immunol. 2021; 148 ( 2 ): 533 - 549. https://doi.org/10.1016/j.jaci.2021.01.008
dc.identifier.citedreferenceEllis AK, Steacy LM, Hobsbawn B, Conway CE, Walker TJ. Clinical validation of controlled grass pollen challenge in the Environmental Exposure Unit (EEU). Allergy Asthma Clin Immunol. 2015; 11 ( 1 ): 5. https://doi.org/10.1186/s13223-015-0071-3
dc.identifier.citedreferenceEllis AK, Soliman M, Steacy LM, Adams DE, Hobsbawn B, Walker TJ. Clinical validation of controlled exposure to birch pollen in the Environmental Exposure Unit (EEU). Allergy Asthma Clin Immunol. 2016; 12: 53. https://doi.org/10.1186/s13223-016-0156-7
dc.identifier.citedreferenceEnomoto T, Ide T, Ogino S. Construction of an environmental exposure unit and investigation of the effects of cetirizine hydrochloride on symptoms of cedar pollinosis in Japan. J Investig Allergol Clin Immunol. 2007; 17 ( 3 ): 173 - 81.
dc.identifier.citedreferenceHashiguchi K, Tang H, Fujita T, et al. Validation study of the OHIO Chamber in patients with Japanese cedar pollinosis. Int Arch Allergy Immunol. 2009; 149 ( 2 ): 141 - 149. https://doi.org/10.1159/000189197
dc.identifier.citedreferenceJacobs RL, Ramirez DA, Andrews CP. Validation of the biogenics research chamber for Juniperus ashei (mountain cedar) pollen. Ann Allergy Asthma Immunol. 2011; 107 ( 2 ): 133 - 138. https://doi.org/10.1016/j.anai.2011.04.009
dc.identifier.citedreferenceKrug N, Hohlfeld JM, Larbig M, et al. Validation of an environmental exposure unit for controlled human inhalation studies with grass pollen in patients with seasonal allergic rhinitis. Clin Exp Allergy. 2003; 33 ( 12 ): 1667 - 1674. https://doi.org/10.1111/j.1365-2222.2003.01810.x
dc.identifier.citedreferenceLueer K, Biller H, Casper A, et al. Safety, efficacy and repeatability of a novel house dust mite allergen challenge technique in the Fraunhofer allergen challenge chamber. Allergy. 2016; 71 ( 12 ): 1693 - 1700. https://doi.org/10.1111/all.12947
dc.identifier.citedreferenceRonborg SM, Mosbech H, Poulsen LK. Exposure chamber for allergen challenge. A placebo-controlled, double-blind trial in house-dust-mite asthma. Allergy. 1997; 52 ( 8 ): 821 - 828. https://doi.org/10.1111/j.1398-9995.1997.tb02153.x
dc.identifier.citedreferenceZuberbier T, Abelson MB, Akdis CA, et al. Validation of the Global Allergy and Asthma European Network (GA(2)LEN) chamber for trials in allergy: innovation of a mobile allergen exposure chamber. J Allergy Clin Immunol. 2017; 139 ( 4 ): 1158 - 1166. https://doi.org/10.1016/j.jaci.2016.08.025
dc.identifier.citedreferenceHohlfeld JM, Holland-Letz T, Larbig M, et al. Diagnostic value of outcome measures following allergen exposure in an environmental challenge chamber compared with natural conditions. Clin Exp Allergy. 2010; 40 ( 7 ): 998 - 1006. https://doi.org/10.1111/j.1365-2222.2010.03498.x
dc.identifier.citedreferenceBoelke G, Berger U, Bergmann KC, et al. Peak nasal inspiratory flow as outcome for provocation studies in allergen exposure chambers: a GA(2)LEN study. Clin Transl Allergy. 2017; 7: 33. https://doi.org/10.1186/s13601-017-0169-4
dc.identifier.citedreferenceGherasim A, Fauquert JL, Domis N, Siomboing X, de Blay F. Birch allergen challenges in allergic conjunctivitis using standard conjunctival allergen challenge and environmental exposure chamber. Clin Transl Allergy. 2021; 11 ( 6 ): e12053. https://doi.org/10.1002/clt2.12053
dc.identifier.citedreferenceJacobs RL, Ramirez DA, Rather CG, et al. Redness response phenotypes of allergic conjunctivitis in an allergen challenge chamber. Ann Allergy Asthma Immunol. 2017; 118 ( 1 ): 86 - 93.e2. https://doi.org/10.1016/j.anai.2016.10.023
dc.identifier.citedreferenceBadorrek P, Muller M, Koch W, Hohlfeld JM, Krug N. Specificity and reproducibility of nasal biomarkers in patients with allergic rhinitis after allergen challenge chamber exposure. Ann Allergy Asthma Immunol. 2017; 118 ( 3 ): 290 - 297. https://doi.org/10.1016/j.anai.2017.01.018
dc.identifier.citedreferenceNorth ML, Jones MJ, MacIsaac JL, et al. Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy. 2018; 73 ( 1 ): 196 - 205. https://doi.org/10.1111/all.13263
dc.identifier.citedreferenceKrug N, Gupta A, Badorrek P, et al. Efficacy of the oral chemoattractant receptor homologous molecule on TH2 cells antagonist BI 671800 in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 2014; 133 ( 2 ): 414 - 419. https://doi.org/10.1016/j.jaci.2013.10.013
dc.identifier.citedreferenceHorak FF, Jager S, Nirnberger G, et al. Dose-related control of allergic rhinitis symptoms by a H1-receptor antagonist. Finding the proper doses [correction of dosis] of dimethindene maleate in patients with allergic rhinitis. Int Arch Allergy Immunol. 1994; 103 ( 3 ): 298 - 302. https://doi.org/10.1159/000236643
dc.identifier.citedreferenceHorak F, Jager S, Nirnberger G, et al. Pharmacodynamic dose finding of dimetindene in a sustained release formulation. Arzneimittelforschung. 1993; 43 ( 11 ): 1193 - 1195.
dc.identifier.citedreferenceDay JH, Briscoe MP, Ratz JD, Ellis AK, Yao R, Danzig M. Onset of action of loratadine/montelukast in seasonal allergic rhinitis subjects exposed to ragweed pollen in the Environmental Exposure Unit. Allergy Asthma Proc. 2009; 30 ( 3 ): 270 - 276. https://doi.org/10.2500/aap.2009.30.3234
dc.identifier.citedreferenceHorak F, Zieglmayer P, Zieglmayer R, Lemell P. Onset of action of loratadine/montelukast in seasonal allergic rhinitis patients exposed to grass pollen. Arzneimittelforschung. 2010; 60 ( 5 ): 249 - 255. https://doi.org/10.1055/s-0031-1296281
dc.identifier.citedreferenceBerkowitz RB, Woodworth GG, Lutz C, et al. Onset of action, efficacy, and safety of fexofenadine 60 mg/pseudoephedrine 120 mg versus placebo in the Atlanta allergen exposure unit. Ann Allergy Asthma Immunol. 2002; 89 ( 1 ): 38 - 45. https://doi.org/10.1016/S1081-1206(10)61909-6
dc.identifier.citedreferenceDay JH, Briscoe MP, Rafeiro E, Ratz JD. Comparative clinical efficacy, onset and duration of action of levocetirizine and desloratadine for symptoms of seasonal allergic rhinitis in subjects evaluated in the Environmental Exposure Unit (EEU). Int J Clin Pract. 2004; 58 ( 2 ): 109 - 118. https://doi.org/10.1111/j.1368-5031.2004.0117.x
dc.identifier.citedreferenceHorak F, Zieglmayer UP, Zieglmayer R, et al. Azelastine nasal spray and desloratadine tablets in pollen-induced seasonal allergic rhinitis: a pharmacodynamic study of onset of action and efficacy. Curr Med Res Opin. 2006; 22 ( 1 ): 151 - 157. https://doi.org/10.1185/030079906X80305
dc.identifier.citedreferenceBousquet J, Meltzer EO, Couroux P, et al. Onset of action of the fixed combination intranasal azelastine-fluticasone propionate in an allergen exposure chamber. J Allergy Clin Immunol Pract. 2018; 6 ( 5 ): 1726 - 1732.e6. https://doi.org/10.1016/j.jaip.2018.01.031
dc.identifier.citedreferenceTenn MW, Steacy LM, Ng CC, Ellis AK. Onset of action for loratadine tablets for the symptomatic control of seasonal allergic rhinitis in adults challenged with ragweed pollen in the Environmental Exposure Unit: a post hoc analysis of total symptom score. Allergy Asthma Clin Immunol. 2018; 14: 5. https://doi.org/10.1186/s13223-017-0227-4
dc.identifier.citedreferenceDay JH, Briscoe MP, Rafeiro E, Hewlett D, Jr., Chapman D, Kramer B. Randomized double-blind comparison of cetirizine and fexofenadine after pollen challenge in the Environmental Exposure Unit: duration of effect in subjects with seasonal allergic rhinitis. Allergy Asthma Proc. 2004; 25 ( 1 ): 59 - 68.
dc.identifier.citedreferenceMurdoch RD, Bareille P, Ignar D, et al. Once-daily dosing of levocabastine has comparable efficacy to twice-daily dosing in the treatment of allergic rhinitis assessed in an allergen challenge chamber. Int J Clin Pharmacol Ther. 2015; 53 ( 10 ): 811 - 818. https://doi.org/10.5414/CP202389
dc.identifier.citedreferenceHorak F, Zieglmayer PU, Zieglmayer R, Kavina A, Lemell P. Levocetirizine has a longer duration of action on improving total nasal symptoms score than fexofenadine after single administration. Br J Clin Pharmacol. 2005; 60 ( 1 ): 24 - 31. https://doi.org/10.1111/j.1365-2125.2005.02377.x
dc.identifier.citedreferenceKrug N, Hohlfeld JM, Geldmacher H, et al. Effect of loteprednol etabonate nasal spray suspension on seasonal allergic rhinitis assessed by allergen challenge in an environmental exposure unit. Allergy. 2005; 60 ( 3 ): 354 - 359. https://doi.org/10.1111/j.1398-9995.2005.00703.x
dc.identifier.citedreferenceSalapatek AM, Patel P, Gopalan G, Varghese ST. Mometasone furoate nasal spray provides early, continuing relief of nasal congestion and improves nasal patency in allergic patients. Am J Rhinol Allergy. 2010; 24 ( 6 ): 433 - 438. https://doi.org/10.2500/ajra.2010.24.3548
dc.identifier.citedreferenceZieglmayer P, Zieglmayer R, Bareille P, Rousell V, Salmon E, Horak F. Fluticasone furoate versus placebo in symptoms of grass-pollen allergic rhinitis induced by exposure in the Vienna Challenge Chamber. Curr Med Res Opin. 2008; 24 ( 6 ): 1833 - 1840. https://doi.org/10.1185/03007990802155792
dc.identifier.citedreferenceNg CC, Romaikin D, Steacy LM, et al. Comparative nasal airflow with loratadine-pseudoephedrine and fluticasone nasal spray for allergic rhinitis. Ann Allergy Asthma Immunol. 2021; 127 ( 3 ): 342 - 348.e2. https://doi.org/10.1016/j.anai.2021.05.001
dc.identifier.citedreferenceZieglmayer P, Schmutz R, Lemell P, et al. Fast effectiveness of a solubilized low-dose budesonide nasal spray in allergic rhinitis. Clin Exp Allergy. 2020; 50 ( 9 ): 1065 - 1077. https://doi.org/10.1111/cea.13691
dc.identifier.citedreferenceBadorrek P, Dick M, Schauerte A, et al. A combination of cetirizine and pseudoephedrine has therapeutic benefits when compared to single drug treatment in allergic rhinitis. Int J Clin Pharmacol Ther. 2009; 47 ( 2 ): 71 - 77. https://doi.org/10.5414/cpp47071
dc.identifier.citedreferenceBarchuk WT, Salapatek AM, Ge T, D’Angelo P, Liu X. A proof-of-concept study of the effect of a novel H3-receptor antagonist in allergen-induced nasal congestion. J Allergy Clin Immunol. 2013; 132 ( 4 ):838-846.e1-6. https://doi.org/10.1016/j.jaci.2013.05.001
dc.identifier.citedreferenceHorak F, Toth J, Marks B, et al. Efficacy and safety relative to placebo of an oral formulation of cetirizine and sustained-release pseudoephedrine in the management of nasal congestion. Allergy. 1998; 53 ( 9 ): 849 - 856. https://doi.org/10.1111/j.1398-9995.1998.tb03990.x
dc.identifier.citedreferenceYonekura S, Okamoto Y, Yamamoto H, et al. Randomized double-blind study of prophylactic treatment with an antihistamine for seasonal allergic rhinitis. Int Arch Allergy Immunol. 2013; 162 ( 1 ): 71 - 78. https://doi.org/10.1159/000350926
dc.identifier.citedreferenceJordakieva G, Kundi M, Lemell P, et al. Cetirizine inhibits gender-specific blood cell dynamics upon allergen contact in allergic rhinitis. Clin Immunol. 2020; 215: 108422. https://doi.org/10.1016/j.clim.2020.108422
dc.identifier.citedreferenceYonekura S, Okamoto Y, Sakurai D, et al. Efficacy of Desloratadine and levocetirizine in patients with cedar pollen-induced allergic rhinitis: a randomized, double-blind study. Int Arch Allergy Immunol. 2019; 180 ( 4 ): 274 - 283. https://doi.org/10.1159/000503065
dc.identifier.citedreferenceHashiguchi K, Wakabayashi KI, Togawa M, Saito A, Okubo K. Therapeutic effect of bilastine in Japanese cedar pollinosis using an artificial exposure chamber (OHIO Chamber). Allergol Int. 2017; 66 ( 1 ): 123 - 131. https://doi.org/10.1016/j.alit.2016.06.009
dc.identifier.citedreferenceBareille P, Murdoch RD, Denyer J, et al. The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int J Clin Pharmacol Ther. 2013; 51 ( 7 ): 576 - 584. https://doi.org/10.5414/CP201890
dc.identifier.citedreferenceCorren J, Wood RA, Patel D, et al. Effects of omalizumab on changes in pulmonary function induced by controlled cat room challenge. J Allergy Clin Immunol. 2011; 127 ( 2 ): 398 - 405. https://doi.org/10.1016/j.jaci.2010.09.043
dc.identifier.citedreferenceHorak F. VTX-1463, a novel TLR8 agonist for the treatment of allergic rhinitis. Expert Opin Investig Drugs. 2011; 20 ( 7 ): 981 - 986. https://doi.org/10.1517/13543784.2011.583237
dc.identifier.citedreferenceHorak F, Zieglmayer P, Zieglmayer R, et al. The CRTH2 antagonist OC000459 reduces nasal and ocular symptoms in allergic subjects exposed to grass pollen, a randomised, placebo-controlled, double-blind trial. Allergy. 2012; 67 ( 12 ): 1572 - 1579. https://doi.org/10.1111/all.12042
dc.identifier.citedreferenceGomes PJ, Abelson MB, Stein L, Viirre E, Villafranca JE, Lasser EC. Iodixanol nasal solution reduces allergic rhinoconjunctivitis signs and symptoms in Allergen BioCube((R)): a randomized clinical trial. J Asthma Allergy. 2019; 12: 71 - 81. https://doi.org/10.2147/JAA.S150251
dc.identifier.citedreferenceStruss N, Badorrek P, Mattern C, Mattern U, Hohlfeld JM. The effect of a thixotropic nasal gel on nasal symptoms and inflammatory biomarkers in seasonal allergic rhinitis. Int Arch Allergy Immunol. 2020; 181 ( 5 ): 385 - 394. https://doi.org/10.1159/000506129
dc.identifier.citedreferenceSalapatek AM, Werkhauser N, Ismail B, Mosges R, Raskopf E, Bilstein A. Effects of ectoine containing nasal spray and eye drops on symptoms of seasonal allergic rhinoconjunctivitis. Clin Transl Allergy. 2021; 11 ( 1 ): e12006. https://doi.org/10.1002/clt2.12006
dc.identifier.citedreferenceXiao JZ, Kondo S, Yanagisawa N, et al. Clinical efficacy of probiotic Bifidobacterium longum for the treatment of symptoms of Japanese cedar pollen allergy in subjects evaluated in an environmental exposure unit. Allergol Int. 2007; 56 ( 1 ): 67 - 75. https://doi.org/10.2332/allergolint.O-06-455
dc.identifier.citedreferenceBergmann KC, Krause L, Hiller J, et al. First evaluation of a symbiotic food supplement in an allergen exposure chamber in birch pollen allergic patients. World Allergy Organ J. 2021; 14 ( 1 ): 100494. https://doi.org/10.1016/j.waojou.2020.100494
dc.identifier.citedreferenceEllis AK, Frankish CW, Armstrong K, et al. Persistence of the clinical effect of grass allergen peptide immunotherapy after the second and third grass pollen seasons. J Allergy Clin Immunol. 2020; 145 ( 2 ): 610 - 618.e9. https://doi.org/10.1016/j.jaci.2019.09.010
dc.identifier.citedreferenceWagenmann M, Worm M, Akboga Y, Karjalainen M, Hohlfeld JM. Randomized immunotherapy trial in dual-allergic patients using "active allergen placebo" as control. Allergy. 2019; 74 ( 8 ): 1480 - 1489. https://doi.org/10.1111/all.13842
dc.identifier.citedreferenceCouroux P, Ipsen H, Stage BS, et al. A birch sublingual allergy immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed to birch and oak and induces IgG4 to allergens from all trees in the birch homologous group. Allergy. 2019; 74 ( 2 ): 361 - 369. https://doi.org/10.1111/all.13606
dc.identifier.citedreferenceEllis AK, Tenn MW, Steacy LM, et al. Lack of effect of Timothy grass pollen sublingual immunotherapy tablet on birch pollen-induced allergic rhinoconjunctivitis in an environmental exposure unit. Ann Allergy Asthma Immunol. 2018; 120 ( 5 ): 495 - 503. e2. https://doi.org/10.1016/j.anai.2018.02.003
dc.identifier.citedreferencePfaar O, Hohlfeld JM, Al-Kadah B, et al. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid. Clin Exp Allergy. 2017; 47 ( 11 ): 1445 - 1455. https://doi.org/10.1111/cea.12977
dc.identifier.citedreferenceEllis AK, Frankish CW, O’Hehir RE, et al. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2017; 140 ( 2 ): 486 - 496. https://doi.org/10.1016/j.jaci.2016.11.043
dc.identifier.citedreferenceZieglmayer P, Nolte H, Nelson HS, et al. Long-term effects of a house dust mite sublingual immunotherapy tablet in an environmental exposure chamber trial. Ann Allergy Asthma Immunol. 2016; 117 ( 6 ): 690 - 696.e1. https://doi.org/10.1016/j.anai.2016.10.015
dc.identifier.citedreferenceHorak F, Zieglmayer P, Zieglmayer R, et al. Early onset of action of a 5-grass-pollen 300-IR sublingual immunotherapy tablet evaluated in an allergen challenge chamber. J Allergy Clin Immunol. 2009; 124 ( 3 ): 471 - 477, 477.e1. https://doi.org/10.1016/j.jaci.2009.06.006
dc.identifier.citedreferenceMeyer W, Narkus A, Salapatek AM, Hafner D. Double-blind, placebo-controlled, dose-ranging study of new recombinant hypoallergenic Bet v 1 in an environmental exposure chamber. Allergy. 2013; 68 ( 6 ): 724 - 731. https://doi.org/10.1111/all.12148
dc.identifier.citedreferenceNolte H, Maloney J, Nelson HS, et al. Onset and dose-related efficacy of house dust mite sublingual immunotherapy tablets in an environmental exposure chamber. J Allergy Clin Immunol. 2015; 135 ( 6 ): 1494 - 1501.e6. https://doi.org/10.1016/j.jaci.2014.12.1911
dc.identifier.citedreferencePatel D, Couroux P, Hickey P, et al. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study. J Allergy Clin Immunol. 2013; 131 ( 1 ):103-109.e1-7. https://doi.org/10.1016/j.jaci.2012.07.028
dc.identifier.citedreferencePatel P, Holdich T, Fischer von Weikersthal-Drachenberg KJ, Huber B. Efficacy of a short course of specific immunotherapy in patients with allergic rhinoconjunctivitis to ragweed pollen. J Allergy Clin Immunol. 2014; 133 ( 1 ):121-129.e1-2. https://doi.org/10.1016/j.jaci.2013.05.032
dc.identifier.citedreferenceGherasim A, de Blay F. Does air filtration work for cat allergen exposure? Curr Allergy Asthma Rep. 2020; 20 ( 6 ): 18. https://doi.org/10.1007/s11882-020-00912-w
dc.identifier.citedreferenceGherasim A, Jacob A, Schoettel F, Domis N, de Blay F. Efficacy of air cleaners in asthmatics allergic to cat in ALYATEC((R)) environmental exposure chamber. Clin Exp Allergy. 2020; 50 ( 2 ): 160 - 169. https://doi.org/10.1111/cea.13511
dc.identifier.citedreferenceRogol AD, Tkachenko N, Badorrek P, Hohlfeld JM, Bryson N. Phase 1 pharmacokinetics and phase 3 efficacy of testosterone nasal gel in subjects with seasonal allergies. Can Urol Assoc J. 2018; 12 ( 7 ): E349 - E356. https://doi.org/10.5489/cuaj.4898
dc.identifier.citedreferenceKhayath N, Doyen V, Gherasim A, et al. Validation of Strasbourg environmental exposure chamber (EEC) ALYATEC((R)) in mite allergic subjects with asthma. J Asthma. 2020; 57 ( 2 ): 140 - 148. https://doi.org/10.1080/02770903.2018.1563902
dc.identifier.citedreferenceZieglmayer P, Lemell P, Chen KW, et al. Clinical validation of a house dust mite environmental challenge chamber model. J Allergy Clin Immunol. 2017; 140 ( 1 ): 266 - 268.e5. https://doi.org/10.1016/j.jaci.2016.12.986
dc.identifier.citedreferenceKoriyama M, Okamoto Y, Suzuki T, et al. Characteristics of Japanese cypress pollen-induced allergic rhinitis by environmental challenge chamber. Allergol Int. 2022; 71 ( 1 ): 144 - 146. https://doi.org/10.1016/j.alit.2021.08.013
dc.identifier.citedreferenceGomes PJ, Lane KJ, Angjeli E, Stein L, Abelson MB. Technical and clinical validation of an environmental exposure unit for ragweed. J Asthma Allergy. 2016; 9: 215 - 221. https://doi.org/10.2147/JAA.S123547
dc.identifier.citedreferencePfaar O, Zieglmayer P. Allergen exposure chambers: implementation in clinical trials in allergen immunotherapy. Clin Transl Allergy. 2020; 10: 33. https://doi.org/10.1186/s13601-020-00336-9
dc.identifier.citedreferencePfaar O, Agache I, de Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019; 74 (suppl 108): 3 - 25. https://doi.org/10.1111/all.14077
dc.identifier.citedreferencePfaar O, Alvaro M, Cardona V, Hamelmann E, Mosges R, Kleine-Tebbe J. Clinical trials in allergen immunotherapy: current concepts and future needs. Allergy. 2018; 73 ( 9 ): 1775 - 1783. https://doi.org/10.1111/all.13429
dc.identifier.citedreferencePfaar O, Bergmann KC, Bonini S, et al. Technical standards in allergen exposure chambers worldwide – an EAACI Task Force Report. Allergy. 2021; 76 ( 12 ): 3589 - 3612. https://doi.org/10.1111/all.14957
dc.identifier.citedreferenceEllis AK, DeVeaux M, Steacy L, et al. Environmental exposure unit simulates natural seasonal birch pollen exposures while maximizing change in allergic symptoms. Ann Allergy Asthma Immunol. 2021; 127 ( 4 ): 488 - 495.e5. https://doi.org/10.1016/j.anai.2021.06.015
dc.identifier.citedreferenceAgache I, Bilo M, Braunstahl GJ, et al. In vivo diagnosis of allergic diseases–allergen provocation tests. Allergy. 2015; 70 ( 4 ): 355 - 365. https://doi.org/10.1111/all.12586
dc.identifier.citedreferenceRiechelmann H, Epple B, Gropper G. Comparison of conjunctival and nasal provocation test in allergic rhinitis to house dust mite. Int Arch Allergy Immunol. 2003; 130 ( 1 ): 51 - 59. https://doi.org/10.1159/000068369
dc.identifier.citedreferenceDordal MT, Lluch-Bernal M, Sanchez MC, et al. Allergen-specific nasal provocation testing: review by the rhinoconjunctivitis committee of the Spanish Society of Allergy and Clinical Immunology. J Investig Allergol Clin Immunol. 2011; 21 ( 1 ): 1 - 12, quiz follow 12.
dc.identifier.citedreferenceGreisner WA, 3rd. Onset of action for the relief of allergic rhinitis symptoms with second-generation antihistamines. Allergy Asthma Proc. 2004; 25 ( 2 ): 81 - 83.
dc.identifier.citedreferenceMalm L, Gerth van Wijk R, Bachert C. Guidelines for nasal provocations with aspects on nasal patency, airflow, and airflow resistance. International Committee on Objective Assessment of the Nasal Airways, International Rhinologic Society. Rhinology. 2000; 38 ( 1 ): 1 - 6.
dc.identifier.citedreferenceGosepath J, Amedee RG, Mann WJ. Nasal provocation testing as an international standard for evaluation of allergic and nonallergic rhinitis. Laryngoscope. 2005; 115 ( 3 ): 512 - 516. https://doi.org/10.1097/01.MLG.0000149682.56426.6B
dc.identifier.citedreferenceAuge J, Vent J, Agache I, et al. EAACI Position paper on the standardization of nasal allergen challenges. Allergy. 2018; 73 ( 8 ): 1597 - 1608. https://doi.org/10.1111/all.13416
dc.identifier.citedreferenceCasset A, Khayath N, de Blay F. How in vitro assays contribute to allergy diagnosis. Curr Allergy Asthma Rep. 2016; 16 ( 11 ): 82. https://doi.org/10.1007/s11882-016-0659-9
dc.identifier.citedreferenceSantos AF, Alpan O, Hoffmann HJ. Basophil activation test: mechanisms and considerations for use in clinical trials and clinical practice. Allergy. 2021; 76 ( 8 ): 2420 - 2432. https://doi.org/10.1111/all.14747
dc.identifier.citedreferenceLarson D, Patel P, Salapatek AM, et al. Nasal allergen challenge and environmental exposure chamber challenge: a randomized trial comparing clinical and biological responses to cat allergen. J Allergy Clin Immunol. 2020; 145 ( 6 ): 1585 - 1597. https://doi.org/10.1016/j.jaci.2020.02.024
dc.identifier.citedreferenceWanjun W, Qiurong H, Yanqing X, Mo X, Nili W, Jing L. Responsiveness of nasal provocation testing-but not skin test and specific immunoglobulin E blood level-correlates with severity of allergic rhinitis in dermatophagoides species-sensitized patients. Am J Rhinol Allergy. 2018; 32 ( 4 ): 236 - 243. https://doi.org/10.1177/1945892418779435
dc.identifier.citedreferenceJoo SH, Hyun KJ, Kim YH. Korean modification of the nasal provocation test with house dust mite antigen following the EAACI guidelines. Clin Exp Otorhinolaryngol. 2021; 14 ( 4 ): 382 - 389. https://doi.org/10.21053/ceo.2020.00563
dc.identifier.citedreferenceXiao H, Jia Q, Zhang H, Zhang L, Liu G, Meng J. The importance of nasal provocation testing in the diagnosis of dermatophagoides pteronyssinus-induced allergic rhinitis. Am J Rhinol Allergy. 2022; 36 ( 2 ): 191 - 197. https://doi.org/10.1177/19458924211037913
dc.identifier.citedreferenceEAACI Task Force on Occupational Rhinitis, Moscato G, Vandenplas O, et al. Occupational rhinitis. Allergy. 2008; 63 ( 8 ): 969 - 980. https://doi.org/10.1111/j.1398-9995.2008.01801.x
dc.identifier.citedreferenceRondon C, Campo P, Herrera R, et al. Nasal allergen provocation test with multiple aeroallergens detects polysensitization in local allergic rhinitis. J Allergy Clin Immunol. 2011; 128 ( 6 ): 1192 - 1197. https://doi.org/10.1016/j.jaci.2011.06.012
dc.identifier.citedreferenceTantilipikorn P, Siriboonkoom P, Sookrung N, et al. Prevalence of local allergic rhinitis to Dermatophagoides pteronyssinus in chronic rhinitis with negative skin prick test. Asian Pac J Allergy Immunol. 2021; 39 ( 2 ): 111 - 116. https://doi.org/10.12932/AP-170918-0408
dc.identifier.citedreferenceMoller C, Bjorksten B, Nilsson G, Dreborg S. The precision of the conjunctival provocation test. Allergy. 1984; 39 ( 1 ): 37 - 41. https://doi.org/10.1111/j.1398-9995.1984.tb01931.x
dc.identifier.citedreferenceBertel F, Mortemousque B, Sicard H, André C. Test de provocation conjonctival au Dermatophagoïdes pteronyssinus dans le diagnostic des conjonctivites allergiques aux acariens domestiques [Conjunctival provocation test with Dermatophagoides pteronyssinus in the diagnosis of allergic conjunctivitis from house mites ]. J Fr Ophtalmol. 2001; 24 ( 6 ): 581 - 589.
dc.identifier.citedreferenceFauquert JL, Jedrzejczak-Czechowicz M, Rondon C, et al. Conjunctival allergen provocation test: guidelines for daily practice. Allergy. 2017; 72 ( 1 ): 43 - 54. https://doi.org/10.1111/all.12986
dc.identifier.citedreferenceSchoos AM, Chawes BL, Bloch J, et al. Children monosensitized to Can f 5 show different reactions to male and female dog allergen extract provocation: a randomized controlled trial. J Allergy Clin Immunol Pract. 2020; 8 ( 5 ): 1592 - 1597.e2. https://doi.org/10.1016/j.jaip.2019.12.012
dc.identifier.citedreferenceGelis S, Rueda M, Pascal M, et al., Usefulness of the Nasal Allergen Provocation Test in the Diagnosis of Shellfish Allergy. J Investig Allergol Clin Immunol. 2022; 32 ( 6 ): 460 - 470. doi: https://doi.org/10.18176/jiaci.0736
dc.identifier.citedreferenceKrzych-Falta E, Furmanczyk K, Samolinski B. Specificity and sensitivity assessment of selected nasal provocation testing techniques. Postepy Dermatol Alergol. 2016; 33 ( 6 ): 464 - 468. https://doi.org/10.5114/pdia.2016.61339
dc.identifier.citedreferencede Blay F, Doyen V, Lutz C, et al. A new, faster, and safe nasal provocation test method for diagnosing mite allergic rhinitis. Ann Allergy Asthma Immunol. 2015; 115 ( 5 ): 385 - 390.e1. https://doi.org/10.1016/j.anai.2015.07.014
dc.identifier.citedreferenceAgarwal G, Hernandez D, Citardi MJ, Fakhri S, Luong A. End-organ testing for allergic rhinitis with fungi is poorly correlated with fungal sensitivity. Otolaryngol Head Neck Surg. 2013; 148 ( 3 ): 391 - 395. https://doi.org/10.1177/0194599812474224
dc.identifier.citedreferenceGelardi M, Iannuzzi L, Quaranta N, Landi M, Passalacqua G. NASAL cytology: practical aspects and clinical relevance. Clin Exp Allergy. 2016; 46 ( 6 ): 785 - 792. https://doi.org/10.1111/cea.12730
dc.identifier.citedreferenceWaecker NJ, Jr., Shope TR, Weber PA, Buck ML, Domingo RC, Hooper DG. The Rhino-Probe nasal curette for detecting respiratory syncytial virus in children. Pediatr Infect Dis J. 1993; 12 ( 4 ): 326 - 329. https://doi.org/10.1097/00006454-199304000-00012
dc.identifier.citedreferenceGelardi M, Passalacqua G, Fiorella ML, Quaranta N. Assessment of biofilm by nasal cytology in different forms of rhinitis and its functional correlations. Eur Ann Allergy Clin Immunol. 2013; 45 ( 1 ): 25 - 29.
dc.identifier.citedreferenceCanakcioglu S, Tahamiler R, Saritzali G, et al. Evaluation of nasal cytology in subjects with chronic rhinitis: a 7-year study. Am J Otolaryngol. 2009; 30 ( 5 ): 312 - 317. https://doi.org/10.1016/j.amjoto.2008.06.015
dc.identifier.citedreferenceDi Lorenzo G, Pacor ML, Amodio E, et al. Differences and similarities between allergic and nonallergic rhinitis in a large sample of adult patients with rhinitis symptoms. Int Arch Allergy Immunol. 2011; 155 ( 3 ): 263 - 270. https://doi.org/10.1159/000320050
dc.identifier.citedreferenceGelardi M, Ciprandi G, Incorvaia C, et al. Allergic rhinitis phenotypes based on mono-allergy or poly-allergy. Inflamm Res. 2015; 64 ( 6 ): 373 - 375. https://doi.org/10.1007/s00011-015-0826-9
dc.identifier.citedreferenceGelardi M, Incorvaia C, Passalacqua G, Quaranta N, Frati F. The classification of allergic rhinitis and its cytological correlate. Allergy. 2011; 66 ( 12 ): 1624 - 1625. https://doi.org/10.1111/j.1398-9995.2011.02741.x
dc.identifier.citedreferenceGelardi M, Peroni DG, Incorvaia C, et al. Seasonal changes in nasal cytology in mite-allergic patients. J Inflamm Res. 2014; 7: 39 - 44. https://doi.org/10.2147/JIR.S54581
dc.identifier.citedreferenceCiofalo A, Cavaliere C, Incorvaia C, et al. Diagnostic performance of nasal cytology. Eur Arch Otorhinolaryngol. 2022; 279 ( 5 ): 2451 - 2455. https://doi.org/10.1007/s00405-021-07044-5
dc.identifier.citedreferenceCavaliere C, Masieri S, Greco A, Lambiase A, Segatto M. Nasal expression of the vascular endothelial growth factor and its receptors is reduced by mepolizumab in chronic rhinosinusitis with nasal polyposis. Ann Allergy Asthma Immunol. 2021; 126 ( 4 ): 442 - 443. https://doi.org/10.1016/j.anai.2021.01.010
dc.identifier.citedreferenceChen Y, Yang M, Deng J, Wang K, Shi J, Sun Y. Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis. J Immunol Res. 2020; 2020: 8085615. https://doi.org/10.1155/2020/8085615
dc.identifier.citedreferenceSpector SL, English G, Jones L. Clinical and nasal biopsy response to treatment of perennial rhinitis. J Allergy Clin Immunol. 1980; 66 ( 2 ): 129 - 137. https://doi.org/10.1016/0091-6749(80)90060-3
dc.identifier.citedreferenceLim MC, Taylor RM, Naclerio RM. The histology of allergic rhinitis and its comparison to cellular changes in nasal lavage. Am J Respir Crit Care Med. 1995; 151 ( 1 ): 136 - 144. https://doi.org/10.1164/ajrccm.151.1.7812543
dc.identifier.citedreferenceHowarth PH, Persson CG, Meltzer EO, Jacobson MR, Durham SR, Silkoff PE. Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol. 2005; 115 (3 suppl 1): S414 - S441. https://doi.org/10.1016/j.jaci.2004.12.1134
dc.identifier.citedreferenceDe Corso E, Seccia V, Ottaviano G, et al. Clinical Evidence of Type 2 inflammation in non-allergic rhinitis with eosinophilia syndrome: a systematic review. Curr Allergy Asthma Rep. 2022; 22 ( 4 ): 29 - 42. https://doi.org/10.1007/s11882-022-01027-0
dc.identifier.citedreferencePhothijindakul N, Chusakul S, Aeumjaturapat S, et al. Nasal cytology as a diagnostic tool for local allergic rhinitis. Am J Rhinol Allergy. 2019; 33 ( 5 ): 540 - 544. https://doi.org/10.1177/1945892419850926
dc.identifier.citedreferenceGelardi M. "Overlapped" rhinitis: a real trap for rhinoallergologists. Eur Ann Allergy Clin Immunol. 2014; 46 ( 6 ): 234 - 236.
dc.identifier.citedreferenceMcHugh T, Levin M, Snidvongs K, Banglawala SM, Sommer DD. Comorbidities associated with eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Clin Otolaryngol. 2020; 45 ( 4 ): 574 - 583. https://doi.org/10.1111/coa.13536
dc.identifier.citedreferenceSivam A, Jeswani S, Reder L, et al. Olfactory cleft inflammation is present in seasonal allergic rhinitis and is reduced with intranasal steroids. Am J Rhinol Allergy. 2010; 24 ( 4 ): 286 - 290. https://doi.org/10.2500/ajra.2010.24.3478
dc.identifier.citedreferenceUller L, Emanuelsson CA, Andersson M, Erjefalt JS, Greiff L, Persson CG. Early phase resolution of mucosal eosinophilic inflammation in allergic rhinitis. Respir Res. 2010; 11: 54. https://doi.org/10.1186/1465-9921-11-54
dc.identifier.citedreferenceAsai K, Foley SC, Sumi Y, et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy increases CD4+CD25+ T cells in the nasal mucosa of subjects with allergic rhinitis. Allergol Int. 2008; 57 ( 4 ): 377 - 381. https://doi.org/10.2332/allergolint.O-07-528
dc.identifier.citedreferenceRak S, Heinrich C, Scheynius A. Comparison of nasal immunohistology in patients with seasonal rhinoconjunctivitis treated with topical steroids or specific allergen immunotherapy. Allergy. 2005; 60 ( 5 ): 643 - 649. https://doi.org/10.1111/j.1398-9995.2005.00763.x
dc.identifier.citedreferencePlewako H, Arvidsson M, Petruson K, et al. The effect of omalizumab on nasal allergic inflammation. J Allergy Clin Immunol. 2002; 110 ( 1 ): 68 - 71. https://doi.org/10.1067/mai.2002.125488
dc.identifier.citedreferencePullerits T, Linden A, Malmhall C, Lotvall J. Effect of seasonal allergen exposure on mucosal IL-16 and CD4+ cells in patients with allergic rhinitis. Allergy. 2001; 56 ( 9 ): 871 - 877.
dc.identifier.citedreferenceWilson DR, Nouri-Aria KT, Walker SM, et al. Grass pollen immunotherapy: symptomatic improvement correlates with reductions in eosinophils and IL-5 mRNA expression in the nasal mucosa during the pollen season. J Allergy Clin Immunol. 2001; 107 ( 6 ): 971 - 976. https://doi.org/10.1067/mai.2001.115483
dc.identifier.citedreferenceRadulovic S, Jacobson MR, Durham SR, Nouri-Aria KT. Grass pollen immunotherapy induces Foxp3-expressing CD4+ CD25+ cells in the nasal mucosa. J Allergy Clin Immunol. 2008; 121 ( 6 ): 1467 - 1472, 1472.e1. https://doi.org/10.1016/j.jaci.2008.03.013
dc.identifier.citedreferenceTill SJ, Jacobson MR, O’Brien F, et al. Recruitment of CD1a+ Langerhans cells to the nasal mucosa in seasonal allergic rhinitis and effects of topical corticosteroid therapy. Allergy. 2001; 56 ( 2 ): 126 - 131. https://doi.org/10.1034/j.1398-9995.2001.056002126.x
dc.identifier.citedreferenceVogt K, Bachmann-Harildstad G, Lintermann A, Nechyporenko A, Peters F, Wernecke KD. The new agreement of the international RIGA consensus conference on nasal airway function tests. Rhinology. 2018; 56 ( 2 ): 133 - 143. https://doi.org/10.4193/Rhin17.084
dc.identifier.citedreferenceVogt K, Wernecke KD, Behrbohm H, Gubisch W, Argale M. Four-phase rhinomanometry: a multicentric retrospective analysis of 36,563 clinical measurements. Eur Arch Otorhinolaryngol. 2016; 273 ( 5 ): 1185 - 1198. https://doi.org/10.1007/s00405-015-3723-5
dc.identifier.citedreferenceRimmer J, Hellings P, Lund VJ, et al. European position paper on diagnostic tools in rhinology. Rhinology. 2019; 57 (suppl S28): 1 - 41. https://doi.org/10.4193/Rhin19.410
dc.identifier.citedreferenceClement PA. Committee report on standardization of rhinomanometry. Rhinology. 1984; 22 ( 3 ): 151 - 155.
dc.identifier.citedreferenceOhki M, Naito K, Cole P. Dimensions and resistances of the human nose: racial differences. Laryngoscope. 1991; 101 ( 3 ): 276 - 278. https://doi.org/10.1288/00005537-199103000-00009
dc.identifier.citedreferenceJones AS, Lancer JM, Stevens JC, Beckingham E. Nasal resistance to airflow (its measurement, reproducibility and normal parameters). J Laryngol Otol. 1987; 101 ( 8 ): 800 - 808. https://doi.org/10.1017/s0022215100102762
dc.identifier.citedreferenceCole P. Stability of nasal airflow resistance. Clin Otolaryngol Allied Sci. 1989; 14 ( 2 ): 177 - 1782. https://doi.org/10.1111/j.1365-2273.1989.tb00357.x
dc.identifier.citedreferenceShelton DM, Eiser NM. Evaluation of active anterior and posterior rhinomanometry in normal subjects. Clin Otolaryngol Allied Sci. 1992; 17 ( 2 ): 178 - 182. https://doi.org/10.1111/j.1365-2273.1992.tb01068.x
dc.identifier.citedreferenceChen IC, Lin YT, Hsu JH, Liu YC, Wu JR, Dai ZK. Nasal airflow measured by rhinomanometry correlates with FeNO in children with asthma. PLoS One. 2016; 11 ( 10 ): e0165440. https://doi.org/10.1371/journal.pone.0165440
dc.identifier.citedreferenceMerkle J, Kohlhas L, Zadoyan G, Mosges R, Hellmich M. Rhinomanometric reference intervals for normal total nasal airflow resistance. Rhinology. 2014; 52 ( 4 ): 292 - 299. https://doi.org/10.4193/Rhino13.220
dc.identifier.citedreferenceSuzina AH, Hamzah M, Samsudin AR. Active anterior rhinomanometry analysis in normal adult Malays. J Laryngol Otol. 2003; 117 ( 8 ): 605 - 608. https://doi.org/10.1258/002221503768199924
dc.identifier.citedreferenceVogt K, Jalowayski AA, Althaus W, et al. 4-Phase-Rhinomanometry (4PR)–basics and practice 2010. Rhinol Suppl. 2010; 21: 1 - 50.
dc.identifier.citedreferenceAndre RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenite GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol. 2009; 34 ( 6 ): 518 - 525. https://doi.org/10.1111/j.1749-4486.2009.02042.x
dc.identifier.citedreferenceMohan S, Fuller JC, Ford SF, Lindsay RW. Diagnostic and therapeutic management of nasal airway obstruction: advances in diagnosis and treatment. JAMA Facial Plast Surg. 2018; 20 ( 5 ): 409 - 418. https://doi.org/10.1001/jamafacial.2018.0279
dc.identifier.citedreferenceTarhan E, Coskun M, Cakmak O, Celik H, Cankurtaran M. Acoustic rhinometry in humans: accuracy of nasal passage area estimates, and ability to quantify paranasal sinus volume and ostium size. J Appl Physiol (1985). 2005; 99 ( 2 ): 616 - 623. https://doi.org/10.1152/japplphysiol.00106.2005
dc.identifier.citedreferenceTimperley D, Srubisky A, Stow N, Marcells GN, Harvey RJ. Minimal clinically important differences in nasal peak inspiratory flow. Rhinology. 2011; 49 ( 1 ): 37 - 40. https://doi.org/10.4193/Rhino10.097
dc.identifier.citedreferenceChin D, Marcells G, Malek J, et al. Nasal peak inspiratory flow (NPIF) as a diagnostic tool for differentiating decongestable from structural nasal obstruction. Rhinology. 2014; 52 ( 2 ): 116 - 121. https://doi.org/10.4193/Rhino13.126
dc.identifier.citedreferenceKirtsreesakul V, Leelapong J, Ruttanaphol S. Correlation between peak nasal flow reversibility and mucociliary clearance in allergic rhinitis. Laryngoscope. 2020; 130 ( 6 ): 1372 - 1376. https://doi.org/10.1002/lary.28226
dc.identifier.citedreferenceMo S, Gupta SS, Stroud A, et al. Nasal peak inspiratory flow in healthy and obstructed patients: systematic review and meta-analysis. Laryngoscope. 2021; 131 ( 2 ): 260 - 267. https://doi.org/10.1002/lary.28682
dc.identifier.citedreferenceKrzych-Falta E, Samolinski BK. Objectification of the nasal patency assessment techniques used in nasal allergen provocation testing. Postepy Dermatol Alergol. 2020; 37 ( 5 ): 635 - 640. https://doi.org/10.5114/ada.2019.81404
dc.identifier.citedreferenceOttaviano G, Ermolao A, Nardello E, et al. Breathing parameters associated to two different external nasal dilator strips in endurance athletes. Auris Nasus Larynx. 2017; 44 ( 6 ): 713 - 718. https://doi.org/10.1016/j.anl.2017.01.006
dc.identifier.citedreferenceKirtsreesakul V, Leelapong J, Ruttanaphol S. Nasal peak inspiratory and expiratory flow measurements for assessing nasal obstruction in allergic rhinitis. Am J Rhinol Allergy. 2014; 28 ( 2 ): 126 - 130. https://doi.org/10.2500/ajra.2014.28.4008
dc.identifier.citedreferenceWong DK, Saim L, Idrus RB, Saim A. Evaluating the incidence and severity of rhinitis using an peak nasal inspiratory flow meter and the SNOT-22 questionnaire. J Med Assoc Thai. 2021; 104 ( 5 ): 701 - 708.
dc.identifier.citedreferenceCanakcioglu S, Tahamiler R, Saritzali G, Isildak H, Alimoglu Y. Nasal patency by rhinomanometry in patients with sensation of nasal obstruction. Am J Rhinol Allergy. 2009; 23 ( 3 ): 300 - 302. https://doi.org/10.2500/ajra.2009.23.3312
dc.identifier.citedreferencePassali D, Mezzedimi C, Passali GC, Nuti D, Bellussi L. The role of rhinomanometry, acoustic rhinometry, and mucociliary transport time in the assessment of nasal patency. Ear Nose Throat J. 2000; 79 ( 5 ): 397 - 400.
dc.identifier.citedreferenceGarcia GJM, Hariri BM, Patel RG, Rhee JS. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech. 2016; 49 ( 9 ): 1670 - 1678. https://doi.org/10.1016/j.jbiomech.2016.03.051
dc.identifier.citedreferenceAksoy C, Elsurer C, Artac H, Bozkurt MK. Evaluation of olfactory function in children with seasonal allergic rhinitis and its correlation with acoustic rhinometry. Int J Pediatr Otorhinolaryngol. 2018; 113: 188 - 191. https://doi.org/10.1016/j.ijporl.2018.07.051
dc.identifier.citedreferenceBarnes ML, Lipworth BJ. Removing nasal valve obstruction in peak nasal inspiratory flow measurement. Ann Allergy Asthma Immunol. 2007; 99 ( 1 ): 59 - 60. https://doi.org/10.1016/S1081-1206(10)60622-9
dc.identifier.citedreferenceBurrow A, Eccles R, Jones AS. The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol. 1983; 96 ( 1-2 ): 157 - 161. https://doi.org/10.3109/00016488309132886
dc.identifier.citedreferenceEccles R, Jones AS. The effect of menthol on nasal resistance to air flow. J Laryngol Otol. 1983; 97 ( 8 ): 705 - 709. https://doi.org/10.1017/s002221510009486x
dc.identifier.citedreferenceJones AS, Lancer JM, Shone G, Stevens JC. The effect of lignocaine on nasal resistance and nasal sensation of airflow. Acta Otolaryngol. 1986; 101 ( 3-4 ): 328 - 330. https://doi.org/10.3109/00016488609132846
dc.identifier.citedreferenceEccles R, Griffiths DH, Newton CG, Tolley NS. The effects of menthol isomers on nasal sensation of airflow. Clin Otolaryngol Allied Sci. 1988; 13 ( 1 ): 25 - 29. https://doi.org/10.1111/j.1365-2273.1988.tb00277.x
dc.identifier.citedreferenceNaito K, Ohoka E, Kato R, Kondo Y, Iwata S. The effect of L-menthol stimulation of the major palatine nerve on nasal patency. Auris Nasus Larynx. 1991; 18 ( 3 ): 221 - 226. https://doi.org/10.1016/s0385-8146(12)80260-4
dc.identifier.citedreferenceNaito K, Komori M, Kondo Y, Takeuchi M, Iwata S. The effect of L-menthol stimulation of the major palatine nerve on subjective and objective nasal patency. Auris Nasus Larynx. 1997; 24 ( 2 ): 159 - 162. https://doi.org/10.1016/S0385-8146(96)00005-3
dc.identifier.citedreferenceJones AS, Crosher R, Wight RG, Lancer JM, Beckingham E. The effect of local anaesthesia of the nasal vestibule on nasal sensation of airflow and nasal resistance. Clin Otolaryngol Allied Sci. 1987; 12 ( 6 ): 461 - 464. https://doi.org/10.1111/j.1365-2273.1987.tb00233.x
dc.identifier.citedreferenceBarnes ML, White PS, Gardiner Q. Re: correlation between subjective and objective evaluation of the nasal airway. Clin Otolaryngol. 2010; 35 ( 2 ): 152 - 153; author reply 153. https://doi.org/10.1111/j.1749-4486.2010.02110.x
dc.identifier.citedreferencevan Spronsen E, Ingels KJ, Jansen AH, Graamans K, Fokkens WJ. Evidence-based recommendations regarding the differential diagnosis and assessment of nasal congestion: using the new GRADE system. Allergy. 2008; 63 ( 7 ): 820 - 833. https://doi.org/10.1111/j.1398-9995.2008.01729.x
dc.identifier.citedreferenceTa NH, Gao J, Philpott C. A systematic review to examine the relationship between objective and patient-reported outcome measures in sinonasal disorders: recommendations for use in research and clinical practice. Int Forum Allergy Rhinol. 2021; 11 ( 5 ): 910 - 923. https://doi.org/10.1002/alr.22744
dc.identifier.citedreferenceVogt K, Hasse W, Jalowayski AA. New resistance patterns in rhinomanometry: clinical evaluation of 5000 measurements. presented at: European Rhinologic Society; 2002.
dc.identifier.citedreferenceIyer A, Athavale A. Nasal airway resistance and latent lower airway involvement in allergic rhinitis. J Assoc Physicians India. 2020; 68 ( 3 ): 43 - 47.
dc.identifier.citedreferencePantin CT, Southworth T, Wetzel K, Singh D. Reproducibility of nasal allergen challenge responses in adults with allergic rhinitis. Clin Pharmacol. 2019; 11: 67 - 76. https://doi.org/10.2147/CPAA.S184404
dc.identifier.citedreferenceWong EH, Eccles R. Comparison of classic and 4-phase rhinomanometry methods, is there any difference? Rhinology. 2014; 52 ( 4 ): 360 - 365. https://doi.org/10.4193/Rhino13.187
dc.identifier.citedreferenceBrindisi G, De Vittori V, De Nola R, et al. The role of nasal nitric oxide and anterior active rhinomanometry in the diagnosis of allergic rhinitis and asthma: a message for pediatric clinical practice. J Asthma Allergy. 2021; 14: 265 - 274. https://doi.org/10.2147/JAA.S275692
dc.identifier.citedreferenceWandalsen GF, Mendes AI, Matsumoto F, Sole D. Acoustic rhinometry in nasal provocation tests in children and adolescents. J Investig Allergol Clin Immunol. 2016; 26 ( 3 ): 156 - 160. https://doi.org/10.18176/jiaci.0036
dc.identifier.citedreferenceMalizia V, Ferrante G, Cilluffo G, Fasola S, Montalbano L, La Grutta S. Rhinomanometry: point of care test (POCT) for allergic rhinitis in children? Allergol Immunopathol (Madr). 2021; 49 ( 5 ): 28 - 31. https://doi.org/10.15586/aei.v49i5.429
dc.identifier.citedreferenceValero A, Navarro AM, Del Cuvillo A, et al. Position paper on nasal obstruction: evaluation and treatment. J Investig Allergol Clin Immunol. 2018; 28 ( 2 ): 67 - 90. https://doi.org/10.18176/jiaci.0232
dc.identifier.citedreferenceTakeno S, Okabayashi Y, Kohno T, Yumii K, Hirakawa K. The role of nasal fractional exhaled nitric oxide as an objective parameter independent of nasal airflow resistance in the diagnosis of allergic rhinitis. Auris Nasus Larynx. 2017; 44 ( 4 ): 435 - 441. https://doi.org/10.1016/j.anl.2016.09.007
dc.identifier.citedreferenceDemirbas D, Cingi C, Cakli H, Kaya E. Use of rhinomanometry in common rhinologic disorders. Expert Rev Med Devices. 2011; 8 ( 6 ): 769 - 777. https://doi.org/10.1586/erd.11.45
dc.identifier.citedreferenceEguiluz-Gracia I, Testera-Montes A, Salas M, et al. Comparison of diagnostic accuracy of acoustic rhinometry and symptoms score for nasal allergen challenge monitoring. Allergy. 2021; 76 ( 1 ): 371 - 375. https://doi.org/10.1111/all.14499
dc.identifier.citedreferenceIsaac A, Major M, Witmans M, et al. Correlations between acoustic rhinometry, subjective symptoms, and endoscopic findings in symptomatic children with nasal obstruction. JAMA Otolaryngol Head Neck Surg. 2015; 141 ( 6 ): 550 - 555. https://doi.org/10.1001/jamaoto.2015.0468
dc.identifier.citedreferenceWandalsen GF, Mendes AI, Sole D. Correlation between nasal resistance and different acoustic rhinometry parameters in children and adolescents with and without allergic rhinitis. Braz J Otorhinolaryngol. 2012; 78 ( 6 ): 81 - 86. https://doi.org/10.5935/1808-8694.20120038
dc.identifier.citedreferenceOzturk F, Turktas I, Asal K, Ileri F, Munevver Pinar N. Effect of intranasal triamcinolone acetonide on bronchial hyper-responsiveness in children with seasonal allergic rhinitis and comparison of perceptional nasal obstruction with acoustic rhinometric assessment. Int J Pediatr Otorhinolaryngol. 2004; 68 ( 8 ): 1007 - 1015. https://doi.org/10.1016/j.ijporl.2004.03.006
dc.identifier.citedreferenceSikorska-Szaflik H, Sozanska B. Peak nasal inspiratory flow in children with allergic rhinitis. Is it related to the quality of life? Allergol Immunopathol (Madr). 2020; 48 ( 2 ): 187 - 193. https://doi.org/10.1016/j.aller.2019.08.002
dc.identifier.citedreferenceNeighbour H, Soliman M, Steacy LM, et al. The Allergic Rhinitis Clinical Investigator Collaborative (AR-CIC): verification of nasal allergen challenge procedures in a study utilizing an investigational immunotherapy for cat allergy. Clin Transl Allergy. 2018; 8: 15. https://doi.org/10.1186/s13601-018-0198-7
dc.identifier.citedreferenceGupta N, Goel N, Kumar R. Correlation of exhaled nitric oxide, nasal nitric oxide and atopic status: a cross-sectional study in bronchial asthma and allergic rhinitis. Lung India. 2014; 31 ( 4 ): 342 - 347. https://doi.org/10.4103/0970-2113.142107
dc.identifier.citedreferenceKimberly B, Nejadnik B, Giraud GD, Holden WE. Nasal contribution to exhaled nitric oxide at rest and during breathholding in humans. Am J Respir Crit Care Med. 1996; 153 ( 2 ): 829 - 836. https://doi.org/10.1164/ajrccm.153.2.8564139
dc.identifier.citedreferenceLundberg JO, Farkas-Szallasi T, Weitzberg E, et al. High nitric oxide production in human paranasal sinuses. Nat Med. 1995; 1 ( 4 ): 370 - 373. https://doi.org/10.1038/nm0495-370
dc.identifier.citedreferenceChatkin JM, Qian W, McClean PA, Zamel N, Haight J, Silkoff P. Nitric oxide accumulation in the nonventilated nasal cavity. Arch Otolaryngol Head Neck Surg. 1999; 125 ( 6 ): 682 - 685. https://doi.org/10.1001/archotol.125.6.682
dc.identifier.citedreferenceAmerican Thoracic S, European Respiratory S. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005; 171 ( 8 ): 912 - 930. https://doi.org/10.1164/rccm.200406-710ST
dc.identifier.citedreferenceMalmberg LP, Petays T, Haahtela T, et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol. 2006; 41 ( 7 ): 635 - 642. https://doi.org/10.1002/ppul.20417
dc.identifier.citedreferenceFranklin PJ, Taplin R, Stick SM. A community study of exhaled nitric oxide in healthy children. Am J Respir Crit Care Med. 1999; 159 ( 1 ): 69 - 73. https://doi.org/10.1164/ajrccm.159.1.9804134
dc.identifier.citedreferenceFranklin PJ, Turner SW, Le Souef PN, Stick SM. Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness, and symptoms in a community population of children. Thorax. 2003; 58 ( 12 ): 1048 - 1052. https://doi.org/10.1136/thorax.58.12.1048
dc.identifier.citedreferenceKhatri SB, Iaccarino JM, Barochia A, et al. Use of fractional exhaled nitric oxide to guide the treatment of asthma: an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2021; 204 ( 10 ): e97 - e109. https://doi.org/10.1164/rccm.202109-2093ST
dc.identifier.citedreferencevan Asch CJ, Balemans WA, Rovers MM, Schilder AG, van der Ent CK. Atopic disease and exhaled nitric oxide in an unselected population of young adults. Ann Allergy Asthma Immunol. 2008; 100 ( 1 ): 59 - 65. https://doi.org/10.1016/S1081-1206(10)60406-1
dc.identifier.citedreferenceDweik RA, Sorkness RL, Wenzel S, et al. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am J Respir Crit Care Med. 2010; 181 ( 10 ): 1033 - 1041. https://doi.org/10.1164/rccm.200905-0695OC
dc.identifier.citedreferenceMoore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010; 181 ( 4 ): 315 - 323. https://doi.org/10.1164/rccm.200906-0896OC
dc.identifier.citedreferenceManiscalco M, Calabrese C, D’Amato M, et al. Association between exhaled nitric oxide and nasal polyposis in severe asthma. Respir Med. 2019; 152: 20 - 24. https://doi.org/10.1016/j.rmed.2019.04.017
dc.identifier.citedreferenceLipworth B, Kuo CR, Chan R. 2020 Updated Asthma Guidelines: clinical utility of fractional exhaled nitric oxide (Feno) in asthma management. J Allergy Clin Immunol. 2020; 146 ( 6 ): 1281 - 1282. https://doi.org/10.1016/j.jaci.2020.03.006
dc.identifier.citedreferenceBencova A, Rozborilova E, Antosova M. Bidirectional link between upper and lower airways in patients with allergic rhinitis. Eur J Med Res. 2009;(14 suppl 4): 18 - 20. https://doi.org/10.1186/2047-783x-14-s4-18
dc.identifier.citedreferenceHervas D, Rodriguez R, Garde J. Role of aeroallergen nasal challenge in asthmatic children. Allergol Immunopathol (Madr). 2011; 39 ( 1 ): 17 - 22. https://doi.org/10.1016/j.aller.2010.03.003
dc.identifier.citedreferenceJang YY, Ahn JY. Evaluation of fractional exhaled nitric oxide in pediatric asthma and allergic rhinitis. Children (Basel). 2020; 8 ( 1 ): 3. https://doi.org/10.3390/children8010003
dc.identifier.citedreferenceChoi BS, Kim KW, Lee YJ, et al. Exhaled nitric oxide is associated with allergic inflammation in children. J Korean Med Sci. 2011; 26 ( 10 ): 1265 - 1269. https://doi.org/10.3346/jkms.2011.26.10.1265
dc.identifier.citedreferenceLundberg JO, Nordvall SL, Weitzberg E, Kollberg H, Alving K. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child. 1996; 75 ( 4 ): 323 - 326. https://doi.org/10.1136/adc.75.4.323
dc.identifier.citedreferenceByrnes CA, Dinarevic S, Shinebourne EA, Barnes PJ, Bush A. Exhaled nitric oxide measurements in normal and asthmatic children. Pediatr Pulmonol. 1997; 24 ( 5 ): 312 - 318. https://doi.org/10.1002/(sici)1099-0496(199711)24:5 <312::aid-ppul2>3.0.co;2-k
dc.identifier.citedreferenceBaraldi E, Azzolin NM, Carra S, Dario C, Marchesini L, Zacchello F. Effect of topical steroids on nasal nitric oxide production in children with perennial allergic rhinitis: a pilot study. Respir Med. 1998; 92 ( 3 ): 558 - 561. https://doi.org/10.1016/s0954-6111(98)90308-0
dc.identifier.citedreferenceDweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011; 184 ( 5 ): 602 - 615. https://doi.org/10.1164/rccm.9120-11ST
dc.identifier.citedreferenceShapiro AJ, Dell SD, Gaston B, et al. Nasal nitric oxide measurement in primary ciliary dyskinesia. A technical paper on standardized testing protocols. Ann Am Thorac Soc. 2020; 17 ( 2 ): e1 - e12. https://doi.org/10.1513/AnnalsATS.201904-347OT
dc.identifier.citedreferenceLee KJ, Cho SH, Lee SH, et al. Nasal and exhaled nitric oxide in allergic rhinitis. Clin Exp Otorhinolaryngol. 2012; 5 ( 4 ): 228 - 33. https://doi.org/10.3342/ceo.2012.5.4.228
dc.identifier.citedreferenceDotsch J, Demirakca S, Terbrack HG, Huls G, Rascher W, Kuhl PG. Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J. 1996; 9 ( 12 ): 2537 - 2540. https://doi.org/10.1183/09031936.96.09122537
dc.identifier.citedreferenceMartin U, Bryden K, Devoy M, Howarth P. Increased levels of exhaled nitric oxide during nasal and oral breathing in subjects with seasonal rhinitis. J Allergy Clin Immunol. 1996; 97 ( 3 ): 768 - 772. https://doi.org/10.1016/s0091-6749(96)80154-0
dc.identifier.citedreferenceKalpaklioglu AF, Baccioglu A, Yalim SA. Can nasal nitric oxide be a biomarker to differentiate allergic and non-allergic rhinitis? Egypt J Otolaryngol. 2021; 37 ( 1 ): 91.
dc.identifier.citedreferenceAmbrosino P, Parrella P, Formisano R, et al. Clinical application of nasal nitric oxide measurement in allergic rhinitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2020; 125 ( 4 ): 447 - 459.e5. https://doi.org/10.1016/j.anai.2020.07.003
dc.identifier.citedreferenceWang B, Wu Z, Wang F, Yin Z, Shi L, Liu Y. Nasal nitric oxide testing for allergic rhinitis patients: Systematic review and meta-analysis. Immun Inflamm Dis. 2021; 9 ( 3 ): 635 - 648. https://doi.org/10.1002/iid3.439
dc.identifier.citedreferenceManiscalco M, Sofia M, Carratu L, Higenbottam T. Effect of nitric oxide inhibition on nasal airway resistance after nasal allergen challenge in allergic rhinitis. Eur J Clin Invest. 2001; 31 ( 5 ): 462 - 466. https://doi.org/10.1046/j.1365-2362.2001.00825.x
dc.identifier.citedreferenceMoody A, Fergusson W, Wells A, Bartley J, Kolbe J. Nasal levels of nitric oxide as an outcome variable in allergic upper respiratory tract disease: influence of atopy and hayfever on nNO. Am J Rhinol. 2006; 20 ( 5 ): 425 - 429. https://doi.org/10.2500/ajr.2006.20.2921
dc.identifier.citedreferenceHenriksen AH, Sue-Chu M, Holmen TL, Langhammer A, Bjermer L. Exhaled and nasal NO levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur Respir J. 1999; 13 ( 2 ): 301 - 306. https://doi.org/10.1034/j.1399-3003.1999.13b14.x
dc.identifier.citedreferencePhillips PS, Sacks R, Marcells GN, Cohen NA, Harvey RJ. Nasal nitric oxide and sinonasal disease: a systematic review of published evidence. Otolaryngol Head Neck Surg. 2011; 144 ( 2 ): 159 - 169. https://doi.org/10.1177/0194599810392667
dc.identifier.citedreferenceHervas D, Milan JM, Garde J. Differences in exhaled nitric oxide in atopic children. Allergol Immunopathol (Madr). 2008; 36 ( 6 ): 331 - 335. https://doi.org/10.1016/s0301-0546(08)75865-8
dc.identifier.citedreferenceMucci T, Govindaraj S, Tversky J. Allergic rhinitis. Mt Sinai J Med. 2011; 78 ( 5 ): 634 - 644. https://doi.org/10.1002/msj.20287
dc.identifier.citedreferenceTversky J, McGlashan D. Short wave infrared (SWIR) camera as a novel approach to allergy skin testing. J Allergy Clin Immunol. 2017; 139 ( 2 ): AB156.
dc.identifier.citedreferenceDeshpande PR, Rajan S, Sudeepthi BL, Abdul Nazir CP. Patient-reported outcomes: a new era in clinical research. Perspect Clin Res. 2011; 2 ( 4 ): 137 - 144. https://doi.org/10.4103/2229-3485.86879
dc.identifier.citedreferenceScadding GW, Calderon MA, Shamji MH, et al. Effect of 2 years of treatment with sublingual grass pollen immunotherapy on nasal response to allergen challenge at 3 years among patients with moderate to severe seasonal allergic rhinitis: the GRASS randomized clinical trial. JAMA. 2017; 317 ( 6 ): 615 - 625. https://doi.org/10.1001/jama.2016.21040
dc.identifier.citedreferenceZieglmayer P, Focke-Tejkl M, Schmutz R, et al. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine. 2016; 11: 43 - 57. https://doi.org/10.1016/j.ebiom.2016.08.022
dc.identifier.citedreferenceMosbech H, Canonica GW, Backer V, et al. SQ house dust mite sublingually administered immunotherapy tablet (ALK) improves allergic rhinitis in patients with house dust mite allergic asthma and rhinitis symptoms. Ann Allergy Asthma Immunol. 2015; 114 ( 2 ): 134 - 140. https://doi.org/10.1016/j.anai.2014.11.015
dc.identifier.citedreferenceCasale TB. Anti-immunoglobulin E (omalizumab) therapy in seasonal allergic rhinitis. Am J Respir Crit Care Med. 2001; 164 (8 pt 2): S18 - S21. https://doi.org/10.1164/ajrccm.164.supplement_1.2103023
dc.identifier.citedreferenceLimon L, Kockler DR. Desloratadine: a nonsedating antihistamine. Ann Pharmacother. 2003; 37 ( 2 ): 237 - 246, quiz 313-6. https://doi.org/10.1177/106002800303700216
dc.identifier.citedreferenceCalderon MA, Bernstein DI, Blaiss M, Andersen JS, Nolte H. A comparative analysis of symptom and medication scoring methods used in clinical trials of sublingual immunotherapy for seasonal allergic rhinitis. Clin Exp Allergy. 2014; 44 ( 10 ): 1228 - 1239. https://doi.org/10.1111/cea.12331
dc.identifier.citedreferenceDevillier P, Bousquet PJ, Grassin-Delyle S, et al. Comparison of outcome measures in allergic rhinitis in children, adolescents and adults. Pediatr Allergy Immunol. 2016; 27 ( 4 ): 375 - 381. https://doi.org/10.1111/pai.12561
dc.identifier.citedreferenceBedard A, Basagana X, Anto JM, et al. Mobile technology offers novel insights into the control and treatment of allergic rhinitis: The MASK study. J Allergy Clin Immunol. 2019; 144 ( 1 ): 135 - 143.e6. https://doi.org/10.1016/j.jaci.2019.01.053
dc.identifier.citedreferenceGlattacker M, Boeker M, Anger R, et al. Evaluation of a Mobile Phone App for patients with pollen-related allergic rhinitis: prospective longitudinal field study. JMIR Mhealth Uhealth. 2020; 8 ( 4 ): e15514. https://doi.org/10.2196/15514
dc.identifier.citedreferenceBousquet J, Bewick M, Arnavielhe S, et al. Work productivity in rhinitis using cell phones: The MASK pilot study. Allergy. 2017; 72 ( 10 ): 1475 - 1484. https://doi.org/10.1111/all.13177
dc.identifier.citedreferenceSousa-Pinto B, Eklund P, Pfaar O, et al. Validity, reliability, and responsiveness of daily monitoring visual analog scales in MASK-air(R). Clin Transl Allergy. 2021; 11 ( 7 ): e12062. https://doi.org/10.1002/clt2.12062
dc.identifier.citedreferenceZhou AH, Patel VR, Baredes S, Eloy JA, Hsueh WD. Mobile applications for allergic rhinitis. Ann Otol Rhinol Laryngol. 2018; 127 ( 11 ): 836 - 840. https://doi.org/10.1177/0003489418798385
dc.identifier.citedreferenceJacome C, Pereira R, Almeida R, et al. Validation of App and Phone Versions of the Control of Allergic Rhinitis and Asthma Test (CARAT). J Investig Allergol Clin Immunol. 2021; 31 ( 3 ): 270 - 273. https://doi.org/10.18176/jiaci.0640
dc.identifier.citedreferenceHafner D, Reich K, Matricardi PM, Meyer H, Kettner J, Narkus A. Prospective validation of ’Allergy-Control-SCORE(TM)’: a novel symptom-medication score for clinical trials. Allergy. 2011; 66 ( 5 ): 629 - 636. https://doi.org/10.1111/j.1398-9995.2010.02531.x
dc.identifier.citedreferenceDemoly P, Jankowski R, Chassany O, Bessah Y, Allaert FA. Validation of a self-questionnaire for assessing the control of allergic rhinitis. Clin Exp Allergy. 2011; 41 ( 6 ): 860 - 868. https://doi.org/10.1111/j.1365-2222.2011.03734.x
dc.identifier.citedreferenceDemoly P, Calderon MA, Casale T, et al. Assessment of disease control in allergic rhinitis. Clin Transl Allergy. 2013; 3 ( 1 ): 7. https://doi.org/10.1186/2045-7022-3-7
dc.identifier.citedreferenceMeltzer EO, Schatz M, Nathan R, Garris C, Stanford RH, Kosinski M. Reliability, validity, and responsiveness of the Rhinitis Control Assessment Test in patients with rhinitis. J Allergy Clin Immunol. 2013; 131 ( 2 ): 379 - 386. https://doi.org/10.1016/j.jaci.2012.10.022
dc.identifier.citedreferenceSpector SL, Nicklas RA, Chapman JA, et al. Symptom severity assessment of allergic rhinitis: part 1. Ann Allergy Asthma Immunol. 2003; 91 ( 2 ): 105 - 114. https://doi.org/10.1016/s1081-1206(10)62160-6
dc.identifier.citedreferenceAnnesi-Maesano I, Didier A, Klossek M, Chanal I, Moreau D, Bousquet J. The score for allergic rhinitis (SFAR): a simple and valid assessment method in population studies. Allergy. 2002; 57 ( 2 ): 107 - 114. https://doi.org/10.1034/j.1398-9995.2002.1o3170.x
dc.identifier.citedreferenceBousquet PJ, Combescure C, Neukirch F, et al. Visual analog scales can assess the severity of rhinitis graded according to ARIA guidelines. Allergy. 2007; 62 ( 4 ): 367 - 372. https://doi.org/10.1111/j.1398-9995.2006.01276.x
dc.identifier.citedreferenceDevillier P, Chassany O, Vicaut E, et al. The minimally important difference in the Rhinoconjunctivitis Total Symptom Score in grass-pollen-induced allergic rhinoconjunctivitis. Allergy. 2014; 69 ( 12 ): 1689 - 1695. https://doi.org/10.1111/all.12518
dc.identifier.citedreferenceFonseca JA, Nogueira-Silva L, Morais-Almeida M, et al. Validation of a questionnaire (CARAT10) to assess rhinitis and asthma in patients with asthma. Allergy. 2010; 65 ( 8 ): 1042 - 1048. https://doi.org/10.1111/j.1398-9995.2009.02310.x
dc.identifier.citedreferenceBaiardini I, Pasquali M, Giardini A, et al. Rhinasthma: a new specific QoL questionnaire for patients with rhinitis and asthma. Allergy. 2003; 58 ( 4 ): 289 - 294. https://doi.org/10.1034/j.1398-9995.2003.00079.x
dc.identifier.citedreferenceTosca MA, Del Barba P, Licari A, Ciprandi G, Asthma and Rhinitis Control Study Group. The measurement of asthma and allergic rhinitis control in children and adolescents. Children (Basel). 2020; 7 ( 5 ): 43. https://doi.org/10.3390/children7050043
dc.identifier.citedreferenceDemoly P, Emminger W, Rehm D, Backer V, Tommerup L, Kleine-Tebbe J. Effective treatment of house dust mite-induced allergic rhinitis with 2 doses of the SQ HDM SLIT-tablet: results from a randomized, double-blind, placebo-controlled phase III trial. J Allergy Clin Immunol. 2016; 137 ( 2 ): 444 - 451.e8. https://doi.org/10.1016/j.jaci.2015.06.036
dc.identifier.citedreferenceGalimberti M, Passalacqua G, Incorvaia C, et al. Catching allergy by a simple questionnaire. World Allergy Organ J. 2015; 8 ( 1 ): 16. https://doi.org/10.1186/s40413-015-0067-y
dc.identifier.citedreferenceKlimek L, Bachert C, Lukat KF, Pfaar O, Meyer H, Narkus A. Allergy immunotherapy with a hypoallergenic recombinant birch pollen allergen rBet v 1-FV in a randomized controlled trial. Clin Transl Allergy. 2015; 5: 28. https://doi.org/10.1186/s13601-015-0071-x
dc.identifier.citedreferenceBenninger MS, Senior BA. The development of the Rhinosinusitis Disability Index. Arch Otolaryngol Head Neck Surg. 1997; 123 ( 11 ): 1175 - 1179. https://doi.org/10.1001/archotol.1997.01900110025004
dc.identifier.citedreferenceScadding GK. Optimal management of allergic rhinitis. Arch Dis Child. 2015; 100 ( 6 ): 576 - 582. https://doi.org/10.1136/archdischild-2014-306300
dc.identifier.citedreferenceBenninger MS, Benninger RM. The impact of allergic rhinitis on sexual activity, sleep, and fatigue. Allergy Asthma Proc. 2009; 30 ( 4 ): 358 - 365. https://doi.org/10.2500/aap.2009.30.3244
dc.identifier.citedreferenceKupczyk M, Baiardini I, Molinengo G, et al. Cross-cultural adaptation and validation of the RhinAsthma Patient Perspective (RAPP) in the Polish population. Postepy Dermatol Alergol. 2020; 37 ( 1 ): 97 - 102. https://doi.org/10.5114/ada.2020.93387
dc.identifier.citedreferenceWerner CU, Koch L, Linde K, et al. Prospective observational study validating the German version of the Control of Allergic Rhinitis and Asthma Test (CARAT10). NPJ Prim Care Respir Med. 2018; 28 ( 1 ): 45. https://doi.org/10.1038/s41533-018-0112-8
dc.identifier.citedreferenceEmons JA, Flokstra BM, de Jong C, et al. Use of the Control of Allergic Rhinitis and Asthma Test (CARATkids) in children and adolescents: validation in Dutch. Pediatr Allergy Immunol. 2017; 28 ( 2 ): 185 - 190. https://doi.org/10.1111/pai.12678
dc.identifier.citedreferenceNurmatov U, van Schayck CP, Hurwitz B, Sheikh A. House dust mite avoidance measures for perennial allergic rhinitis: an updated Cochrane systematic review. Allergy. 2012; 67 ( 2 ): 158 - 165. https://doi.org/10.1111/j.1398-9995.2011.02752.x
dc.identifier.citedreferenceInternational Consensus Report on the diagnosis and management of rhinitis. International Rhinitis Management Working Group. Allergy. 1994; 49 (19 suppl): 1 - 34.
dc.identifier.citedreferenceMackay IS, Durham SR. ABC of allergies. Perennial rhinitis. BMJ. 1998; 316 ( 7135 ): 917 - 920. https://doi.org/10.1136/bmj.316.7135.917
dc.identifier.citedreferenceWoodcock A, Custovic A. ABC of allergies. Avoiding exposure to indoor allergens. BMJ. 1998; 316 ( 7137 ): 1075 - 1078. https://doi.org/10.1136/bmj.316.7137.1075
dc.identifier.citedreferenceKrouse HJ. Environmental controls and avoidance measures. Int Forum Allergy Rhinol. 2014; 4 (suppl 2):S32-S34. https://doi.org/10.1002/alr.21383
dc.identifier.citedreferenceGhazala L, Schmid F, Helbling A, Pichler WJ, Pichler CE. Efficacy of house dust mite and allergen impermeable encasisgs in patients with house dust mite allergy [German]. Allergologie. 2004; 27: 26 - 34.
dc.identifier.citedreferenceKniest FM, Wolfs BJ, Vos H, et al. Mechanisms and patient compliance of dust-mite avoidance regimens in dwellings of mite-allergic rhinitic patients. Clin Exp Allergy. 1992; 22 ( 7 ): 681 - 689. https://doi.org/10.1111/j.1365-2222.1992.tb00191.x
dc.identifier.citedreferenceMoon JS, Choi SO. Environmental controls in reducing house dust mites and nasal symptoms in patients with allergic rhinitis. Yonsei Med J. 1999; 40 ( 3 ): 238 - 243. https://doi.org/10.3349/ymj.1999.40.3.238
dc.identifier.citedreferenceReisman RE, Mauriello PM, Davis GB, Georgitis JW, DeMasi JM. A double-blind study of the effectiveness of a high-efficiency particulate air (HEPA) filter in the treatment of patients with perennial allergic rhinitis and asthma. J Allergy Clin Immunol. 1990; 85 ( 6 ): 1050 - 1057. https://doi.org/10.1016/0091-6749(90)90050-e
dc.identifier.citedreferenceTerreehorst I, Hak E, Oosting AJ, et al. Evaluation of impermeable covers for bedding in patients with allergic rhinitis. N Engl J Med. 2003; 349 ( 3 ): 237 - 246. https://doi.org/10.1056/NEJMoa023171
dc.identifier.citedreferenceBerings M, Jult A, Vermeulen H, et al. Probiotics-impregnated bedding covers for house dust mite allergic rhinitis: a pilot randomized clinical trial. Clin Exp Allergy. 2017; 47 ( 8 ): 1092 - 1096. https://doi.org/10.1111/cea.12937
dc.identifier.citedreferenceJeon YH, Lee YJ, Sohn MH, Lee HR. Effects of vacuuming mattresses on allergic rhinitis symptoms in children. Allergy Asthma Immunol Res. 2019; 11 ( 5 ): 655 - 663. https://doi.org/10.4168/aair.2019.11.5.655
dc.identifier.citedreferenceAntonicelli L, Bilo MB, Pucci S, Schou C, Bonifazi F. Efficacy of an air-cleaning device equipped with a high efficiency particulate air filter in house dust mite respiratory allergy. Allergy. 1991; 46 ( 8 ): 594 - 600. https://doi.org/10.1111/j.1398-9995.1991.tb00629.x
dc.identifier.citedreferenceGeller-Bernstein C, Pibourdin JM, Dornelas A, Fondarai J. Efficacy of the acaricide: acardust for the prevention of asthma and rhinitis due to dust mite allergy, in children. Allerg Immunol (Paris). 1995; 27 ( 5 ): 147 - 154.
dc.identifier.citedreferenceChen M, Wu Y, Yuan S, et al. Allergic rhinitis improvement in asthmatic children after using acaricidal bait: a randomized, double-blind, cross-placebo study. Front Pediatr. 2021; 9: 709139. https://doi.org/10.3389/fped.2021.709139
dc.identifier.citedreferenceSheikh A, Hurwitz B, Nurmatov U, van Schayck CP. House dust mite avoidance measures for perennial allergic rhinitis. Cochrane Database Syst Rev. 2010; 4.
dc.identifier.citedreferenceStillerman A, Nachtsheim C, Li W, Albrecht M, Waldman J. Efficacy of a novel air filtration pillow for avoidance of perennial allergens in symptomatic adults. Ann Allergy Asthma Immunol. 2010; 104 ( 5 ): 440 - 449. https://doi.org/10.1016/j.anai.2010.03.006
dc.identifier.citedreferenceBrehler R, Kniest F. Encasing study in mite-allergic patients: one-year, double-blind placebo and environment-controlled investigation. Allergy Clin Immunol Inter. 2006; 18: 15 - 19.
dc.identifier.citedreferenceLe Cann P, Paulus H, Glorennec P, Le Bot B, Frain S, Gangneux JP. Home environmental interventions for the prevention or control of allergic and respiratory diseases: what really works. J Allergy Clin Immunol Pract. 2017; 5 ( 1 ): 66 - 79. https://doi.org/10.1016/j.jaip.2016.07.011
dc.identifier.citedreferenceRosenstreich DL, Eggleston P, Kattan M, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997; 336 ( 19 ): 1356 - 1363. https://doi.org/10.1056/NEJM199705083361904
dc.identifier.citedreferenceChew GL. Assessment of environmental cockroach allergen exposure. Curr Allergy Asthma Rep. 2012; 12 ( 5 ): 456 - 464. https://doi.org/10.1007/s11882-012-0287-y
dc.identifier.citedreferenceSever ML, Arbes SJ, Jr., Gore JC, et al. Cockroach allergen reduction by cockroach control alone in low-income urban homes: a randomized control trial. J Allergy Clin Immunol. 2007; 120 ( 4 ): 849 - 855. https://doi.org/10.1016/j.jaci.2007.07.003
dc.identifier.citedreferenceMcConnell R, Milam J, Richardson J, et al. Educational intervention to control cockroach allergen exposure in the homes of hispanic children in Los Angeles: results of the La Casa study. Clin Exp Allergy. 2005; 35 ( 4 ): 426 - 433. https://doi.org/10.1111/j.1365-2222.2005.02196.x
dc.identifier.citedreferenceArbes SJ, Jr., Sever M, Mehta J, et al. Abatement of cockroach allergens (Bla g 1 and Bla g 2) in low-income, urban housing: month 12 continuation results. J Allergy Clin Immunol. 2004; 113 ( 1 ): 109 - 114. https://doi.org/10.1016/j.jaci.2003.10.042
dc.identifier.citedreferenceMcConnell R, Jones C, Milam J, et al. Cockroach counts and house dust allergen concentrations after professional cockroach control and cleaning. Ann Allergy Asthma Immunol. 2003; 91 ( 6 ): 546 - 552. https://doi.org/10.1016/S1081-1206(10)61532-3
dc.identifier.citedreferenceWood RA, Eggleston PA, Rand C, Nixon WJ, Kanchanaraksa S. Cockroach allergen abatement with extermination and sodium hypochlorite cleaning in inner-city homes. Ann Allergy Asthma Immunol. 2001; 87 ( 1 ): 60 - 64. https://doi.org/10.1016/S1081-1206(10)62324-1
dc.identifier.citedreferenceGergen PJ, Mortimer KM, Eggleston PA, et al. Results of the National Cooperative Inner-City Asthma Study (NCICAS) environmental intervention to reduce cockroach allergen exposure in inner-city homes. J Allergy Clin Immunol. 1999; 103 (3 pt 1): 501 - 506. https://doi.org/10.1016/s0091-6749(99)70477-x
dc.identifier.citedreferenceEggleston PA, Wood RA, Rand C, Nixon WJ, Chen PH, Lukk P. Removal of cockroach allergen from inner-city homes. J Allergy Clin Immunol. 1999; 104 (4 pt 1): 842 - 846. https://doi.org/10.1016/s0091-6749(99)70296-4
dc.identifier.citedreferenceWilliams LW, Reinfried P, Brenner RJ. Cockroach extermination does not rapidly reduce allergen in settled dust. J Allergy Clin Immunol. 1999; 104 (3 pt 1): 702 - 703. https://doi.org/10.1016/s0091-6749(99)70346-5
dc.identifier.citedreferenceWang C, Eiden AL, Cooper R, Zha C, Wang D, Hamilton RG. Abatement of cockroach allergens by effective cockroach management in apartments. J Allergy Clin Immunol Pract. 2020; 8 ( 10 ): 3608 - 3609. https://doi.org/10.1016/j.jaip.2020.06.040
dc.identifier.citedreferenceEggleston PA, Butz A, Rand C, et al. Home environmental intervention in inner-city asthma: a randomized controlled clinical trial. Ann Allergy Asthma Immunol. 2005; 95 ( 6 ): 518 - 524. https://doi.org/10.1016/S1081-1206(10)61012-5
dc.identifier.citedreferenceMorgan WJ, Crain EF, Gruchalla RS, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004; 351 ( 11 ): 1068 - 1080. https://doi.org/10.1056/NEJMoa032097
dc.identifier.citedreferenceSever ML, Salo PM, Haynes AK, Zeldin DC. Inner-city environments and mitigation of cockroach allergen. Am J Prev Med. 2011; 41 (2 suppl 1): S55 - S56. https://doi.org/10.1016/j.amepre.2011.05.007
dc.identifier.citedreferenceSanchez J, Diez S, Cardona R. Pet avoidance in allergy cases: is it possible to implement it? Biomedica. 2015; 35 ( 3 ): 357 - 362. https://doi.org/10.7705/biomedica.v35i3.2634
dc.identifier.citedreferenceCustovic A, Wijk RG. The effectiveness of measures to change the indoor environment in the treatment of allergic rhinitis and asthma: ARIA update (in collaboration with GA(2)LEN). Allergy. 2005; 60 ( 9 ): 1112 - 1115. https://doi.org/10.1111/j.1398-9995.2005.00934.x
dc.identifier.citedreferencePortnoy J, Kennedy K, Sublett J, et al. Environmental assessment and exposure control: a practice parameter–furry animals. Ann Allergy Asthma Immunol. 2012; 108 ( 4 ): 223. e1-15. https://doi.org/10.1016/j.anai.2012.02.015
dc.identifier.citedreferenceArshad SH. Environmental control for secondary prevention of asthma. Clin Exp Allergy. 2010; 40 ( 1 ): 2 - 4. https://doi.org/10.1111/j.1365-2222.2009.03407.x
dc.identifier.citedreferenceNational Heart Lung and Blood Institute. National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma. US Department of Health and Human Services, 2007.
dc.identifier.citedreferenceMatsui EC, Perzanowski M, Peng RD, et al. Effect of an integrated pest management intervention on asthma symptoms among mouse-sensitized children and adolescents with asthma: A randomized clinical trial. JAMA. 2017; 317 ( 10 ): 1027 - 1036. https://doi.org/10.1001/jama.2016.21048
dc.identifier.citedreferenceWood RA, Johnson EF, Van Natta ML, Chen PH, Eggleston PA. A placebo-controlled trial of a HEPA air cleaner in the treatment of cat allergy. Am J Respir Crit Care Med. 1998; 158 ( 1 ): 115 - 120. https://doi.org/10.1164/ajrccm.158.1.9712110
dc.identifier.citedreferenceAvner DB, Perzanowski MS, Platts-Mills TA, Woodfolk JA. Evaluation of different techniques for washing cats: quantitation of allergen removed from the cat and the effect on airborne Fel d 1. J Allergy Clin Immunol. 1997; 100 ( 3 ): 307 - 312. https://doi.org/10.1016/s0091-6749(97)70242-2
dc.identifier.citedreferenceHodson T, Custovic A, Simpson A, Chapman M, Woodcock A, Green R. Washing the dog reduces dog allergen levels, but the dog needs to be washed twice a week. J Allergy Clin Immunol. 1999; 103 ( 4 ): 581 - 585. https://doi.org/10.1016/s0091-6749(99)70227-7
dc.identifier.citedreferenceMatsui EC, Simons E, Rand C, et al. Airborne mouse allergen in the homes of inner-city children with asthma. J Allergy Clin Immunol. 2005; 115 ( 2 ): 358 - 363. https://doi.org/10.1016/j.jaci.2004.11.007
dc.identifier.citedreferenceGrant T, Phipatanakul W, Perzanowski M, et al. Reduction in mouse allergen exposure is associated with greater lung function growth. J Allergy Clin Immunol. 2020; 145 ( 2 ): 646 - 653.e1. https://doi.org/10.1016/j.jaci.2019.08.043
dc.identifier.citedreferencePongracic JA, Visness CM, Gruchalla RS, Evans R, 3rd, Mitchell HE. Effect of mouse allergen and rodent environmental intervention on asthma in inner-city children. Ann Allergy Asthma Immunol. 2008; 101 ( 1 ): 35 - 41. https://doi.org/10.1016/S1081-1206(10)60832-0
dc.identifier.citedreferencePhipatanakul W, Cronin B, Wood RA, et al. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma. Ann Allergy Asthma Immunol. 2004; 92 ( 4 ): 420 - 425. https://doi.org/10.1016/S1081-1206(10)61777-2
dc.identifier.citedreferenceDiMango E, Serebrisky D, Narula S, et al. Individualized household allergen intervention lowers allergen level but not asthma medication use: a randomized controlled trial. J Allergy Clin Immunol Pract. 2016; 4 ( 4 ): 671 - 679.e4. https://doi.org/10.1016/j.jaip.2016.01.016
dc.identifier.citedreferenceJacobs TS, Forno E, Brehm JM, et al. Mouse allergen exposure and decreased risk of allergic rhinitis in school-aged children. Ann Allergy Asthma Immunol. 2014; 113 ( 6 ): 614 - 618.e2. https://doi.org/10.1016/j.anai.2014.09.007
dc.identifier.citedreferenceSakaguchi M, Inouye S, Miyazawa H, Kamimura H, Kimura M, Yamazaki S. Evaluation of dust respirators for elimination of mouse aeroallergens. Lab Anim Sci. 1989; 39 ( 1 ): 63 - 66.
dc.identifier.citedreferenceBertelsen RJ, Carlsen KC, Granum B, et al. Do allergic families avoid keeping furry pets? Indoor Air. 2010; 20 ( 3 ): 187 - 195. https://doi.org/10.1111/j.1600-0668.2009.00640.x
dc.identifier.citedreferenceCurtin-Brosnan J, Saams J, Breysse P, Diette G, Bradley H, Matsui E. Relationship between cat and mouse allergen levels in the homes of inner city children with asthma. J Allergy Clin Immunol. 2009; 123: 64.
dc.identifier.citedreferenceDykewicz MS, Wallace DV, Baroody F, et al. Treatment of seasonal allergic rhinitis: an evidence-based focused 2017 guideline update. Ann Allergy Asthma Immunol. 2017; 119 ( 6 ): 489 - 511.e41. https://doi.org/10.1016/j.anai.2017.08.012
dc.identifier.citedreferenceReisacher WR. Allergy treatment: environmental control strategies. Otolaryngol Clin North Am. 2011; 44 ( 3 ): 711 - 725, x. https://doi.org/10.1016/j.otc.2011.03.019
dc.identifier.citedreferenceFerguson BJ. Environmental controls of allergies. Otolaryngol Clin North Am. 2008; 41 ( 2 ): 411 - 417, viii-ix. https://doi.org/10.1016/j.otc.2007.11.006
dc.identifier.citedreferenceBergmann KC, Berger M, Klimek L, et al. Nonpharmacological measures to prevent allergic symptoms in pollen allergy: a critical review. Allergol Select. 2021; 5: 349 - 360. https://doi.org/10.5414/ALX02294E
dc.identifier.citedreferenceLi L, Zhang L, Mo JH, et al. Efficacy of indoor air purification in the treatment of Artemisia pollen-allergic rhinitis: a randomised, double-blind, clinical controlled trial. Clin Otolaryngol. 2020; 45 ( 3 ): 394 - 401. https://doi.org/10.1111/coa.13514
dc.identifier.citedreferenceGreen BJ, Levetin E, Horner WE, Codina R, Barnes CS, Filley WV. Landscape plant selection criteria for the allergic patient. J Allergy Clin Immunol Pract. 2018; 6 ( 6 ): 1869 - 1876. https://doi.org/10.1016/j.jaip.2018.05.020
dc.identifier.citedreferencevan Cauwenberge P, Bachert C, Passalacqua G, et al. Consensus statement on the treatment of allergic rhinitis. European Academy of Allergology and Clinical Immunology. Allergy. 2000; 55 ( 2 ): 116 - 134. https://doi.org/10.1034/j.1398-9995.2000.00526.x
dc.identifier.citedreferenceComert S, Karakaya G, Kalyoncu AF. Wraparound eyeglasses improve symptoms and quality of life in patients with seasonal allergic rhinoconjunctivitis. Int Forum Allergy Rhinol. 2016; 6 ( 7 ): 722 - 730. https://doi.org/10.1002/alr.21737
dc.identifier.citedreferenceKenney P, Hilberg O, Laursen AC, Peel RG, Sigsgaard T. Preventive effect of nasal filters on allergic rhinitis: a randomized, double-blind, placebo-controlled crossover park study. J Allergy Clin Immunol. 2015; 136 ( 6 ): 1566 - 1572.e5. https://doi.org/10.1016/j.jaci.2015.05.015
dc.identifier.citedreferenceChen X, Deng C, Mi J, et al. Barrier protection measures for the management of allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2020; 34 ( 4 ): 564 - 572. https://doi.org/10.1177/1945892420912370
dc.identifier.citedreferenceChen QY, Li L, Zhang L, et al. Efficacy of indoor air purification in treating Artemisia (mugwort) pollen allergic rhinitis: study protocol for a randomised controlled trial. BMC Public Health. 2018; 18 ( 1 ): 841. https://doi.org/10.1186/s12889-018-5678-0
dc.identifier.citedreferenceGautrin D, Desrosiers M, Castano R. Occupational rhinitis. Curr Opin Allergy Clin Immunol. 2006; 6 ( 2 ): 77 - 84. https://doi.org/10.1097/01.all.0000216848.87699.38
dc.identifier.citedreferenceHox V, Steelant B, Fokkens W, Nemery B, Hellings PW. Occupational upper airway disease: how work affects the nose. Allergy. 2014; 69 ( 3 ): 282 - 291. https://doi.org/10.1111/all.12347
dc.identifier.citedreferenceCastano R, Trudeau C, Castellanos L, Malo JL. Prospective outcome assessment of occupational rhinitis after removal from exposure. J Occup Environ Med. 2013; 55 ( 5 ): 579 - 585. https://doi.org/10.1097/JOM.0b013e318289ee17
dc.identifier.citedreferenceAiraksinen LK, Luukkonen RA, Lindstrom I, Lauerma AI, Toskala EM. Long-term exposure and health-related quality of life among patients with occupational rhinitis. J Occup Environ Med. 2009; 51 ( 11 ): 1288 - 1297. https://doi.org/10.1097/JOM.0b013e3181b9b242
dc.identifier.citedreferenceVandenplas O, Jamart J, Delwiche JP, Evrard G, Larbanois A. Occupational asthma caused by natural rubber latex: outcome according to cessation or reduction of exposure. J Allergy Clin Immunol. 2002; 109 ( 1 ): 125 - 130. https://doi.org/10.1067/mai.2002.120760
dc.identifier.citedreferenceMerget R, Schulte A, Gebler A, et al. Outcome of occupational asthma due to platinum salts after transferral to low-exposure areas. Int Arch Occup Environ Health. 1999; 72 ( 1 ): 33 - 39. https://doi.org/10.1007/s004200050331
dc.identifier.citedreferenceTaivainen AI, Tukiainen HO, Terho EO, Husman KR. Powered dust respirator helmets in the prevention of occupational asthma among farmers. Scand J Work Environ Health. 1998; 24 ( 6 ): 503 - 507. https://doi.org/10.5271/sjweh.375
dc.identifier.citedreferenceGolightly LK, Greos LS. Second-generation antihistamines: actions and efficacy in the management of allergic disorders. Drugs. 2005; 65 ( 3 ): 341 - 384. https://doi.org/10.2165/00003495-200565030-00004
dc.identifier.citedreferenceLieberman P. The basics of histamine biology. Ann Allergy Asthma Immunol. 2011; 106 (2 suppl): S2 - S5. https://doi.org/10.1016/j.anai.2010.08.005
dc.identifier.citedreferenceFein MN, Fischer DA, O’Keefe AW, Sussman GL. CSACI position statement: newer generation H1-antihistamines are safer than first-generation H1-antihistamines and should be the first-line antihistamines for the treatment of allergic rhinitis and urticaria. Allergy Asthma Clin Immunol. 2019; 15: 61. https://doi.org/10.1186/s13223-019-0375-9
dc.identifier.citedreferenceSanchez-Borges M, Ansotegui IJ. Second generation antihistamines: an update. Curr Opin Allergy Clin Immunol. 2019; 19 ( 4 ): 358 - 364. https://doi.org/10.1097/ACI.0000000000000556
dc.identifier.citedreferenceBousquet J, Bindslev-Jensen C, Canonica GW, et al. The ARIA/EAACI criteria for antihistamines: an assessment of the efficacy, safety and pharmacology of desloratadine. Allergy. 2004; 59 (suppl 77): 4 - 16. https://doi.org/10.1111/j.1398-9995.2004.00577.x
dc.identifier.citedreferenceKardas G, Panek M, Kuna P, Cieszynski J, Kardas P. Primary non-adherence to antihistamines-conclusions from e-prescription pilot data in Poland. Front Pharmacol. 2020; 11: 783. https://doi.org/10.3389/fphar.2020.00783
dc.identifier.citedreferenceBlaiss MS. Cost-effectiveness of H1-antihistamines. Clin Allergy Immunol. 2002; 17: 319 - 336.
dc.identifier.citedreferenceMiligkos M, Dakoutrou M, Statha E, et al. Newer-generation antihistamines and the risk of adverse events in children: a systematic review. Pediatr Allergy Immunol. 2021; 32 ( 7 ): 1533 - 1558. https://doi.org/10.1111/pai.13522
dc.identifier.citedreferenceSastre J. Ebastine in the treatment of allergic rhinitis and urticaria: 30 years of clinical studies and real-world experience. J Investig Allergol Clin Immunol. 2020; 30 ( 3 ): 156 - 168. https://doi.org/10.18176/jiaci.0401
dc.identifier.citedreferenceMullol J, Bousquet J, Bachert C, et al. Update on rupatadine in the management of allergic disorders. Allergy. 2015; 70 (suppl 100): 1 - 24. https://doi.org/10.1111/all.12531
dc.identifier.citedreferenceRidolo E, Montagni M, Bonzano L, Incorvaia C, Canonica GW. Bilastine: new insight into antihistamine treatment. Clin Mol Allergy. 2015; 13 ( 1 ): 1. https://doi.org/10.1186/s12948-015-0008-x
dc.identifier.citedreferenceCompalati E, Canonica GW. Efficacy and safety of rupatadine for allergic rhino-conjunctivitis: a systematic review of randomized, double-blind, placebo-controlled studies with meta-analysis. Curr Med Res Opin. 2013; 29 ( 11 ): 1539 - 1551. https://doi.org/10.1185/03007995.2013.822855
dc.identifier.citedreferenceMosges R, Konig V, Koberlein J. The effectiveness of modern antihistamines for treatment of allergic rhinitis – an IPD meta-analysis of 140,853 patients. Allergol Int. 2013; 62 ( 2 ): 215 - 222. https://doi.org/10.2332/allergolint.12-OA-0486
dc.identifier.citedreferenceCompalati E, Baena-Cagnani R, Penagos M, et al. Systematic review on the efficacy of fexofenadine in seasonal allergic rhinitis: a meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Int Arch Allergy Immunol. 2011; 156 ( 1 ): 1 - 15. https://doi.org/10.1159/000321896
dc.identifier.citedreferenceFerrer M. Pharmacokinetic evaluation of levocetirizine. Expert Opin Drug Metab Toxicol. 2011; 7 ( 8 ): 1035 - 1047. https://doi.org/10.1517/17425255.2011.590131
dc.identifier.citedreferenceMosges R, Konig V, Koberlein J. The effectiveness of levocetirizine in comparison with loratadine in treatment of allergic rhinitis – a meta-analysis. Allergol Int. 2011; 60 ( 4 ): 541 - 546. https://doi.org/10.2332/allergolint.10-OA-0300
dc.identifier.citedreferenceBachert C. A review of the efficacy of desloratadine, fexofenadine, and levocetirizine in the treatment of nasal congestion in patients with allergic rhinitis. Clin Ther. 2009; 31 ( 5 ): 921 - 944. https://doi.org/10.1016/j.clinthera.2009.05.017
dc.identifier.citedreferenceKatiyar S, Prakash S. Pharmacological profile, efficacy and safety of rupatadine in allergic rhinitis. Prim Care Respir J. 2009; 18 ( 2 ): 57 - 68. https://doi.org/10.3132/pcrj.2008.00043
dc.identifier.citedreferenceBachert C, van Cauwenberge P. Desloratadine treatment for intermittent and persistent allergic rhinitis: a review. Clin Ther. 2007; 29 ( 9 ): 1795 - 1802. https://doi.org/10.1016/j.clinthera.2007.09.009
dc.identifier.citedreferenceCanonica GW, Tarantini F, Compalati E, Penagos M. Efficacy of desloratadine in the treatment of allergic rhinitis: a meta-analysis of randomized, double-blind, controlled trials. Allergy. 2007; 62 ( 4 ): 359 - 366. https://doi.org/10.1111/j.1398-9995.2006.01277.x
dc.identifier.citedreferencePatou J, De Smedt H, van Cauwenberge P, Bachert C. Pathophysiology of nasal obstruction and meta-analysis of early and late effects of levocetirizine. Clin Exp Allergy. 2006; 36 ( 8 ): 972 - 981. https://doi.org/10.1111/j.1365-2222.2006.02544.x
dc.identifier.citedreferenceHore I, Georgalas C, Scadding G. Oral antihistamines for the symptom of nasal obstruction in persistent allergic rhinitis – a systematic review of randomized controlled trials. Clin Exp Allergy. 2005; 35 ( 2 ): 207 - 212. https://doi.org/10.1111/j.1365-2222.2005.02159.x
dc.identifier.citedreferencePassalacqua G, Canonica GW. A review of the evidence from comparative studies of levocetirizine and desloratadine for the symptoms of allergic rhinitis. Clin Ther. 2005; 27 ( 7 ): 979 - 992. https://doi.org/10.1016/j.clinthera.2005.07.011
dc.identifier.citedreferenceWood-Baker R, Lau L, Howarth PH. Histamine and the nasal vasculature: the influence of H1 and H2-histamine receptor antagonism. Clin Otolaryngol Allied Sci. 1996; 21 ( 4 ): 348 - 352. https://doi.org/10.1111/j.1365-2273.1996.tb01085.x
dc.identifier.citedreferenceTaylor-Clark T, Sodha R, Warner B, Foreman J. Histamine receptors that influence blockage of the normal human nasal airway. Br J Pharmacol. 2005; 144 ( 6 ): 867 - 874. https://doi.org/10.1038/sj.bjp.0706118
dc.identifier.citedreferenceWang D, Clement P, Smitz J. Effect of H1 and H2 antagonists on nasal symptoms and mediator release in atopic patients after nasal allergen challenge during the pollen season. Acta Otolaryngol. 1996; 116 ( 1 ): 91 - 96. https://doi.org/10.3109/00016489609137720
dc.identifier.citedreferenceHavas TE, Cole P, Parker L, Oprysk D, Ayiomamitis A. The effects of combined H1 and H2 histamine antagonists on alterations in nasal airflow resistance induced by topical histamine provocation. J Allergy Clin Immunol. 1986; 78 (5 pt 1): 856 - 860. https://doi.org/10.1016/0091-6749(86)90230-7
dc.identifier.citedreferenceJuliusson S, Bende M. Effect of systemically administered H1- and H2-receptor antagonists on nasal blood flow as measured with laser Doppler flowmetry in a provoked allergic reaction. Rhinology. 1996; 34 ( 1 ): 24 - 27.
dc.identifier.citedreferenceBrooks CD, Butler D, Metzler C. Effect of H2 blockade in the challenged allergic nose. J Allergy Clin Immunol. 1982; 70 ( 5 ): 373 - 376. https://doi.org/10.1016/0091-6749(82)90027-6
dc.identifier.citedreferenceCarpenter GB, Bunker-Soler AL, Nelson HS. Evaluation of combined H1- and H2-receptor blocking agents in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1983; 71 ( 4 ): 412 - 417. https://doi.org/10.1016/0091-6749(83)90071-4
dc.identifier.citedreferenceCarr WW, Ratner P, Munzel U, et al. Comparison of intranasal azelastine to intranasal fluticasone propionate for symptom control in moderate-to-severe seasonal allergic rhinitis. Allergy Asthma Proc. 2012; 33 ( 6 ): 450 - 458. https://doi.org/10.2500/aap.2012.33.3626
dc.identifier.citedreferenceKalpaklioglu AF, Kavut AB. Comparison of azelastine versus triamcinolone nasal spray in allergic and nonallergic rhinitis. Am J Rhinol Allergy. 2010; 24 ( 1 ): 29 - 33. https://doi.org/10.2500/ajra.2010.24.3423
dc.identifier.citedreferenceKaliner MA, Storms W, Tilles S, et al. Comparison of olopatadine 0.6% nasal spray versus fluticasone propionate 50 microg in the treatment of seasonal allergic rhinitis. Allergy Asthma Proc. 2009; 30 ( 3 ): 255 - 262. https://doi.org/10.2500/aap.2009.30.3232
dc.identifier.citedreferencePatel P, D’Andrea C, Sacks HJ. Onset of action of azelastine nasal spray compared with mometasone nasal spray and placebo in subjects with seasonal allergic rhinitis evaluated in an environmental exposure chamber. Am J Rhinol. 2007; 21 ( 4 ): 499 - 503. https://doi.org/10.2500/ajr.2007.21.3058
dc.identifier.citedreferencePatel D, Garadi R, Brubaker M, et al. Onset and duration of action of nasal sprays in seasonal allergic rhinitis patients: olopatadine hydrochloride versus mometasone furoate monohydrate. Allergy Asthma Proc. 2007; 28 ( 5 ): 592 - 599. https://doi.org/10.2500/aap2007.28.3033
dc.identifier.citedreferenceBerger W, Hampel Jr F, Bernstein J, Shah S, Sacks H, Meltzer EO. Impact of azelastine nasal spray on symptoms and quality of life compared with cetirizine oral tablets in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2006; 97 ( 3 ): 375 - 381. https://doi.org/10.1016/S1081-1206(10)60804-6
dc.identifier.citedreferenceCorren J, Storms W, Bernstein J, et al. Effectiveness of azelastine nasal spray compared with oral cetirizine in patients with seasonal allergic rhinitis. Clin Ther. 2005; 27 ( 5 ): 543 - 553. https://doi.org/10.1016/j.clinthera.2005.04.012
dc.identifier.citedreferenceLaForce CF, Corren J, Wheeler WJ, Berger WE, Rhinitis Study Group. Efficacy of azelastine nasal spray in seasonal allergic rhinitis patients who remain symptomatic after treatment with fexofenadine. Ann Allergy Asthma Immunol. 2004; 93 ( 2 ): 154 - 159. https://doi.org/10.1016/S1081-1206(10)61468-8
dc.identifier.citedreferenceBerger WE, White MV, Rhinitis Study Group. Efficacy of azelastine nasal spray in patients with an unsatisfactory response to loratadine. Ann Allergy Asthma Immunol. 2003; 91 ( 2 ): 205 - 211. https://doi.org/10.1016/S1081-1206(10)62179-5
dc.identifier.citedreferenceBerlin JM, Golden SJ, Teets S, Lehman EB, Lucas T, Craig TJ. Efficacy of a steroid nasal spray compared with an antihistamine nasal spray in the treatment of perennial allergic rhinitis. J Am Osteopath Assoc. 2000; 100 (7 suppl): S8 - S13.
dc.identifier.citedreferenceBerger WE, Fineman SM, Lieberman P, Miles RM. Double-blind trials of azelastine nasal spray monotherapy versus combination therapy with loratadine tablets and beclomethasone nasal spray in patients with seasonal allergic rhinitis. Rhinitis Study Groups. Ann Allergy Asthma Immunol. 1999; 82 ( 6 ): 535 - 541. https://doi.org/10.1016/s1081-1206(10)63161-4
dc.identifier.citedreferenceStern MA, Wade AG, Ridout SM, Cambell LM. Nasal budesonide offers superior symptom relief in perennial allergic rhinitis in comparison to nasal azelastine. Ann Allergy Asthma Immunol. 1998; 81 ( 4 ): 354 - 358. https://doi.org/10.1016/s1081-1206(10)63128-6
dc.identifier.citedreferenceJarvis D, Newson R, Lotvall J, et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy. 2012; 67 ( 1 ): 91 - 98. https://doi.org/10.1111/j.1398-9995.2011.02709.x
dc.identifier.citedreferenceLaForce C, Dockhorn RJ, Prenner BM, et al. Safety and efficacy of azelastine nasal spray (Astelin NS) for seasonal allergic rhinitis: a 4-week comparative multicenter trial. Ann Allergy Asthma Immunol. 1996; 76 ( 2 ): 181 - 188. https://doi.org/10.1016/S1081-1206(10)63420-5
dc.identifier.citedreferenceCharpin D, Godard P, Garay RP, Baehre M, Herman D, Michel FB. A multicenter clinical study of the efficacy and tolerability of azelastine nasal spray in the treatment of seasonal allergic rhinitis: a comparison with oral cetirizine. Eur Arch Otorhinolaryngol. 1995; 252 ( 8 ): 455 - 458. https://doi.org/10.1007/BF02114749
dc.identifier.citedreferencePelucchi A, Chiapparino A, Mastropasqua B, Marazzini L, Hernandez A, Foresi A. Effect of intranasal azelastine and beclomethasone dipropionate on nasal symptoms, nasal cytology, and bronchial responsiveness to methacholine in allergic rhinitis in response to grass pollens. J Allergy Clin Immunol. 1995; 95 ( 2 ): 515 - 523. https://doi.org/10.1016/s0091-6749(95)70313-6
dc.identifier.citedreferenceGastpar H, Nolte D, Aurich R, et al. Comparative efficacy of azelastine nasal spray and terfenadine in seasonal and perennial rhinitis. Allergy. 1994; 49 ( 3 ): 152 - 158. https://doi.org/10.1111/j.1398-9995.1994.tb00818.x
dc.identifier.citedreferenceMeltzer EO, Weiler JM, Dockhorn RJ, Widlitz MD, Freitag JJ. Azelastine nasal spray in the management of seasonal allergic rhinitis. Ann Allergy. 1994; 72 ( 4 ): 354 - 359.
dc.identifier.citedreferencePassali D, Piragine F. A comparison of azelastine nasal spray and cetirizine tablets in the treatment of allergic rhinitis. J Int Med Res. 1994; 22 ( 1 ): 17 - 23. https://doi.org/10.1177/030006059402200102
dc.identifier.citedreferenceDavies RJ, Lund VJ, Harten-Ash VJ. The effect of intranasal azelastine and beclomethasone on the symptoms and signs of nasal allergy in patients with perennial allergic rhinitis. Rhinology. 1993; 31 ( 4 ): 159 - 164.
dc.identifier.citedreferenceDorow P, Aurich R, Petzold U. Efficacy and tolerability of azelastine nasal spray in patients with allergic rhinitis compared to placebo and budesonide. Arzneimittelforschung. 1993; 43 ( 8 ): 909 - 912.
dc.identifier.citedreferenceGambardella R. A comparison of the efficacy of azelastine nasal spray and loratidine tablets in the treatment of seasonal allergic rhinitis. J Int Med Res. 1993; 21 ( 5 ): 268 - 275. https://doi.org/10.1177/030006059302100505
dc.identifier.citedreferenceGastpar H, Aurich R, Petzold U, et al. Intranasal treatment of perennial allergic rhinitis. Comparison of azelastine nasal spray and budesonide nasal aerosol. Arzneimittelforschung. 1993; 43 ( 4 ): 475 - 479.
dc.identifier.citedreferenceHowland WC, Amar NJ, Wheeler W, Sacks H. Efficacy and safety of azelastine 0.15% nasal spray administered once daily in patients with allergy to Texas mountain cedar pollen. Int Forum Allergy Rhinol. 2011; 1 ( 4 ): 275 - 279. https://doi.org/10.1002/alr.20065
dc.identifier.citedreferenceMeltzer EO, Blaiss M, Fairchild CJ. Comprehensive report of olopatadine 0.6% nasal spray as treatment for children with seasonal allergic rhinitis. Allergy Asthma Proc. 2011; 32 ( 3 ): 213 - 220. https://doi.org/10.2500/aap.2011.32.3448
dc.identifier.citedreferenceBerger WE, Ratner PH, Casale TB, Meltzer EO, Wall GM. Safety and efficacy of olopatadine hydrochloride nasal spray 0.6% in pediatric subjects with allergic rhinitis. Allergy Asthma Proc. 2009; 30 ( 6 ): 612 - 623. https://doi.org/10.2500/aap.2009.30.3298
dc.identifier.citedreferenceBernstein JA, Prenner B, Ferguson BJ, Portnoy J, Wheeler WJ, Sacks HJ. Double-blind, placebo-controlled trial of reformulated azelastine nasal spray in patients with seasonal allergic rhinitis. Am J Rhinol Allergy. 2009; 23 ( 5 ): 512 - 517. https://doi.org/10.2500/ajra.2009.23.3396
dc.identifier.citedreferenceShah S, Berger W, Lumry W, La Force C, Wheeler W, Sacks H. Efficacy and safety of azelastine 0.15% nasal spray and azelastine 0.10% nasal spray in patients with seasonal allergic rhinitis. Allergy Asthma Proc. 2009; 30 ( 6 ): 628 - 633. https://doi.org/10.2500/aap.2009.30.3296
dc.identifier.citedreferenceShah SR, Nayak A, Ratner P, Roland P, Michael Wall G. Effects of olopatadine hydrochloride nasal spray 0.6% in the treatment of seasonal allergic rhinitis: a phase III, multicenter, randomized, double-blind, active- and placebo-controlled study in adolescents and adults. Clin Ther. 2009; 31 ( 1 ): 99 - 107. https://doi.org/10.1016/j.clinthera.2009.01.016
dc.identifier.citedreferencevan Bavel J, Howland WC, Amar NJ, Wheeler W, Sacks H. Efficacy and safety of azelastine 0.15% nasal spray administered once daily in subjects with seasonal allergic rhinitis. Allergy Asthma Proc. 2009; 30 ( 5 ): 512 - 518. https://doi.org/10.2500/aap.2009.30.3284
dc.identifier.citedreferencePipkorn P, Costantini C, Reynolds C, et al. The effects of the nasal antihistamines olopatadine and azelastine in nasal allergen provocation. Ann Allergy Asthma Immunol. 2008; 101 ( 1 ): 82 - 89. https://doi.org/10.1016/S1081-1206(10)60839-3
dc.identifier.citedreferenceLumry W, Prenner B, Corren J, Wheeler W. Efficacy and safety of azelastine nasal spray at a dose of 1 spray per nostril twice daily. Ann Allergy Asthma Immunol. 2007; 99 ( 3 ): 267 - 272. https://doi.org/10.1016/S1081-1206(10)60663-1
dc.identifier.citedreferenceHampel Jr FC, Ratner PH, Amar NJ, et al. Improved quality of life among seasonal allergic rhinitis patients treated with olopatadine HCl nasal spray 0.4% and olopatadine HCl nasal spray 0.6% compared with vehicle placebo. Allergy Asthma Proc. 2006; 27 ( 3 ): 202 - 207. https://doi.org/10.2500/aap.2006.27.2862
dc.identifier.citedreferenceMeltzer EO, Hampel FC, Ratner PH, et al. Safety and efficacy of olopatadine hydrochloride nasal spray for the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2005; 95 ( 6 ): 600 - 606. https://doi.org/10.1016/S1081-1206(10)61025-3
dc.identifier.citedreferenceRatner PH, Hampel FC, Amar NJ, et al. Safety and efficacy of olopatadine hydrochloride nasal spray for the treatment of seasonal allergic rhinitis to mountain cedar. Ann Allergy Asthma Immunol. 2005; 95 ( 5 ): 474 - 479. https://doi.org/10.1016/S1081-1206(10)61174-X
dc.identifier.citedreferenceSaengpanich S, Assanasen P, deTineo M, Haney L, Naclerio RM, Baroody FM. Effects of intranasal azelastine on the response to nasal allergen challenge. Laryngoscope. 2002; 112 ( 1 ): 47 - 52. https://doi.org/10.1097/00005537-200201000-00009
dc.identifier.citedreferenceGolden S, Teets SJ, Lehman EB, et al. Effect of topical nasal azelastine on the symptoms of rhinitis, sleep, and daytime somnolence in perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2000; 85 ( 1 ): 53 - 57. https://doi.org/10.1016/S1081-1206(10)62434-9
dc.identifier.citedreferenceHerman D, Garay R, Le Gal M. A randomized double-blind placebo controlled study of azelastine nasal spray in children with perennial rhinitis. Int J Pediatr Otorhinolaryngol. 1997; 39 ( 1 ): 1 - 8. https://doi.org/10.1016/S0165-5876(96)01457-7
dc.identifier.citedreferenceNewson-Smith G, Powell M, Baehre M, Garnham SP, MacMahon MT. A placebo controlled study comparing the efficacy of intranasal azelastine and beclomethasone in the treatment of seasonal allergic rhinitis. Eur Arch Otorhinolaryngol. 1997; 254 ( 5 ): 236 - 241. https://doi.org/10.1007/BF00874095
dc.identifier.citedreferenceWeiler JM, Meltzer EO. Azelastine nasal spray as adjunctive therapy to azelastine tablets in the management of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 1997; 79 ( 4 ): 327 - 332. https://doi.org/10.1016/S1081-1206(10)63023-2
dc.identifier.citedreferenceRatner PH, Findlay SR, Hampel Jr F, van Bavel J, Widlitz MD, Freitag JJ. A double-blind, controlled trial to assess the safety and efficacy of azelastine nasal spray in seasonal allergic rhinitis. J Allergy Clin Immunol. 1994; 94 ( 5 ): 818 - 825. https://doi.org/10.1016/0091-6749(94)90148-1
dc.identifier.citedreferenceHan D, Chen L, Cheng L, et al. A multicenter randomized double-blind 2-week comparison study of azelastine nasal spray 0.1% versus levocabastine nasal spray 0.05% in patients with moderate-to-severe allergic rhinitis. ORL J Otorhinolaryngol Relat Spec. 2011; 73 ( 5 ): 260 - 265. https://doi.org/10.1159/000330269
dc.identifier.citedreferenceMeltzer EO, Garadi R, Laforce C, et al. Comparative study of sensory attributes of two antihistamine nasal sprays: olopatadine 0.6% and azelastine 0.1%. Allergy Asthma Proc. 2008; 29 ( 6 ): 659 - 668. https://doi.org/10.2500/aap.2008.29.3181
dc.identifier.citedreferenceFalser N, Wober W, Rahlfs VW, Baehre M. Comparative efficacy and safety of azelastine and levocabastine nasal sprays in patients with seasonal allergic rhinitis. Arzneimittelforschung. 2001; 51 ( 5 ): 387 - 393. https://doi.org/10.1055/s-0031-1300052
dc.identifier.citedreferencePipkorn U, Proud D, Lichtenstein LM, et al. Effect of short-term systemic glucocorticoid treatment on human nasal mediator release after antigen challenge. J Clin Invest. 1987; 80 ( 4 ): 957 - 961. https://doi.org/10.1172/JCI113188
dc.identifier.citedreferenceBascom R, Pipkorn U, Lichtenstein LM, Naclerio RM. The influx of inflammatory cells into nasal washings during the late response to antigen challenge. Effect of systemic steroid pretreatment. Am Rev Respir Dis. 1988; 138 ( 2 ): 406 - 412. https://doi.org/10.1164/ajrccm/138.2.406
dc.identifier.citedreferenceBascom R, Pipkorn U, Proud D, et al. Major basic protein and eosinophil-derived neurotoxin concentrations in nasal-lavage fluid after antigen challenge: effect of systemic corticosteroids and relationship to eosinophil influx. J Allergy Clin Immunol. 1989; 84 ( 3 ): 338 - 346. https://doi.org/10.1016/0091-6749(89)90418-1
dc.identifier.citedreferenceSchwartz E, Levin L, Leibowitz H, et al. Oral cortisone therapy in ragweed hay fever. J Allergy. 1952; 23 ( 1 ): 32 - 38. https://doi.org/10.1016/0021-8707(52)90071-3
dc.identifier.citedreferenceSchiller IW, Lowell FC. Oral cortisone in the treatment of hay fever. J Allergy. 1953; 24 ( 4 ): 297 - 301. https://doi.org/10.1016/0021-8707(53)90172-5
dc.identifier.citedreferenceSchwartz E. Oral hydrocortisone therapy in bronchial asthma and bay fever. J Allergy. 1954; 25 ( 2 ): 112 - 119. https://doi.org/10.1016/0021-8707(54)90149-5
dc.identifier.citedreferenceBrooks CD, Karl KJ, Francom SF. Oral methylprednisolone acetate (Medrol Tablets) for seasonal rhinitis: examination of dose and symptom response. J Clin Pharmacol. 1993; 33 ( 9 ): 816 - 822. https://doi.org/10.1002/j.1552-4604.1993.tb01957.x
dc.identifier.citedreferenceSnyman JR, Potter PC, Groenewald M, Levin J, Claricort Study Group. Effect of betamethasone-loratadine combination therapy on severe exacerbations of allergic rhinitis: a randomised, controlled trial. Clin Drug Investig. 2004; 24 ( 5 ): 265 - 274. https://doi.org/10.2165/00044011-200424050-00003
dc.identifier.citedreferenceKwaselow A, McLean J, Busse W, et al. A comparison of intranasal and oral flunisolide in the therapy of allergic rhinitis. Evidence for a topical effect. Allergy. 1985; 40 ( 5 ): 363 - 367. https://doi.org/10.1111/j.1398-9995.1985.tb00248.x
dc.identifier.citedreferenceKaraki M, Akiyama K, Mori N. Efficacy of intranasal steroid spray (mometasone furoate) on treatment of patients with seasonal allergic rhinitis: comparison with oral corticosteroids. Auris Nasus Larynx. 2013; 40 ( 3 ): 277 - 281. https://doi.org/10.1016/j.anl.2012.09.004
dc.identifier.citedreferenceBascom R, Wachs M, Naclerio RM, Pipkorn U, Galli SJ, Lichtenstein LM. Basophil influx occurs after nasal antigen challenge: effects of topical corticosteroid pretreatment. J Allergy Clin Immunol. 1988; 81 ( 3 ): 580 - 589.
dc.identifier.citedreferenceErin EM, Leaker BR, Zacharasiewicz AS, et al. Single dose topical corticosteroid inhibits IL-5 and IL-13 in nasal lavage following grass pollen challenge. Allergy. 2005; 60 ( 12 ): 1524 - 1529. https://doi.org/10.1111/j.1398-9995.2005.00928.x
dc.identifier.citedreferenceMeltzer EO, Jalowayski AA, Orgel HA, Harris AG. Subjective and objective assessments in patients with seasonal allergic rhinitis: effects of therapy with mometasone furoate nasal spray. J Allergy Clin Immunol. 1998; 102 ( 1 ): 39 - 49. https://doi.org/10.1016/s0091-6749(98)70053-3
dc.identifier.citedreferenceBaroody FM, Cruz AA, Lichtenstein LM, Kagey-Sobotka A, Proud D, Naclerio RM. Intranasal beclomethasone inhibits antigen-induced nasal hyperresponsiveness to histamine. J Allergy Clin Immunol. 1992; 90 (3 pt 1): 373 - 376. https://doi.org/10.1016/s0091-6749(05)80017-x
dc.identifier.citedreferenceMeyer P, Andersson M, Persson CG, Greiff L. Steroid-sensitive indices of airway inflammation in children with seasonal allergic rhinitis. Pediatr Allergy Immunol. 2003; 14 ( 1 ): 60 - 65. https://doi.org/10.1034/j.1399-3038.2003.02102.x
dc.identifier.citedreferencePenagos M, Compalati E, Tarantini F, Baena-Cagnani CE, Passalacqua G, Canonica GW. Efficacy of mometasone furoate nasal spray in the treatment of allergic rhinitis. Meta-analysis of randomized, double-blind, placebo-controlled, clinical trials. Allergy. 2008; 63 ( 10 ): 1280 - 1291. https://doi.org/10.1111/j.1398-9995.2008.01808.x
dc.identifier.citedreferenceRodrigo GJ, Neffen H. Efficacy of fluticasone furoate nasal spray vs. placebo for the treatment of ocular and nasal symptoms of allergic rhinitis: a systematic review. Clin Exp Allergy. 2011; 41 ( 2 ): 160 - 170. https://doi.org/10.1111/j.1365-2222.2010.03654.x
dc.identifier.citedreferenceUrdaneta E, Tunceli K, Gates D. Effect of mometasone furoate nasal spray on moderate-to-severe nasal congestion in seasonal allergic rhinitis: a responder analysis. Allergy Asthma Proc. 2019; 40 ( 3 ): 173 - 179. https://doi.org/10.2500/aap.2019.40.4214
dc.identifier.citedreferenceHerman H. Once-daily administration of intranasal corticosteroids for allergic rhinitis: a comparative review of efficacy, safety, patient preference, and cost. Am J Rhinol. 2007; 21 ( 1 ): 70 - 79. https://doi.org/10.2500/ajr.2007.21.2896
dc.identifier.citedreferenceRachelefsky G, Farrar JR. A control model to evaluate pharmacotherapy for allergic rhinitis in children. JAMA Pediatr. 2013; 167 ( 4 ): 380 - 386. https://doi.org/10.1001/jamapediatrics.2013.623
dc.identifier.citedreferenceCraig TJ, Mende C, Hughes K, Kakumanu S, Lehman EB, Chinchilli V. The effect of topical nasal fluticasone on objective sleep testing and the symptoms of rhinitis, sleep, and daytime somnolence in perennial allergic rhinitis. Allergy Asthma Proc. 2003; 24 ( 1 ): 53 - 58.
dc.identifier.citedreferenceMeltzer EO, Munafo DA, Chung W, Gopalan G, Varghese ST. Intranasal mometasone furoate therapy for allergic rhinitis symptoms and rhinitis-disturbed sleep. Ann Allergy Asthma Immunol. 2010; 105 ( 1 ): 65 - 74. https://doi.org/10.1016/j.anai.2010.04.020
dc.identifier.citedreferenceDay JH, Briscoe MP, Rafeiro E, Ellis AK, Pettersson E, Akerlund A. Onset of action of intranasal budesonide (Rhinocort aqua) in seasonal allergic rhinitis studied in a controlled exposure model. J Allergy Clin Immunol. 2000; 105 ( 3 ): 489 - 494. https://doi.org/10.1067/mai.2000.104550
dc.identifier.citedreferenceFokkens WJ, Cserhati E, dos Santos JM, et al. Budesonide aqueous nasal spray is an effective treatment in children with perennial allergic rhinitis, with an onset of action within 12 hours. Ann Allergy Asthma Immunol. 2002; 89 ( 3 ): 279 - 284. https://doi.org/10.1016/s1081-1206(10)61955-2
dc.identifier.citedreferenceKaiser HB, Naclerio RM, Given J, Toler TN, Ellsworth A, Philpot EE. Fluticasone furoate nasal spray: a single treatment option for the symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol. 2007; 119 ( 6 ): 1430 - 1437. https://doi.org/10.1016/j.jaci.2007.02.022
dc.identifier.citedreferenceDay J, Carrillo T. Comparison of the efficacy of budesonide and fluticasone propionate aqueous nasal spray for once daily treatment of perennial allergic rhinitis. J Allergy Clin Immunol. 1998; 102 (6 pt 1): 902 - 908. https://doi.org/10.1016/s0091-6749(98)70326-4
dc.identifier.citedreferenceJuniper EF, Guyatt GH, O’Byrne PM, Viveiros M. Aqueous beclomethasone diproprionate nasal spray: regular versus "as required" use in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1990; 86 (3 pt 1): 380 - 386. https://doi.org/10.1016/s0091-6749(05)80101-0
dc.identifier.citedreferenceJuniper EF, Guyatt GH, Archer B, Ferrie PJ. Aqueous beclomethasone dipropionate in the treatment of ragweed pollen-induced rhinitis: further exploration of "as needed" use. J Allergy Clin Immunol. 1993; 92 (1 pt 1): 66 - 72. https://doi.org/10.1016/0091-6749(93)90039-i
dc.identifier.citedreferenceJen A, Baroody F, de Tineo M, Haney L, Blair C, Naclerio R. As-needed use of fluticasone propionate nasal spray reduces symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol. 2000; 105 ( 4 ): 732 - 738. https://doi.org/10.1067/mai.2000.105225
dc.identifier.citedreferenceDykewicz MS, Kaiser HB, Nathan RA, et al. Fluticasone propionate aqueous nasal spray improves nasal symptoms of seasonal allergic rhinitis when used as needed (prn). Ann Allergy Asthma Immunol. 2003; 91 ( 1 ): 44 - 48. https://doi.org/10.1016/S1081-1206(10)62057-1
dc.identifier.citedreferenceThongngarm T, Wongsa C, Phinyo P, Assanasen P, Tantilipikorn P, Sompornrattanaphan M. As-needed versus regular use of fluticasone furoate nasal spray in patients with moderate to severe, persistent, perennial allergic rhinitis: a randomized controlled trial. J Allergy Clin Immunol Pract. 2021; 9 ( 3 ): 1365 - 1373.e6. https://doi.org/10.1016/j.jaip.2020.09.057
dc.identifier.citedreferenceDeWester J, Philpot EE, Westlund RE, Cook CK, Rickard KA. The efficacy of intranasal fluticasone propionate in the relief of ocular symptoms associated with seasonal allergic rhinitis. Allergy Asthma Proc. 2003; 24 ( 5 ): 331 - 337.
dc.identifier.citedreferenceBielory L, Chun Y, Bielory BP, Canonica GW. Impact of mometasone furoate nasal spray on individual ocular symptoms of allergic rhinitis: a meta-analysis. Allergy. 2011; 66 ( 5 ): 686 - 693. https://doi.org/10.1111/j.1398-9995.2010.02543.x
dc.identifier.citedreferenceRatner P, Van Bavel J, Mohar D, et al. Efficacy of daily intranasal fluticasone propionate on ocular symptoms associated with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2015; 114 ( 2 ): 141 - 147. https://doi.org/10.1016/j.anai.2014.11.012
dc.identifier.citedreferenceBielory L, Gross GN, Letierce A, Melas-Melt L, Lucio L. Ocular symptoms improvement from intranasal triamcinolone compared with placebo and intranasal fluticasone propionate: a meta-analysis. Ann Allergy Asthma Immunol. 2020; 124 ( 6 ): 616 - 621.e3. https://doi.org/10.1016/j.anai.2020.01.012
dc.identifier.citedreferenceBaroody FM, Shenaq D, DeTineo M, Wang J, Naclerio RM. Fluticasone furoate nasal spray reduces the nasal-ocular reflex: a mechanism for the efficacy of topical steroids in controlling allergic eye symptoms. J Allergy Clin Immunol. 2009; 123 ( 6 ): 1342 - 1348. https://doi.org/10.1016/j.jaci.2009.03.015
dc.identifier.citedreferenceKeith PK, Scadding GK. Are intranasal corticosteroids all equally consistent in managing ocular symptoms of seasonal allergic rhinitis? Curr Med Res Opin. 2009; 25 ( 8 ): 2021 - 2041. https://doi.org/10.1185/03007990903094106
dc.identifier.citedreferenceTaramarcaz P, Gibson PG. Intranasal corticosteroids for asthma control in people with coexisting asthma and rhinitis. Cochrane Database Syst Rev. 2003;( 4 ): CD003570. https://doi.org/10.1002/14651858.CD003570
dc.identifier.citedreferenceLohia S, Schlosser RJ, Soler ZM. Impact of intranasal corticosteroids on asthma outcomes in allergic rhinitis: a meta-analysis. Allergy. 2013; 68 ( 5 ): 569 - 579. https://doi.org/10.1111/all.12124
dc.identifier.citedreferenceYu CL, Huang WT, Wang CM. Treatment of allergic rhinitis reduces acute asthma exacerbation risk among asthmatic children aged 2-18 years. J Microbiol Immunol Infect. 2019; 52 ( 6 ): 991 - 999. https://doi.org/10.1016/j.jmii.2018.10.003
dc.identifier.citedreferenceKhattiyawittayakun L, Seresirikachorn K, Chitsuthipakorn W, Kanjanawasee D, Snidvongs K. Effects of double-dose intranasal corticosteroid for allergic rhinitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2019; 9 ( 1 ): 72 - 78. https://doi.org/10.1002/alr.22204
dc.identifier.citedreferenceWeiner JM, Abramson MJ, Puy RM. Intranasal corticosteroids versus oral H1 receptor antagonists in allergic rhinitis: systematic review of randomised controlled trials. BMJ. 1998; 317 ( 7173 ): 1624 - 1629. https://doi.org/10.1136/bmj.317.7173.1624
dc.identifier.citedreferenceYanez A, Rodrigo GJ. Intranasal corticosteroids versus topical H1 receptor antagonists for the treatment of allergic rhinitis: a systematic review with meta-analysis. Ann Allergy Asthma Immunol. 2002; 89 ( 5 ): 479 - 484. https://doi.org/10.1016/S1081-1206(10)62085-6
dc.identifier.citedreferenceBenninger M, Farrar JR, Blaiss M, et al. Evaluating approved medications to treat allergic rhinitis in the United States: an evidence-based review of efficacy for nasal symptoms by class. Ann Allergy Asthma Immunol. 2010; 104 ( 1 ): 13 - 29. https://doi.org/10.1016/j.anai.2009.11.020
dc.identifier.citedreferenceWilson AM, O’Byrne PM, Parameswaran K. Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med. 2004; 116 ( 5 ): 338 - 344. https://doi.org/10.1016/j.amjmed.2003.10.030
dc.identifier.citedreferenceBhattachan S, Neupane Y, Pradhan B, Thapa N. Comparison of outcomes between mometasone furoate intranasal spray and oral montelukast in patients with allergic rhinitis. J Nepal Health Res Counc. 2020; 18 ( 2 ): 268 - 270. https://doi.org/10.33314/jnhrc.v18i2.2509
dc.identifier.citedreferenceMeltzer EO. Formulation considerations of intranasal corticosteroids for the treatment of allergic rhinitis. Ann Allergy Asthma Immunol. 2007; 98 ( 1 ): 12 - 21. https://doi.org/10.1016/S1081-1206(10)60854-X
dc.identifier.citedreferenceMay JR, Dolen WK. Evaluation of intranasal corticosteroid sensory attributes and patient preference for fluticasone furoate for the treatment of allergic rhinitis. Clin Ther. 2019; 41 ( 8 ): 1589 - 1596. https://doi.org/10.1016/j.clinthera.2019.05.017
dc.identifier.citedreferencevan Bavel JH, Ratner PH, Amar NJ, et al. Efficacy and safety of once-daily treatment with beclomethasone dipropionate nasal aerosol in subjects with seasonal allergic rhinitis. Allergy Asthma Proc. 2012; 33 ( 5 ): 386 - 396. https://doi.org/10.2500/aap.2012.33.3593
dc.identifier.citedreferenceMeltzer EO, Jacobs RL, LaForce CF, Kelley CL, Dunbar SA, Tantry SK. Safety and efficacy of once-daily treatment with beclomethasone dipropionate nasal aerosol in subjects with perennial allergic rhinitis. Allergy Asthma Proc. 2012; 33 ( 3 ): 249 - 257. https://doi.org/10.2500/aap.2012.33.3571
dc.identifier.citedreferenceRatner PH, Andrews C, Martin B, et al. A study of the efficacy and safety of ciclesonide hydrofluoroalkane nasal aerosol in patients with seasonal allergic rhinitis from mountain cedar pollen. Allergy Asthma Proc. 2012; 33 ( 1 ): 27 - 35. https://doi.org/10.2500/aap.2012.33.3490
dc.identifier.citedreferenceLaForce C, van Bavel J, Meltzer EO, Wingertzahn MA. Efficacy and safety of ciclesonide hydrofluoroalkane nasal aerosol once daily for the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2009; 103 ( 2 ): 166 - 173. https://doi.org/10.1016/S1081-1206(10)60171-8
dc.identifier.citedreferenceYang Q, Wang F, Li B, et al. The efficacy and safety of ciclesonide for the treatment of perennial allergic rhinitis: a systematic review and meta-analysis. Braz J Otorhinolaryngol. 2019; 85 ( 3 ): 371 - 378. https://doi.org/10.1016/j.bjorl.2018.10.008
dc.identifier.citedreferenceMaspero JF, Rosenblut A, Finn Jr A, Lim J, Wu W, Philpot E. Safety and efficacy of fluticasone furoate in pediatric patients with perennial allergic rhinitis. Otolaryngol Head Neck Surg. 2008; 138 ( 1 ): 30 - 37. https://doi.org/10.1016/j.otohns.2007.10.023
dc.identifier.citedreferenceMeltzer EO, Tripathy I, Maspero JF, Wu W, Philpot E. Safety and tolerability of fluticasone furoate nasal spray once daily in paediatric patients aged 6-11 years with allergic rhinitis: subanalysis of three randomized, double-blind, placebo-controlled, multicentre studies. Clin Drug Investig. 2009; 29 ( 2 ): 79 - 86. https://doi.org/10.2165/0044011-200929020-00002
dc.identifier.citedreferenceRosenblut A, Bardin PG, Muller B, et al. Long-term safety of fluticasone furoate nasal spray in adults and adolescents with perennial allergic rhinitis. Allergy. 2007; 62 ( 9 ): 1071 - 1077. https://doi.org/10.1111/j.1398-9995.2007.01521.x
dc.identifier.citedreferenceRatner PH, Meltzer EO, Teper A. Mometasone furoate nasal spray is safe and effective for 1-year treatment of children with perennial allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2009; 73 ( 5 ): 651 - 657. https://doi.org/10.1016/j.ijporl.2008.12.025
dc.identifier.citedreferenceVerkerk MM, Bhatia D, Rimmer J, Earls P, Sacks R, Harvey RJ. Intranasal steroids and the myth of mucosal atrophy: a systematic review of original histological assessments. Am J Rhinol Allergy. 2015; 29 ( 1 ): 3 - 18. https://doi.org/10.2500/ajra.2015.29.4111
dc.identifier.citedreferencevan As A, Bronsky EA, Dockhorn RJ, et al. Once daily fluticasone propionate is as effective for perennial allergic rhinitis as twice daily beclomethasone diproprionate. J Allergy Clin Immunol. 1993; 91 ( 6 ): 1146 - 1154. https://doi.org/10.1016/0091-6749(93)90317-9
dc.identifier.citedreferenceBrannan MD, Herron JM, Reidenberg P, Affrime MB. Lack of hypothalamic-pituitary-adrenal axis suppression with once-daily or twice-daily beclomethasone dipropionate aqueous nasal spray administered to patients with allergic rhinitis. Clin Ther. 1995; 17 ( 4 ): 637 - 647. https://doi.org/10.1016/0149-2918(95)80040-9
dc.identifier.citedreferenceVargas R, Dockhorn RJ, Findlay SR, Korenblat PE, Field EA, Kral KM. Effect of fluticasone propionate aqueous nasal spray versus oral prednisone on the hypothalamic-pituitary-adrenal axis. J Allergy Clin Immunol. 1998; 102 ( 2 ): 191 - 197. https://doi.org/10.1016/s0091-6749(98)70085-5
dc.identifier.citedreferenceHowland 3rd WC, Dockhorn R, Gillman S, et al. A comparison of effects of triamcinolone acetonide aqueous nasal spray, oral prednisone, and placebo on adrenocortical function in male patients with allergic rhinitis. J Allergy Clin Immunol. 1996; 98 ( 1 ): 32 - 38. https://doi.org/10.1016/s0091-6749(96)70223-3
dc.identifier.citedreferenceNayak AS, Ellis MH, Gross GN, et al. The effects of triamcinolone acetonide aqueous nasal spray on adrenocortical function in children with allergic rhinitis. J Allergy Clin Immunol. 1998; 101 (2 pt 1): 157 - 162. https://doi.org/10.1016/S0091-6749(98)70379-3
dc.identifier.citedreferenceGalant SP, Melamed IR, Nayak AS, et al. Lack of effect of fluticasone propionate aqueous nasal spray on the hypothalamic-pituitary-adrenal axis in 2- and 3-year-old patients. Pediatrics. 2003; 112 (1 pt 1): 96 - 100. https://doi.org/10.1542/peds.112.1.96
dc.identifier.citedreferenceKim K, Weiswasser M, Nave R, et al. Safety of once-daily ciclesonide nasal spray in cildren 2 to 5 years of age with perennial allergic rhinitis. Ped Asthma Allergy Immunol. 2007; 20: 229 - 242.
dc.identifier.citedreferenceChervinsky P, Kunjibettu S, Miller DL, et al. Long-term safety and efficacy of intranasal ciclesonide in adult and adolescent patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2007; 99 ( 1 ): 69 - 76. https://doi.org/10.1016/S1081-1206(10)60624-2
dc.identifier.citedreferencePatel D, Ratner P, Clements D, Wu W, Faris M, Philpot E. Lack of effect on adult and adolescent hypothalamic-pituitary-adrenal axis function with use of fluticasone furoate nasal spray. Ann Allergy Asthma Immunol. 2008; 100 ( 5 ): 490 - 496. https://doi.org/10.1016/S1081-1206(10)60476-0
dc.identifier.citedreferenceWeinstein S, Qaqundah P, Georges G, Nayak A. Efficacy and safety of triamcinolone acetonide aqueous nasal spray in children aged 2 to 5 years with perennial allergic rhinitis: a randomized, double-blind, placebo-controlled study with an open-label extension. Ann Allergy Asthma Immunol. 2009; 102 ( 4 ): 339 - 347. https://doi.org/10.1016/S1081-1206(10)60340-7
dc.identifier.citedreferenceTripathy I, Levy A, Ratner P, Clements D, Wu W, Philpot E. HPA axis safety of fluticasone furoate nasal spray once daily in children with perennial allergic rhinitis. Pediatr Allergy Immunol. 2009; 20 ( 3 ): 287 - 294. https://doi.org/10.1111/j.1399-3038.2008.00775.x
dc.identifier.citedreferenceHampel Jr FC, Nayak NA, Segall N, Small CJ, Li J, Tantry SK. No hypothalamic-pituitary-adrenal function effect with beclomethasone dipropionate nasal aerosol, based on 24-hour serum cortisol in pediatric allergic rhinitis. Ann Allergy Asthma Immunol. 2015; 115 ( 2 ): 137 - 142. https://doi.org/10.1016/j.anai.2015.05.019
dc.identifier.citedreferenceSampieri G, Namavarian A, Lee JJW, Hamour AF, Lee JM. Hypothalamic-pituitary-adrenal axis suppression and intranasal corticosteroid use: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2022; 12 ( 1 ): 11 - 27. https://doi.org/10.1002/alr.22863
dc.identifier.citedreferenceLiu A, Manche EE. Bilateral posterior subcapsular cataracts associated with long-term intranasal steroid use. J Cataract Refract Surg. 2011; 37 ( 8 ): 1555 - 1558. https://doi.org/10.1016/j.jcrs.2011.05.020
dc.identifier.citedreferenceAhmadi N, Snidvongs K, Kalish L, et al. Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systematic review of controlled trials. Rhinology. 2015; 53 ( 4 ): 290 - 302. https://doi.org/10.4193/Rhino15.020
dc.identifier.citedreferenceValenzuela CV, Liu JC, Vila PM, Simon L, Doering M, Lieu JEC. Intranasal corticosteroids do not lead to ocular changes: a systematic review and meta-analysis. Laryngoscope. 2019; 129 ( 1 ): 6 - 12. https://doi.org/10.1002/lary.27209
dc.identifier.citedreferenceMener DJ, Shargorodsky J, Varadhan R, Lin SY. Topical intranasal corticosteroids and growth velocity in children: a meta-analysis. Int Forum Allergy Rhinol. 2015; 5 ( 2 ): 95 - 103. https://doi.org/10.1002/alr.21430
dc.identifier.citedreferencePeriasamy N, Pujary K, Bhandarkar AM, Bhandarkar ND, Ramaswamy B. Budesonide vs saline nasal irrigation in allergic rhinitis: a randomized placebo-controlled trial. Otolaryngol Head Neck Surg. 2020; 162 ( 6 ): 979 - 984. https://doi.org/10.1177/0194599820919363
dc.identifier.citedreferenceBrown K, Lane J, Silva MP, DeTineo M, Naclerio RM, Baroody FM. A pilot study of the effects of intranasal budesonide delivered by NasoNeb(R) on patients with perennial allergic rhinitis. Int Forum Allergy Rhinol. 2014; 4 ( 1 ): 43 - 48. https://doi.org/10.1002/alr.21239
dc.identifier.citedreferenceProfita M, Riccobono L, Bonanno A, et al. Effect of nebulized beclomethasone on airway inflammation and clinical status of children with allergic asthma and rhinitis: a randomized, double-blind, placebo-controlled study. Int Arch Allergy Immunol. 2013; 161 ( 1 ): 53 - 64. https://doi.org/10.1159/000343137
dc.identifier.citedreferenceHehar SS, Mason JD, Stephen AB, et al. Twenty-four hour ambulatory nasal pH monitoring. Clin Otolaryngol Allied Sci. 1999; 24 ( 1 ): 24 - 25. https://doi.org/10.1046/j.1365-2273.1999.00190.x
dc.identifier.citedreferenceCamargos P, Ibiapina C, Lasmar L, Cruz AA. Obtaining concomitant control of allergic rhinitis and asthma with a nasally inhaled corticosteroid. Allergy. 2007; 62 ( 3 ): 310 - 316. https://doi.org/10.1111/j.1398-9995.2007.01241.x
dc.identifier.citedreferenceShaikh WA. Exhaling a budesonide inhaler through the nose results in a significant reduction in dose requirement of budesonide nasal spray in patients having asthma with rhinitis. J Investig Allergol Clin Immunol. 1999; 9 ( 1 ): 45 - 49.
dc.identifier.citedreferenceDaman Willems CE, Dinwiddie R, Grant DB, Rivers RP, Zahir M. Temporary inhibition of growth and adrenal suppression associated with the use of steroid nose drops. Eur J Pediatr. 1994; 153 ( 9 ): 632 - 634. https://doi.org/10.1007/BF02190681
dc.identifier.citedreferenceKimmerle R, Rolla AR. Iatrogenic Cushing’s syndrome due to dexamethasone nasal drops. Am J Med. 1985; 79 ( 4 ): 535 - 537. https://doi.org/10.1016/0002-9343(85)90046-4
dc.identifier.citedreferenceDaley-Yates PT, Baker RC. Systemic bioavailability of fluticasone propionate administered as nasal drops and aqueous nasal spray formulations. Br J Clin Pharmacol. 2001; 51 ( 1 ): 103 - 105. https://doi.org/10.1046/j.1365-2125.2001.01325.x
dc.identifier.citedreferenceBrown EB, Seidemen T, Siegelaub AB, Popovits C. Depo-methylprednisolone in the treatment of ragweed hay fever. Ann Allergy. 1960; 18: 1321 - 1330.
dc.identifier.citedreferenceBorum P, Gronborg H, Mygind N. Seasonal allergic rhinitis and depot injection of a corticosteroid. Evaluation of the efficacy of medication early and late in the season based on detailed symptom recording. Allergy. 1987; 42 ( 1 ): 26 - 32. https://doi.org/10.1111/j.1398-9995.1987.tb02183.x
dc.identifier.citedreferenceAxelsson A, Lindholm B. The effect of triamcinolone acetonide on allergic and vasomotor rhinitis. Acta Otolaryngol. 1972; 73 ( 1 ): 64 - 67. https://doi.org/10.3109/00016487209138195
dc.identifier.citedreferenceLaursen LC, Faurschou P, Munch EP. Intramuscular betamethasone dipropionate vs. topical beclomethasone dipropionate and placebo in hay fever. Allergy. 1988; 43 ( 6 ): 420 - 424. https://doi.org/10.1111/j.1398-9995.1988.tb00912.x
dc.identifier.citedreferenceKronholm A. Injectable depot corticosteroid therapy in hay fever. J Int Med Res. 1979; 7 ( 4 ): 314 - 317. https://doi.org/10.1177/030006057900700410
dc.identifier.citedreferenceOhlander BO, Hansson RE, Karlsson KE. A comparison of three injectable corticosteroids for the treatment of patients with seasonal hay fever. J Int Med Res. 1980; 8 ( 1 ): 63 - 69. https://doi.org/10.1177/030006058000800111
dc.identifier.citedreferenceHermance WE, Gerardi A, Popovits CJ, Brown EB. Dexamethasone acetate suspension in the treatment of allergic rhinitis. Ann Allergy. 1969; 27 ( 12 ): 617 - 621.
dc.identifier.citedreferenceChervinsky P. Treatment of seasonal allergic rhinitis with long-acting steroid injections. A comparison of four preparations. Ann Allergy. 1968; 26 ( 4 ): 190 - 193.
dc.identifier.citedreferenceLaursen LC, Faurschou P, Pals H, Svendsen UG, Weeke B. Intramuscular betamethasone dipropionate vs. oral prednisolone in hay fever patients. Allergy. 1987; 42 ( 3 ): 168 - 172. https://doi.org/10.1111/j.1398-9995.1987.tb02194.x
dc.identifier.citedreferencePichler WJ, Klint T, Blaser M, et al. Clinical comparison of systemic methylprednisolone acetate versus topical budesonide in patients with seasonal allergic rhinitis. Allergy. 1988; 43 ( 2 ): 87 - 92. https://doi.org/10.1111/j.1398-9995.1988.tb00399.x
dc.identifier.citedreferenceBayoumy AB, van Schie F, Stegeman I, Blijleven EB, van der Veen EL, de Ru JA. Intramuscular corticosteroid injections in seasonal allergic rhinitis: a systematic review. Laryngoscope Investig Otolaryngol. 2021; 6 ( 5 ): 911 - 923. https://doi.org/10.1002/lio2.645
dc.identifier.citedreferenceMygind N, Laursen LC, Dahl M. Systemic corticosteroid treatment for seasonal allergic rhinitis: a common but poorly documented therapy. Allergy. 2000; 55 ( 1 ): 11 - 15. https://doi.org/10.1034/j.1398-9995.2000.00108.x
dc.identifier.citedreferenceAasbjerg K, Torp-Pedersen C, Vaag A, Backer V. Treating allergic rhinitis with depot-steroid injections increase risk of osteoporosis and diabetes. Respir Med. 2013; 107 ( 12 ): 1852 - 1858. https://doi.org/10.1016/j.rmed.2013.09.007
dc.identifier.citedreferenceWall JW, Shure N. Intranasal cortisone; preliminary study. AMA Arch Otolaryngol. 1952; 56 ( 2 ): 172 - 176.
dc.identifier.citedreferenceSidi E, Tardif R. Traitement des rhinites allergiques accompagnées d’eczéma par des injections d’acétate d’hydrocortisone au niveau de la muqueuse nasale [Treatment of allergic rhinitis accompanied by eczema with hydrocortisone acetate injected into nasal mucous membrane]. Sem Hop. 1955; 31 ( 33 ): 1922 - 1923.
dc.identifier.citedreferenceSimmons MW. Intranasal injection of corticosteroids. Calif Med. 1960; 92: 155 - 158.
dc.identifier.citedreferenceBaker Jr DC, Strauss RB. Intranasal injections of long acting corticosteroids. Ann Otol Rhinol Laryngol. 1962; 71: 525 - 531. https://doi.org/10.1177/000348946207100224
dc.identifier.citedreferenceMabry RL. Intraturbinal steroid injection: indications, results, and complications. South Med J. 1978; 71 ( 7 ): 789 - 791, 794. https://doi.org/10.1097/00007611-197807000-00015
dc.identifier.citedreferenceYang TY, Jung YG, Kim YH, Jang TY. A comparison of the effects of botulinum toxin A and steroid injection on nasal allergy. Otolaryngol Head Neck Surg. 2008; 139 ( 3 ): 367 - 371. https://doi.org/10.1016/j.otohns.2008.06.031
dc.identifier.citedreferenceRowe RJ, Dusler TW, Kinkella AM. Visual changes and triamcinolone. J Am Med Assoc. 1967; 201: 333.
dc.identifier.citedreferenceByers B. Blindness secondary to steroid injections into the nasal turbinates. Arch Ophthalmol. 1979; 97 ( 1 ): 79 - 80. https://doi.org/10.1001/archopht.1979.01020010019004
dc.identifier.citedreferenceMartin PA, Church CA, Petti Jr GH, Hedayi R. Visual loss after intraturbinate steroid injection. Otolaryngol Head Neck Surg. 2003; 128 ( 2 ): 280 - 281. https://doi.org/10.1067/mhn.2003.81
dc.identifier.citedreferenceNagasato D, Ikeda N, Masuda A, Kashimoto R, Ikeda T. Progression of glaucomatous optic neuropathy associated with chorioretinal microvascular embolism after intranasal injection of a corticosteroid suspension. Indian J Ophthalmol. 2020; 68 ( 8 ): 1686 - 1687. https://doi.org/10.4103/ijo.IJO_2332_19
dc.identifier.citedreferenceMoss WJ, Kjos KB, Karnezis TT, Lebovits MJ. Intranasal steroid injections and blindness: our personal experience and a review of the past 60 years. Laryngoscope. 2015; 125 ( 4 ): 796 - 800. https://doi.org/10.1002/lary.25000
dc.identifier.citedreferenceEccles R. Substitution of phenylephrine for pseudoephedrine as a nasal decongeststant. An illogical way to control methamphetamine abuse. Br J Clin Pharmacol. 2007; 63 ( 1 ): 10 - 14. https://doi.org/10.1111/j.1365-2125.2006.02833.x
dc.identifier.citedreferenceSalerno SM, Jackson JL, Berbano EP. Effect of oral pseudoephedrine on blood pressure and heart rate: a meta-analysis. Arch Intern Med. 2005; 165 ( 15 ): 1686 - 1694. https://doi.org/10.1001/archinte.165.15.1686
dc.identifier.citedreferenceBronsky E, Boggs P, Findlay S, et al. Comparative efficacy and safety of a once-daily loratadine-pseudoephedrine combination versus its components alone and placebo in the management of seasonal allergic rhinitis. J Allergy Clin Immunol. 1995; 96 ( 2 ): 139 - 147. https://doi.org/10.1016/s0091-6749(95)70001-3
dc.identifier.citedreferenceGrosclaude M, Mees K, Pinelli ME, Lucas M, Van de Venne H. Cetirizine and pseudoephedrine retard, given alone or in combination, in patients with seasonal allergic rhinitis. Rhinology. 1997; 35 ( 2 ): 67 - 73.
dc.identifier.citedreferenceDockhorn RJ, Williams BO, Sanders RL. Efficacy of acrivastine with pseudoephedrine in treatment of allergic rhinitis due to ragweed. Ann Allergy Asthma Immunol. 1996; 76 ( 2 ): 204 - 208. https://doi.org/10.1016/S1081-1206(10)63423-0
dc.identifier.citedreferenceGrubbe RE, Lumry WR, Anolik R. Efficacy and safety of desloratadine/pseudoephedrine combination vs its components in seasonal allergic rhinitis. J Investig Allergol Clin Immunol. 2009; 19 ( 2 ): 117 - 124.
dc.identifier.citedreferenceBertrand B, Jamart J, Marchal JL, Arendt C. Cetirizine and pseudoephedrine retard alone and in combination in the treatment of perennial allergic rhinitis: a double-blind multicentre study. Rhinology. 1996; 34 ( 2 ): 91 - 96.
dc.identifier.citedreferenceSussman GL, Mason J, Compton D, Stewart J, Ricard N. The efficacy and safety of fexofenadine HCl and pseudoephedrine, alone and in combination, in seasonal allergic rhinitis. J Allergy Clin Immunol. 1999; 104 ( 1 ): 100 - 106. https://doi.org/10.1016/s0091-6749(99)70120-x
dc.identifier.citedreferenceMucha SM, deTineo M, Naclerio RM, Baroody FM. Comparison of montelukast and pseudoephedrine in the treatment of allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2006; 132 ( 2 ): 164 - 172. https://doi.org/10.1001/archotol.132.2.164
dc.identifier.citedreferenceHenauer S, Seppey M, Huguenot C, Pecoud A. Effects of terfenadine and pseudoephedrine, alone and in combination in a nasal provocation test and in perennial rhinitis. Eur J Clin Pharmacol. 1991; 41 ( 4 ): 321 - 324. https://doi.org/10.1007/BF00314960
dc.identifier.citedreferenceEmpey DW, Frosolono MF, Hughes DT, Perkins JG. Comparison of pseudoephedrine and triprolidine, alone and in combination in preventing nasal congestion in subjects with allergic rhinitis using nasal histamine challenge. Br J Clin Pharmacol. 1984; 18 ( 1 ): 86 - 89. https://doi.org/10.1111/j.1365-2125.1984.tb05026.x
dc.identifier.citedreferenceHowarth PH, Harrison K, Smith S. The influence of terfenadine and pseudo-ephedrine alone and in combination on allergen-induced rhinitis. Int Arch Allergy Immunol. 1993; 101 ( 3 ): 318 - 321. https://doi.org/10.1159/000236470
dc.identifier.citedreferenceMeltzer EO, Ratner PH, McGraw T. Oral phenylephrine HCl for nasal congestion in seasonal allergic rhinitis: a randomized, open-label, placebo-controlled study. J Allergy Clin Immunol Pract. 2015; 3 ( 5 ): 702 - 708. https://doi.org/10.1016/j.jaip.2015.05.007
dc.identifier.citedreferencePleskow W, Grubbe R, Weiss S, Lutsky B. Efficacy and safety of an extended-release formulation of desloratadine and pseudoephedrine vs the individual components in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2005; 94 ( 3 ): 348 - 354. https://doi.org/10.1016/S1081-1206(10)60986-6
dc.identifier.citedreferenceSvensson C, Pipkorn U, Alkner U, Baumgarten CR, Persson CG. Topical vasoconstrictor (oxymetazoline) does not affect histamine-induced mucosal exudation of plasma in human nasal airways. Clin Exp Allergy. 1992; 22 ( 3 ): 411 - 416. https://doi.org/10.1111/j.1365-2222.1992.tb03103.x
dc.identifier.citedreferenceBickford L, Shakib S, Taverner D. The nasal airways response in normal subjects to oxymetazoline spray: randomized double-blind placebo-controlled trial. Br J Clin Pharmacol. 1999; 48 ( 1 ): 53 - 56. https://doi.org/10.1046/j.1365-2125.1999.00972.x
dc.identifier.citedreferenceGomez-Hervas J, Garcia-Valdecasas Bernal J, Fernandez-Prada M, Palomeque-Vera JM, Garcia-Ramos A, Fernandez-Castanys BF. Effects of oxymetazoline on nasal flow and maximum aerobic exercise performance in patients with inferior turbinate hypertrophy. Laryngoscope. 2015; 125 ( 6 ): 1301 - 1306. https://doi.org/10.1002/lary.25107
dc.identifier.citedreferenceTaverner D, Bickford L, Shakib S, Tonkin A. Evaluation of the dose-response relationship for intra-nasal oxymetazoline hydrochloride in normal adults. Eur J Clin Pharmacol. 1999; 55 ( 7 ): 509 - 513. https://doi.org/10.1007/s002280050665
dc.identifier.citedreferenceBarnes ML, Biallosterski BT, Gray RD, Fardon TC, Lipworth BJ. Decongestant effects of nasal xylometazoline and mometasone furoate in persistent allergic rhinitis. Rhinology. 2005; 43 ( 4 ): 291 - 295.
dc.identifier.citedreferencePritchard S, Glover M, Guthrie G, et al. Effectiveness of 0.05% oxymetazoline (Vicks Sinex Micromist(R)) nasal spray in the treatment of objective nasal congestion demonstrated to 12 h post-administration by magnetic resonance imaging. Pulm Pharmacol Ther. 2014; 27 ( 1 ): 121 - 126. https://doi.org/10.1016/j.pupt.2013.08.002
dc.identifier.citedreferenceDruce HM, Ramsey DL, Karnati S, Carr AN. Topical nasal decongestant oxymetazoline (0.05%) provides relief of nasal symptoms for 12 hours. Rhinology. 2018; 56 ( 4 ): 343 - 350. https://doi.org/10.4193/Rhin17.150
dc.identifier.citedreferenceWatanabe H, Foo TH, Djazaeri B, Duncombe P, Mackay IS, Durham SR. Oxymetazoline nasal spray three times daily for four weeks in normal subjects is not associated with rebound congestion or tachyphylaxis. Rhinology. 2003; 41 ( 3 ): 167 - 174.
dc.identifier.citedreferenceGraf P, Hallen H. Effect on the nasal mucosa of long-term treatment with oxymetazoline, benzalkonium chloride, and placebo nasal sprays. Laryngoscope. 1996; 106 (5 pt 1): 605 - 609. https://doi.org/10.1097/00005537-199605000-00016
dc.identifier.citedreferencePetruson B. Treatment with xylometazoline (Otrivin) nosedrops over a six-week period. Rhinology. 1981; 19 ( 3 ): 167 - 172.
dc.identifier.citedreferenceSong XH, Zhang L, Han DM, Wang KJ, Wang H, Zhang W. [ Effects of oxymetazoline hydrochloride on ex vivo human nasal cilia movement measured with high-speed digital microscopy ]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008; 43 ( 4 ): 268 - 271.
dc.identifier.citedreferenceMeltzer EO, Wallace D, Friedman HS, Navaratnam P, Scott EP, Nolte H. Meta-analyses of the efficacy of pharmacotherapies and sublingual allergy immunotherapy tablets for allergic rhinitis in adults and children. Rhinology. 2021; 59 ( 5 ): 422 - 432. https://doi.org/10.4193/Rhin21.054
dc.identifier.citedreferenceKrishnamoorthy M, Mohd Noor N, Mat Lazim N, Abdullah B. Efficacy of montelukast in allergic rhinitis treatment: a systematic review and meta-analysis. Drugs. 2020; 80 ( 17 ): 1831 - 1851. https://doi.org/10.1007/s40265-020-01406-9
dc.identifier.citedreferenceOkubo K, Hashiguchi K, Takeda T, et al. A randomized controlled phase II clinical trial comparing ONO-4053, a novel DP1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis. Allergy. 2017; 72 ( 10 ): 1565 - 1575. https://doi.org/10.1111/all.13174
dc.identifier.citedreferenceWei C. The efficacy and safety of H1-antihistamine versus Montelukast for allergic rhinitis: a systematic review and meta-analysis. Biomed Pharmacother. 2016; 83: 989 - 997. https://doi.org/10.1016/j.biopha.2016.08.003
dc.identifier.citedreferenceDurham SR, Creticos PS, Nelson HS, et al. Treatment effect of sublingual immunotherapy tablets and pharmacotherapies for seasonal and perennial allergic rhinitis: pooled analyses. J Allergy Clin Immunol. 2016; 138 ( 4 ): 1081 - 1088.e4. https://doi.org/10.1016/j.jaci.2016.04.061
dc.identifier.citedreferenceHashiguchi K, Okubo K, Inoue Y, et al. Evaluation of montelukast for the treatment of children with japanese cedar pollinosis using an artificial exposure chamber (OHIO Chamber). Allergy Rhinol (Providence). 2018; 9: 2152656718783599. https://doi.org/10.1177/2152656718783599
dc.identifier.citedreferenceYoshihara S, Kikuchi Y, Saitou M, et al. Efficacy of a leukotriene receptor antagonist for pediatric cedar pollen allergy complicated by asthma. Exp Ther Med. 2017; 14 ( 4 ): 3233 - 3238. https://doi.org/10.3892/etm.2017.4893
dc.identifier.citedreferenceChen H, Lou H, Wang Y, Cao F, Zhang L, Wang C. Comparison of the efficacy and mechanisms of intranasal budesonide, montelukast, and their combination in treatment of patients with seasonal allergic rhinitis. Int Forum Allergy Rhinol. 2018; 8 ( 11 ): 1242 - 1252. https://doi.org/10.1002/alr.22197
dc.identifier.citedreferenceJindal A, Suriyan S, Sagadevan S, et al. Comparison of oral montelukast and intranasal fluticasone in patients with asthma and allergic rhinitis. J Clin Diagn Res. 2016; 10 ( 8 ): OC06 - OC10. https://doi.org/10.7860/JCDR/2016/20741.8268
dc.identifier.citedreferenceDalgic A, Dinc ME, Ulusoy S, Dizdar D, Is A, Topak M. Comparison of the effects of nasal steroids and montelukast on olfactory functions in patients with allergic rhinitis. Eur Ann Otorhinolaryngol Head Neck Dis. 2017; 134 ( 4 ): 213 - 216. https://doi.org/10.1016/j.anorl.2016.05.012
dc.identifier.citedreferenceFeng Y, Meng YP, Dong YY, Qiu CY, Cheng L. Management of allergic rhinitis with leukotriene receptor antagonists versus selective H1-antihistamines: a meta-analysis of current evidence. Allergy Asthma Clin Immunol. 2021; 17 ( 1 ): 62. https://doi.org/10.1186/s13223-021-00564-z
dc.identifier.citedreferenceXiao J, Wu WX, Ye YY, Lin WJ, Wang L. A network meta-analysis of randomized controlled trials focusing on different allergic rhinitis medications. Am J Ther. 2016; 23 ( 6 ): e1568 - e1578. https://doi.org/10.1097/MJT.0000000000000242
dc.identifier.citedreferenceXu Y, Zhang J, Wang J. The efficacy and safety of selective H1-antihistamine versus leukotriene receptor antagonist for seasonal allergic rhinitis: a meta-analysis. PLoS One. 2014; 9 ( 11 ): e112815. https://doi.org/10.1371/journal.pone.0112815
dc.identifier.citedreferenceDevillier P, Dreyfus JF, Demoly P, Calderon MA. A meta-analysis of sublingual allergen immunotherapy and pharmacotherapy in pollen-induced seasonal allergic rhinoconjunctivitis. BMC Med. 2014; 12: 71. https://doi.org/10.1186/1741-7015-12-71
dc.identifier.citedreferenceLi YJ, Zong M, Ding LF, Rui XQ, Ma BY, Qin LP. Efficacy of Chinese medicine acupoint application combined with montelukast on children with perennial allergic rhinitis: a randomized controlled trial. Chin J Integr Med. 2020; 26 ( 11 ): 845 - 852. https://doi.org/10.1007/s11655-020-3099-2
dc.identifier.citedreferenceU.S. Food and Drug Administration. FDA requires Boxed Warning about serious mental health side effects for asthma and allergy drug montelukast (Singulair); advises restricting use for allergic rhinitis. 2020. Accessed January 15, 2022. https://www.fda.gov/drugs/fda-requires-boxed-warning-about-serious-mental-health-side-effects-asthma-and-allergy-drug
dc.identifier.citedreferenceAmerican Academy of Family Physicians. Clinical practice guidelines: allergic rhinitis. Updated July 6, 2020. Accessed November 1, 2021. https://www.aafp.org/family-physician/patient-care/clinical-recommendations/all-clinical-recommendations/allergic-rhinitis.html
dc.identifier.citedreferenceGoodman MJ, Jhaveri M, Saverno K, Meyer K, Nightengale B. Cost-effectiveness of second-generation antihistamines and montelukast in relieving allergic rhinitis nasal symptoms. Am Health Drug Benefits. 2008; 1 ( 8 ): 26 - 34.
dc.identifier.citedreferenceGrainger J, Drake-Lee A. Montelukast in allergic rhinitis: a systematic review and meta-analysis. Clin Otolaryngol. 2006; 31 ( 5 ): 360 - 367. https://doi.org/10.1111/j.1749-4486.2006.01276.x
dc.identifier.citedreferenceRodrigo GJ, Yanez A. The role of antileukotriene therapy in seasonal allergic rhinitis: a systematic review of randomized trials. Ann Allergy Asthma Immunol. 2006; 96 ( 6 ): 779 - 786. https://doi.org/10.1016/S1081-1206(10)61339-7
dc.identifier.citedreferenceGonyeau MJ, Partisan AM. A clinical review of montelukast in the treatment of seasonal allergic rhinitis. Formulary. 2003; 38: 368 - 378.
dc.identifier.citedreferenceEndo S, Gotoh M, Okubo K, Hashiguchi K, Suzuki H, Masuyama K. Trial of pranlukast inhibitory effect for cedar exposure using an OHIO chamber. J Drug Assess. 2012; 1 ( 1 ): 48 - 54. https://doi.org/10.3109/21556660.2012.703630
dc.identifier.citedreferenceWakabayashi K, Hashiguchi K, Kanzaki S, et al. Pranlukast dry syrup inhibits symptoms of Japanese cedar pollinosis in children using OHIO Chamber. Allergy Asthma Proc. 2012; 33 ( 1 ): 102 - 109. https://doi.org/10.2500/aap.2012.33.3517
dc.identifier.citedreferenceDay JH, Briscoe MP, Ratz JD. Efficacy of levocetirizine compared with montelukast in subjects with ragweed-induced seasonal allergic rhinitis in the Environmental Exposure Unit. Allergy Asthma Proc. 2008; 29 ( 3 ): 304 - 312. https://doi.org/10.2500/aap.2008.29.3109
dc.identifier.citedreferenceJiang RS. Efficacy of a leukotriene receptor antagonist in the treatment of perennial allergic rhinitis. J Otolaryngol. 2006; 35 ( 2 ): 117 - 121. https://doi.org/10.2310/7070.2005.5007
dc.identifier.citedreferencePatel P, Philip G, Yang W, et al. Randomized, double-blind, placebo-controlled study of montelukast for treating perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2005; 95 ( 6 ): 551 - 557. https://doi.org/10.1016/S1081-1206(10)61018-6
dc.identifier.citedreferenceChervinsky P, Philip G, Malice MP, et al. Montelukast for treating fall allergic rhinitis: effect of pollen exposure in 3 studies. Ann Allergy Asthma Immunol. 2004; 92 ( 3 ): 367 - 373. https://doi.org/10.1016/S1081-1206(10)61576-1
dc.identifier.citedreferencePhilip G, Nayak AS, Berger WE, et al. The effect of montelukast on rhinitis symptoms in patients with asthma and seasonal allergic rhinitis. Curr Med Res Opin. 2004; 20 ( 10 ): 1549 - 1558. https://doi.org/10.1185/030079904x3348
dc.identifier.citedreferenceRatner PH, Howland 3rd WC, Arastu R, et al. Fluticasone propionate aqueous nasal spray provided significantly greater improvement in daytime and nighttime nasal symptoms of seasonal allergic rhinitis compared with montelukast. Ann Allergy Asthma Immunol. 2003; 90 ( 5 ): 536 - 542. https://doi.org/10.1016/S1081-1206(10)61847-9
dc.identifier.citedreferencevan Adelsberg J, Philip G, Pedinoff AJ, et al. Montelukast improves symptoms of seasonal allergic rhinitis over a 4-week treatment period. Allergy. 2003; 58 ( 12 ): 1268 - 1276. https://doi.org/10.1046/j.1398-9995.2003.00261.x
dc.identifier.citedreferencevan Adelsberg J, Philip G, LaForce CF, et al. Randomized controlled trial evaluating the clinical benefit of montelukast for treating spring seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2003; 90 ( 2 ): 214 - 222. https://doi.org/10.1016/S1081-1206(10)62144-8
dc.identifier.citedreferencePhilip G, Malmstrom K, Hampel FC, et al. Montelukast for treating seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial performed in the spring. Clin Exp Allergy. 2002; 32 ( 7 ): 1020 - 1028. https://doi.org/10.1046/j.1365-2222.2002.01422.x
dc.identifier.citedreferencePullerits T, Praks L, Skoogh BE, Ani R, Lotvall J. Randomized placebo-controlled study comparing a leukotriene receptor antagonist and a nasal glucocorticoid in seasonal allergic rhinitis. Am J Respir Crit Care Med. 1999; 159 ( 6 ): 1814 - 1818. https://doi.org/10.1164/ajrccm.159.6.9810016
dc.identifier.citedreferenceAltounyan RE. Review of clinical activity and mode of action of sodium cromoglycate. Clin Allergy. 1980;(10 suppl): 481 - 489. https://doi.org/10.1111/j.1365-2222.1980.tb02162.x
dc.identifier.citedreferenceKay AB, Walsh GM, Moqbel R, et al. Disodium cromoglycate inhibits activation of human inflammatory cells in vitro. J Allergy Clin Immunol. 1987; 80 ( 1 ): 1 - 8. https://doi.org/10.1016/s0091-6749(87)80183-5
dc.identifier.citedreferenceTaylor G, Shivalkar PR. Disodium cromoglycate: laboratory studies and clinical trial in allergic rhinitis. Clin Allergy. 1971; 1 ( 2 ): 189 - 198. https://doi.org/10.1111/j.1365-2222.1971.tb03018.x
dc.identifier.citedreferencePelikan Z. The diagnostic approach to immediate hypersensitivity in patients with allergic rhinitis; a comparison of nasal challenges and serum rast. Ann Allergy. 1983; 51 ( 3 ): 395 - 400.
dc.identifier.citedreferenceKolly M, Pecoud A. Comparison of levocabastine, a new selective H1-receptor antagonist, and disodium cromoglycate, in a nasal provocation test with allergen. Br J Clin Pharmacol. 1986; 22 ( 4 ): 389 - 394. https://doi.org/10.1111/j.1365-2125.1986.tb02907.x
dc.identifier.citedreferenceDavies HJ. Exposure of hay fever subjects to an indoor environmental grass pollen challenge system. Clin Allergy. 1985; 15 ( 5 ): 419 - 427. https://doi.org/10.1111/j.1365-2222.1985.tb02291.x
dc.identifier.citedreferenceIbanez MD, Laso MT, Martinez-San Irineo M, Alonso E. Anaphylaxis to disodium cromoglycate. Ann Allergy Asthma Immunol. 1996; 77 ( 3 ): 185 - 186. https://doi.org/10.1016/s1081-1206(10)63252-8
dc.identifier.citedreferenceWass U, Plaschke P, Bjorkander J, Belin L. Assay of specific IgE antibodies to disodium cromoglycate in serum from a patient with an immediate hypersensitivity reaction. J Allergy Clin Immunol. 1988; 81 ( 4 ): 750 - 757. https://doi.org/10.1016/0091-6749(88)91049-4
dc.identifier.citedreferenceSchatz M, Zeiger RS, Harden K, Hoffman CC, Chilingar L, Petitti D. The safety of asthma and allergy medications during pregnancy. J Allergy Clin Immunol. 1997; 100 ( 3 ): 301 - 306. https://doi.org/10.1016/s0091-6749(97)70241-0
dc.identifier.citedreferenceMazzotta P, Loebstein R, Koren G. Treating allergic rhinitis in pregnancy. Safety considerations. Drug Saf. 1999; 20 ( 4 ): 361 - 375. https://doi.org/10.2165/00002018-199920040-00005
dc.identifier.citedreferenceMeltzer EO, NasalCrom Study Group. Efficacy and patient satisfaction with cromolyn sodium nasal solution in the treatment of seasonal allergic rhinitis: a placebo-controlled study. Clin Ther. 2002; 24 ( 6 ): 942 - 952. https://doi.org/10.1016/s0149-2918(02)80009-1
dc.identifier.citedreferenceChandra RK, Heresi G, Woodford G. Double-blind controlled crossover trial of 4% intranasal sodium cromoglycate solution in patients with seasonal allergic rhinitis. Ann Allergy. 1982; 49 ( 3 ): 131 - 134.
dc.identifier.citedreferenceHandelman NI, Friday GA, Schwartz HJ, et al. Cromolyn sodium nasal solution in the prophylactic treatment of pollen-induced seasonal allergic rhinitis. J Allergy Clin Immunol. 1977; 59 ( 3 ): 237 - 242. https://doi.org/10.1016/0091-6749(77)90156-7
dc.identifier.citedreferenceNizami RM, Baboo MT. Efficacy double-blind, crossover study of sodium cromoglycate in patients with seasonal allergic rhinitis. Ann Allergy. 1977; 38 ( 1 ): 42 - 45.
dc.identifier.citedreferenceKnight A, Underdown BJ, Demanuele F, Hargreave FE. Disodium cromoglycate in ragweed-allergic rhinitis. J Allergy Clin Immunol. 1976; 58 ( 2 ): 278 - 283. https://doi.org/10.1016/0091-6749(76)90132-9
dc.identifier.citedreferenceLejeune M, Lefebvre PP, Delvenne P, El-Shazly AE. Nasal sodium cromoglycate (Lomusol) modulates the early phase reaction of mild to moderate persistent allergic rhinitis in patients mono-sensitized to house dust mite: a preliminary study. Int Immunopharmacol. 2015; 26 ( 1 ): 272 - 276. https://doi.org/10.1016/j.intimp.2015.02.004
dc.identifier.citedreferenceTandon MK, Strahan EG. Double-blind crossover trial comparing beclomethasone dipropionate and sodium cromoglycate in perennial allergic rhinitis. Clin Allergy. 1980; 10 ( 4 ): 459 - 462. https://doi.org/10.1111/j.1365-2222.1980.tb02129.x
dc.identifier.citedreferenceMcDowell MK, Spitz E. Treatment of chronic perennial allergic rhinitis: a double-blind trial of cromolyn sodium. Ann Allergy. 1977; 39 ( 3 ): 169 - 174.
dc.identifier.citedreferenceWarland A, Kapstad B. The effect of disodium cromoglycate in perennial allergic rhinitis. A controlled clinical study. Acta Allergol. 1977; 32 ( 3 ): 195 - 199. https://doi.org/10.1111/j.1398-9995.1977.tb01350.x
dc.identifier.citedreferenceCohan RH, Bloom FL, Rhoades RB, Wittig HJ, Haugh LD. Treatment of perennial allergic rhinitis with cromolyn sodium. Double-blind study on 34 adult patients. J Allergy Clin Immunol. 1976; 58 (1 pt. 2): 121 - 128. https://doi.org/10.1016/0091-6749(76)90147-0
dc.identifier.citedreferenceOrgel HA, Meltzer EO, Kemp JP, Ostrom NK, Welch MJ. Comparison of intranasal cromolyn sodium, 4%, and oral terfenadine for allergic rhinitis: symptoms, nasal cytology, nasal ciliary clearance, and rhinomanometry. Ann Allergy. 1991; 66 ( 3 ): 237 - 244.
dc.identifier.citedreferenceSchata M, Jorde W, Richarz-Barthauer U. Levocabastine nasal spray better than sodium cromoglycate and placebo in the topical treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1991; 87 ( 4 ): 873 - 878. https://doi.org/10.1016/0091-6749(91)90136-c
dc.identifier.citedreferenceLange B, Lukat KF, Rettig K, Holtappels G, Bachert C. Efficacy, cost-effectiveness, and tolerability of mometasone furoate, levocabastine, and disodium cromoglycate nasal sprays in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2005; 95 ( 3 ): 272 - 282. https://doi.org/10.1016/S1081-1206(10)61225-2
dc.identifier.citedreferenceFisher WG. Comparison of budesonide and disodium cromoglycate for the treatment of seasonal allergic rhinitis in children. Ann Allergy. 1994; 73 ( 6 ): 515 - 520.
dc.identifier.citedreferenceBousquet J, Chanal I, Alquie MC, et al. Prevention of pollen rhinitis symptoms: comparison of fluticasone propionate aqueous nasal spray and disodium cromoglycate aqueous nasal spray. A multicenter, double-blind, double-dummy, parallel-group study. Allergy. 1993; 48 ( 5 ): 327 - 333. https://doi.org/10.1111/j.1398-9995.1993.tb02401.x
dc.identifier.citedreferenceWelsh PW, Stricker WE, Chu CP, et al. Efficacy of beclomethasone nasal solution, flunisolide, and cromolyn in relieving symptoms of ragweed allergy. Mayo Clin Proc. 1987; 62 ( 2 ): 125 - 134. https://doi.org/10.1016/s0025-6196(12)61882-5
dc.identifier.citedreferenceBjerrum P, Illum P. Treatment of seasonal allergic rhinitis with budesonide and disodium cromoglycate. A double-blind clinical comparison between budesonide and disodium cromoglycate. Allergy. 1985; 40 ( 1 ): 65 - 69. https://doi.org/10.1111/j.1398-9995.1985.tb04156.x
dc.identifier.citedreferenceMorrow-Brown H, Jackson FA, Pover GM. A comparison of beclomethasone dipropionate aqueous nasal spray and sodium cromoglycate nasal spray in the management of seasonal allergic rhinitis. Allergol Immunopathol (Madr). 1984; 12 ( 5 ): 355 - 361.
dc.identifier.citedreferenceBrown HM, Engler C, English JR. A comparative trial of flunisolide and sodium cromoglycate nasal sprays in the treatment of seasonal allergic rhinitis. Clin Allergy. 1981; 11 ( 2 ): 169 - 173. https://doi.org/10.1111/j.1365-2222.1981.tb01581.x
dc.identifier.citedreferenceWilson JA, Walker SR. A clinical study of the prophylactic use of betamethasone valerate and sodium cromoglycate in the treatment of seasonal allergic rhinitis. J Laryngol Otol. 1976; 90 ( 2 ): 201 - 206. https://doi.org/10.1017/s0022215100081962
dc.identifier.citedreferenceFrankland AW, Walker SR. A comparison of intranasal betamethasone valerate and sodium cromoglycate in seasonal allergic rhinitis. Clin Allergy. 1975; 5 ( 3 ): 295 - 300. https://doi.org/10.1111/j.1365-2222.1975.tb01866.x
dc.identifier.citedreferencePitsios C, Papadopoulos D, Kompoti E, et al. Efficacy and safety of mometasone furoate vs nedocromil sodium as prophylactic treatment for moderate/severe seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2006; 96 ( 5 ): 673 - 678. https://doi.org/10.1016/S1081-1206(10)61064-2
dc.identifier.citedreferenceSchuller DE, Selcow JE, Joos TH, et al. A multicenter trial of nedocromil sodium, 1% nasal solution, compared with cromolyn sodium and placebo in ragweed seasonal allergic rhinitis. J Allergy Clin Immunol. 1990; 86 (4 pt 1): 554 - 561. https://doi.org/10.1016/s0091-6749(05)80212-x
dc.identifier.citedreferenceCraig S, Rubinstein E, Reisman RE, Arbesman CE. Treatment of ragweed hay fever with intranasally administered disodium cromoglycate. Clin Allergy. 1977; 7 ( 6 ): 569 - 576. https://doi.org/10.1111/j.1365-2222.1977.tb01487.x
dc.identifier.citedreferencePosey WC, Nelson HS. Controlled trials with four per cent cromolyn spray in seasonal allergic rhinitis. Clin Allergy. 1977; 7 ( 5 ): 485 - 496. https://doi.org/10.1111/j.1365-2222.1977.tb01479.x
dc.identifier.citedreferenceBecker B, Borum S, Nielsen K, Mygind N, Borum P. A time-dose study of the effect of topical ipratropium bromide on methacholine-induced rhinorrhoea in patients with perennial non-allergic rhinitis. Clin Otolaryngol Allied Sci. 1997; 22 ( 2 ): 132 - 134. https://doi.org/10.1046/j.1365-2273.1997.00875.x
dc.identifier.citedreferenceSanwikarja S, Schmitz PI, Dieges PH. The effect of locally applied ipratropium aerosol on the nasal methacholine challenge in patients with allergic and non-allergic rhinitis. Ann Allergy. 1986; 56 ( 2 ): 162 - 166.
dc.identifier.citedreferenceOstberg B, Winther B, Mygind N. Cold air-induced rhinorrhea and high-dose ipratropium. Arch Otolaryngol Head Neck Surg. 1987; 113 ( 2 ): 160 - 162. https://doi.org/10.1001/archotol.1987.01860020052011
dc.identifier.citedreferenceKirkegaard J, Mygind N, Molgaard F, et al. Ordinary and high-dose ipratropium in perennial nonallergic rhinitis. J Allergy Clin Immunol. 1987; 79 ( 4 ): 585 - 590. https://doi.org/10.1016/s0091-6749(87)80153-7
dc.identifier.citedreferenceKirkegaard J, Mygind N, Molgaard F, et al. Ipratropium treatment of rhinorrhea in perennial nonallergic rhinitis. A Nordic multicenter study. Acta Otolaryngol Suppl. 1988; 449: 93 - 95. https://doi.org/10.3109/00016488809106386
dc.identifier.citedreferenceBonadonna P, Senna G, Zanon P, et al. Cold-induced rhinitis in skiers–clinical aspects and treatment with ipratropium bromide nasal spray: a randomized controlled trial. Am J Rhinol. 2001; 15 ( 5 ): 297 - 301.
dc.identifier.citedreferenceKaiser HB, Findlay SR, Georgitis JW, et al. The anticholinergic agent, ipratropium bromide, is useful in the treatment of rhinorrhea associated with perennial allergic rhinitis. Allergy Asthma Proc. 1998; 19 ( 1 ): 23 - 29. https://doi.org/10.2500/108854198778557962
dc.identifier.citedreferenceKaiser HB, Findlay SR, Georgitis JW, et al. Long-term treatment of perennial allergic rhinitis with ipratropium bromide nasal spray 0.06%. J Allergy Clin Immunol. 1995; 95 (5 pt 2): 1128 - 1132. https://doi.org/10.1016/s0091-6749(95)70217-2
dc.identifier.citedreferenceBronsky EA, Druce H, Findlay SR, et al. A clinical trial of ipratropium bromide nasal spray in patients with perennial nonallergic rhinitis. J Allergy Clin Immunol. 1995; 95 (5 pt 2): 1117 - 1122. https://doi.org/10.1016/s0091-6749(95)70215-6
dc.identifier.citedreferenceKim KT, Kerwin E, Landwehr L, et al. Use of 0.06% ipratropium bromide nasal spray in children aged 2 to 5 years with rhinorrhea due to a common cold or allergies. Ann Allergy Asthma Immunol. 2005; 94 ( 1 ): 73 - 79. https://doi.org/10.1016/s1081-1206(10)61289-6
dc.identifier.citedreferenceEnsing K, de Zeeuw RA, Nossent GD, Koeter GH, Cornelissen PJ. Pharmacokinetics of ipratropium bromide after single dose inhalation and oral and intravenous administration. Eur J Clin Pharmacol. 1989; 36 ( 2 ): 189 - 194. https://doi.org/10.1007/BF00609193
dc.identifier.citedreferenceMeltzer EO, Orgel HA, Biondi R, et al. Ipratropium nasal spray in children with perennial rhinitis. Ann Allergy Asthma Immunol. 1997; 78 ( 5 ): 485 - 491. https://doi.org/10.1016/S1081-1206(10)63236-X
dc.identifier.citedreferenceMilgrom H, Biondi R, Georgitis JW, et al. Comparison of ipratropium bromide 0.03% with beclomethasone dipropionate in the treatment of perennial rhinitis in children. Ann Allergy Asthma Immunol. 1999; 83 ( 2 ): 105 - 111. https://doi.org/10.1016/S1081-1206(10)62620-8
dc.identifier.citedreferenceDockhorn R, Aaronson D, Bronsky E, et al. Ipratropium bromide nasal spray 0.03% and beclomethasone nasal spray alone and in combination for the treatment of rhinorrhea in perennial rhinitis. Ann Allergy Asthma Immunol. 1999; 82 ( 4 ): 349 - 359. https://doi.org/10.1016/S1081-1206(10)63284-X
dc.identifier.citedreferenceFinn Jr AF, Aaronson D, Korenblat P, et al. Ipratropium bromide nasal spray 0.03% provides additional relief from rhinorrhea when combined with terfenadine in perennial rhinitis patients; a randomized, double-blind, active-controlled trial. Am J Rhinol. 1998; 12 ( 6 ): 441 - 449. https://doi.org/10.2500/105065898780707919
dc.identifier.citedreferenceGorski P, Pazdrak K, Ruta U. Effect of ipratropium on nasal reactivity to histamine and eosinophil influx in perennial allergic rhinitis. Eur J Clin Pharmacol. 1993; 44 ( 6 ): 545 - 547. https://doi.org/10.1007/BF02440856
dc.identifier.citedreferenceMeltzer EO, Orgel HA, Bronsky EA, et al. Ipratropium bromide aqueous nasal spray for patients with perennial allergic rhinitis: a study of its effect on their symptoms, quality of life, and nasal cytology. J Allergy Clin Immunol. 1992; 90 ( 2 ): 242 - 249. https://doi.org/10.1016/0091-6749(92)90078-g
dc.identifier.citedreferencePrevost M, Turenne Y, Moote DW, et al. Comparative study of SCH 434 and CTM-D in the treatment of seasonal allergic rhinitis. Clin Ther. 1994; 16 ( 1 ): 50 - 56.
dc.identifier.citedreferenceSchultz Larsen F, Mygind N, Larsen FS. Ipratropium treatment for rhinorrhoea in patients with perennial rhinitis. An open follow-up study of efficacy and safety. Clin Otolaryngol Allied Sci. 1983; 8 ( 4 ): 267 - 272. https://doi.org/10.1111/j.1365-2273.1983.tb01440.x
dc.identifier.citedreferenceBorum P, Mygind N, Schultz Larsen F. Intranasal ipratropium: a new treatment for perennial rhinitis. Clin Otolaryngol Allied Sci. 1979; 4 ( 6 ): 407 - 411. https://doi.org/10.1111/j.1365-2273.1979.tb01773.x
dc.identifier.citedreferenceCox L. Biologics and allergy immunotherapy in the treatment of allergic diseases. Immunol Allergy Clin North Am. 2020; 40 ( 4 ): 687 - 700. https://doi.org/10.1016/j.iac.2020.06.008
dc.identifier.citedreferenceEschenbacher W, Straesser M, Knoeddler A, Li RC, Borish L. Biologics for the treatment of allergic rhinitis, chronic rhinosinusitis, and nasal polyposis. Immunol Allergy Clin North Am. 2020; 40 ( 4 ): 539 - 547. https://doi.org/10.1016/j.iac.2020.06.001
dc.identifier.citedreferenceLicari A, Marseglia G, Castagnoli R, Marseglia A, Ciprandi G. The discovery and development of omalizumab for the treatment of asthma. Expert Opin Drug Discov. 2015; 10 ( 9 ): 1033 - 1042. https://doi.org/10.1517/17460441.2015.1048220
dc.identifier.citedreferenceTsabouri S, Tseretopoulou X, Priftis K, Ntzani EE. Omalizumab for the treatment of inadequately controlled allergic rhinitis: a systematic review and meta-analysis of randomized clinical trials. J Allergy Clin Immunol Pract. 2014; 2 ( 3 ): 332 - 340.e1. https://doi.org/10.1016/j.jaip.2014.02.001
dc.identifier.citedreferenceYu C, Wang K, Cui X, et al. Clinical efficacy and safety of omalizumab in the treatment of allergic rhinitis: a systematic review and meta-analysis of randomized clinical trials. Am J Rhinol Allergy. 2020; 34 ( 2 ): 196 - 208. https://doi.org/10.1177/1945892419884774
dc.identifier.citedreferenceCasale TB, Bernstein IL, Busse WW, et al. Use of an anti-IgE humanized monoclonal antibody in ragweed-induced allergic rhinitis. J Allergy Clin Immunol. 1997; 100 ( 1 ): 110 - 121. https://doi.org/10.1016/s0091-6749(97)70202-1
dc.identifier.citedreferenceAdelroth E, Rak S, Haahtela T, et al. Recombinant humanized mAb-E25, an anti-IgE mAb, in birch pollen-induced seasonal allergic rhinitis. J Allergy Clin Immunol. 2000; 106 ( 2 ): 253 - 259. https://doi.org/10.1067/mai.2000.108310
dc.identifier.citedreferenceCasale TB, Condemi J, LaForce C, et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: a randomized controlled trial. JAMA. 2001; 286 ( 23 ): 2956 - 2967. https://doi.org/10.1001/jama.286.23.2956
dc.identifier.citedreferenceChervinsky P, Casale T, Townley R, et al. Omalizumab, an anti-IgE antibody, in the treatment of adults and adolescents with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2003; 91 ( 2 ): 160 - 167. https://doi.org/10.1016/S1081-1206(10)62171-0
dc.identifier.citedreferenceOkubo K, Ogino S, Nagakura T, Ishikawa T. Omalizumab is effective and safe in the treatment of Japanese cedar pollen-induced seasonal allergic rhinitis. Allergol Int. 2006; 55 ( 4 ): 379 - 386. https://doi.org/10.2332/allergolint.55.379
dc.identifier.citedreferenceCorren J, Diaz-Sanchez D, Saxon A, et al. Effects of omalizumab, a humanized monoclonal anti-IgE antibody, on nasal reactivity to allergen and local IgE synthesis. Ann Allergy Asthma Immunol. 2004; 93 ( 3 ): 243 - 248. https://doi.org/10.1016/S1081-1206(10)61495-0
dc.identifier.citedreferenceBez C, Schubert R, Kopp M, et al. Effect of anti-immunoglobulin E on nasal inflammation in patients with seasonal allergic rhinoconjunctivitis. Clin Exp Allergy. 2004; 34 ( 7 ): 1079 - 1085. https://doi.org/10.1111/j.1365-2222.2004.01998.x
dc.identifier.citedreferenceNagakura T, Ogino S, Okubo K, Sato N, Takahashi M, Ishikawa T. Omalizumab is more effective than suplatast tosilate in the treatment of Japanese cedar pollen-induced seasonal allergic rhinitis. Clin Exp Allergy. 2008; 38 ( 2 ): 329 - 337. https://doi.org/10.1111/j.1365-2222.2007.02894.x
dc.identifier.citedreferenceDavydov L. Omalizumab (Xolair) for treatment of asthma. Am Fam Physician. 2005; 71 ( 2 ): 341 - 342.
dc.identifier.citedreferenceBachert C, Hellings PW, Mullol J, et al. Dupilumab improves health-related quality of life in patients with chronic rhinosinusitis with nasal polyposis. Allergy. 2020; 75 ( 1 ): 148 - 157. https://doi.org/10.1111/all.13984
dc.identifier.citedreferenceWeinstein SF, Katial R, Jayawardena S, et al. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol. 2018; 142 ( 1 ): 171 - 177.e1. https://doi.org/10.1016/j.jaci.2017.11.051
dc.identifier.citedreferenceBusse WW, Maspero JF, Lu Y, et al. Efficacy of dupilumab on clinical outcomes in patients with asthma and perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2020; 125 ( 5 ): 565 - 576.e1. https://doi.org/10.1016/j.anai.2020.05.026
dc.identifier.citedreferenceCorren J, Saini SS, Gagnon R, et al. Short-term subcutaneous allergy immunotherapy and dupilumab are well tolerated in allergic rhinitis: a randomized trial. J Asthma Allergy. 2021; 14: 1045 - 1063. https://doi.org/10.2147/JAA.S318892
dc.identifier.citedreferenceCasale TB, Busse WW, Kline JN, et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol. 2006; 117 ( 1 ): 134 - 140. https://doi.org/10.1016/j.jaci.2005.09.036
dc.identifier.citedreferenceKuehr J, Brauburger J, Zielen S, et al. Efficacy of combination treatment with anti-IgE plus specific immunotherapy in polysensitized children and adolescents with seasonal allergic rhinitis. J Allergy Clin Immunol. 2002; 109 ( 2 ): 274 - 280. https://doi.org/10.1067/mai.2002.121949
dc.identifier.citedreferenceCordray S, Harjo JB, Miner L. Comparison of intranasal hypertonic dead sea saline spray and intranasal aqueous triamcinolone spray in seasonal allergic rhinitis. Ear Nose Throat J. 2005; 84 ( 7 ): 426 - 430.
dc.identifier.citedreferenceRogkakou A, Guerra L, Massacane P, et al. Effects on symptoms and quality of life of hypertonic saline nasal spray added to antihistamine in persistent allergic rhinitis – a randomized controlled study. Eur Ann Allergy Clin Immunol. 2005; 37 ( 9 ): 353 - 36.
dc.identifier.citedreferenceUral A, Oktemer TK, Kizil Y, Ileri F, Uslu S. Impact of isotonic and hypertonic saline solutions on mucociliary activity in various nasal pathologies: clinical study. J Laryngol Otol. 2009; 123 ( 5 ): 517 - 521. https://doi.org/10.1017/S0022215108003964
dc.identifier.citedreferenceGaravello W, Somigliana E, Acaia B, Gaini L, Pignataro L, Gaini RM. Nasal lavage in pregnant women with seasonal allergic rhinitis: a randomized study. Int Arch Allergy Immunol. 2010; 151 ( 2 ): 137 - 141. https://doi.org/10.1159/000236003
dc.identifier.citedreferenceChusakul S, Warathanasin S, Suksangpanya N, et al. Comparison of buffered and nonbuffered nasal saline irrigations in treating allergic rhinitis. Laryngoscope. 2013; 123 ( 1 ): 53 - 56. https://doi.org/10.1002/lary.23617
dc.identifier.citedreferenceDi Berardino F, Zanetti D, D’Amato G. Nasal rinsing with an atomized spray improves mucociliary clearance and clinical symptoms during peak grass pollen season. Am J Rhinol Allergy. 2017; 31 ( 1 ): 40 - 43. https://doi.org/10.2500/ajra.2016.30.4383
dc.identifier.citedreferenceSansila K, Eiamprapai P, Sawangjit R. Effects of self-prepared hypertonic nasal saline irrigation in allergic rhinitis: a randomized controlled trial. Asian Pac J Allergy Immunol. 2020; 38 ( 3 ): 200 - 207. https://doi.org/10.12932/AP-090618-0331
dc.identifier.citedreferenceLin L, Chen Z, Cao Y, Sun G. Normal saline solution nasal-pharyngeal irrigation improves chronic cough associated with allergic rhinitis. Am J Rhinol Allergy. 2017; 31 ( 2 ): 96 - 104. https://doi.org/10.2500/ajra.2017.31.4418
dc.identifier.citedreferenceYata K, Srivanitchapoom C. The comparison of nasal irrigation outcome between 3% NaCl and 0.9% NaCl in adults majority with intermittent allergic rhinitis: a randomized double-blind study. Asian Pac J Allergy Immunol. 2021; 39 ( 1 ): 9 - 14. https://doi.org/10.12932/AP-140520-0844
dc.identifier.citedreferenceLi CL, Lin HC, Lin CY, Hsu TF. Effectiveness of hypertonic saline nasal irrigation for alleviating allergic rhinitis in children: a systematic review and meta-analysis. J Clin Med. 2019; 8 ( 1 ): 64. https://doi.org/10.3390/jcm8010064
dc.identifier.citedreferenceLi H, Sha Q, Zuo K, et al. Nasal saline irrigation facilitates control of allergic rhinitis by topical steroid in children. ORL J Otorhinolaryngol Relat Spec. 2009; 71 ( 1 ): 50 - 55. https://doi.org/10.1159/000178165
dc.identifier.citedreferenceGaravello W, Romagnoli M, Sordo L, Gaini RM, Di Berardino C, Angrisano A. Hypersaline nasal irrigation in children with symptomatic seasonal allergic rhinitis: a randomized study. Pediatr Allergy Immunol. 2003; 14 ( 2 ): 140 - 143. https://doi.org/10.1034/j.1399-3038.2003.00021.x
dc.identifier.citedreferenceGaravello W, Di Berardino F, Romagnoli M, Sambataro G, Gaini RM. Nasal rinsing with hypertonic solution: an adjunctive treatment for pediatric seasonal allergic rhinoconjunctivitis. Int Arch Allergy Immunol. 2005; 137 ( 4 ): 310 - 314. https://doi.org/10.1159/000086462
dc.identifier.citedreferenceMarchisio P, Varricchio A, Baggi E, et al. Hypertonic saline is more effective than normal saline in seasonal allergic rhinitis in children. Int J Immunopathol Pharmacol. 2012; 25 ( 3 ): 721 - 730. https://doi.org/10.1177/039463201202500318
dc.identifier.citedreferenceSatdhabudha A, Poachanukoon O. Efficacy of buffered hypertonic saline nasal irrigation in children with symptomatic allergic rhinitis: a randomized double-blind study. Int J Pediatr Otorhinolaryngol. 2012; 76 ( 4 ): 583 - 588. https://doi.org/10.1016/j.ijporl.2012.01.022
dc.identifier.citedreferenceChen JR, Jin L, Li XY. The effectiveness of nasal saline irrigation (seawater) in treatment of allergic rhinitis in children. Int J Pediatr Otorhinolaryngol. 2014; 78 ( 7 ): 1115 - 1118. https://doi.org/10.1016/j.ijporl.2014.04.026
dc.identifier.citedreferenceMalizia V, Fasola S, Ferrante G, et al. Efficacy of buffered hypertonic saline nasal irrigation for nasal symptoms in children with seasonal allergic rhinitis: a randomized controlled trial. Int Arch Allergy Immunol. 2017; 174 ( 2 ): 97 - 103. https://doi.org/10.1159/000481093
dc.identifier.citedreferenceJung M, Lee JY, Ryu G, et al. Beneficial effect of nasal saline irrigation in children with allergic rhinitis and asthma: a randomized clinical trial. Asian Pac J Allergy Immunol. 2020; 38 ( 4 ): 251 - 257. https://doi.org/10.12932/AP-070918-0403
dc.identifier.citedreferenceHermelingmeier KE, Weber RK, Hellmich M, Heubach CP, Mosges R. Nasal irrigation as an adjunctive treatment in allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2012; 26 ( 5 ): e119 - e125. https://doi.org/10.2500/ajra.2012.26.3787
dc.identifier.citedreferenceHead K, Snidvongs K, Glew S, et al. Saline irrigation for allergic rhinitis. Cochrane Database Syst Rev. 2018; 6: CD012597. https://doi.org/10.1002/14651858.CD012597.pub2
dc.identifier.citedreferenceWang Y, Jin L, Liu SX, Fan K, Qin ML, Yu SQ. Role of nasal saline irrigation in the treatment of allergic rhinitis in children and adults: a systematic analysis. Allergol Immunopathol (Madr). 2020; 48 ( 4 ): 360 - 367. https://doi.org/10.1016/j.aller.2020.01.002
dc.identifier.citedreferenceOzdemir O. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. Clin Exp Immunol. 2010; 160 ( 3 ): 295 - 304. https://doi.org/10.1111/j.1365-2249.2010.04109.x
dc.identifier.citedreferenceGuvenc IA, Muluk NB, Mutlu FS, et al. Do probiotics have a role in the treatment of allergic rhinitis? A comprehensive systematic review and meta-analysis. Am J Rhinol Allergy. 2016; 30 ( 5 ): 157 - 175. https://doi.org/10.2500/ajra.2016.30.4354
dc.identifier.citedreferenceZajac AE, Adams AS, Turner JH. A systematic review and meta-analysis of probiotics for the treatment of allergic rhinitis. Int Forum Allergy Rhinol. 2015; 5 ( 6 ): 524 - 532. https://doi.org/10.1002/alr.21492
dc.identifier.citedreferenceDu X, Wang L, Wu S, et al. Efficacy of probiotic supplementary therapy for asthma, allergic rhinitis, and wheeze: a meta-analysis of randomized controlled trials. Allergy Asthma Proc. 2019; 40 ( 4 ): 250 - 260. https://doi.org/10.2500/aap.2019.40.4227
dc.identifier.citedreferenceZuccotti G, Meneghin F, Aceti A, et al. Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 2015; 70 ( 11 ): 1356 - 1371. https://doi.org/10.1111/all.12700
dc.identifier.citedreferenceAnania C, Di Marino VP, Olivero F, et al. Treatment with a probiotic mixture containing Bifidobacterium animalis Subsp. Lactis BB12 and Enterococcus faecium L3 for the prevention of allergic rhinitis symptoms in children: a randomized controlled trial. Nutrients. 2021; 13 ( 4 ): 1315. https://doi.org/10.3390/nu13041315
dc.identifier.citedreferenceJalali MM, Soleimani R, Alavi Foumani A, Ganjeh Khosravi H. Add-on probiotics in patients with persistent allergic rhinitis: a randomized crossover clinical trial. Laryngoscope. 2019; 129 ( 8 ): 1744 - 1750. https://doi.org/10.1002/lary.27858
dc.identifier.citedreferenceSumadiono S, Satria CD, Mardhiah N, Susanti GI. Immunotherapy and probiotic treatment for allergic rhinitis in children. Paediatr Indones. 2018; 58 ( 6 ): 280 - 285.
dc.identifier.citedreferenceDennis-Wall JC, Culpepper T, Nieves Jr C, et al. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr. 2017; 105 ( 3 ): 758 - 767. https://doi.org/10.3945/ajcn.116.140012
dc.identifier.citedreferenceMiraglia Del Giudice M, Indolfi C, Capasso M, Maiello N, Decimo F, Ciprandi G. Bifidobacterium mixture (B longum BB536, B infantis M-63, B breve M-16V) treatment in children with seasonal allergic rhinitis and intermittent asthma. Ital J Pediatr. 2017; 43 ( 1 ): 25. https://doi.org/10.1186/s13052-017-0340-5
dc.identifier.citedreferenceBeard S. Rhinitis. Prim Care. 2014; 41 ( 1 ): 33 - 46. https://doi.org/10.1016/j.pop.2013.10.005
dc.identifier.citedreferenceNorth ML, Walker TJ, Steacy LM, et al. Add-on histamine receptor-3 antagonist for allergic rhinitis: a double blind randomized crossover trial using the environmental exposure unit. Allergy Asthma Clin Immunol. 2014; 10 ( 1 ): 33. https://doi.org/10.1186/1710-1492-10-33
dc.identifier.citedreferenceNathan RA, Finn Jr AF, LaForce C, et al. Comparison of cetirizine-pseudoephedrine and placebo in patients with seasonal allergic rhinitis and concomitant mild-to-moderate asthma: randomized, double-blind study. Ann Allergy Asthma Immunol. 2006; 97 ( 3 ): 389 - 396. https://doi.org/10.1016/S1081-1206(10)60806-X
dc.identifier.citedreferenceChervinsky P, Nayak A, Rooklin A, Danzig M. Efficacy and safety of desloratadine/pseudoephedrine tablet, 2.5/120 mg two times a day, versus individual components in the treatment of patients with seasonal allergic rhinitis. Allergy Asthma Proc. 2005; 26 ( 5 ): 391 - 396.
dc.identifier.citedreferenceMeltzer EO, Casale TB, Gold MS, et al. Efficacy and safety of clemastine-pseudoephedrine-acetaminophen versus pseudoephedrine-acetaminophen in the treatment of seasonal allergic rhinitis in a 1-day, placebo-controlled park study. Ann Allergy Asthma Immunol. 2003; 90 ( 1 ): 79 - 86. https://doi.org/10.1016/S1081-1206(10)63618-6
dc.identifier.citedreferenceMcFadden EA, Gungor A, Ng B, Mamikoglu B, Moinuddin R, Corey J. Loratadine/pseudoephedrine for nasal symptoms in seasonal allergic rhinitis: a double-blind, placebo-controlled study. Ear Nose Throat J. 2000; 79 ( 4 ): 254, 257-8, 260 passim.
dc.identifier.citedreferenceSerra HA, Alves O, Rizzo LF, Devoto FM, Ascierto H. Loratadine-pseudoephedrine in children with allergic rhinitis, a controlled double-blind trial. Br J Clin Pharmacol. 1998; 45 ( 2 ): 147 - 150. https://doi.org/10.1046/j.1365-2125.1998.00657.x
dc.identifier.citedreferenceCorren J, Harris AG, Aaronson D, et al. Efficacy and safety of loratadine plus pseudoephedrine in patients with seasonal allergic rhinitis and mild asthma. J Allergy Clin Immunol. 1997; 100 (6 pt 1): 781 - 788. https://doi.org/10.1016/s0091-6749(97)70274-4
dc.identifier.citedreferenceWilliams BO, Hull H, McSorley P, Frosolono MF, Sanders RL. Efficacy of acrivastine plus pseudoephedrine for symptomatic relief of seasonal allergic rhinitis due to mountain cedar. Ann Allergy Asthma Immunol. 1996; 76 ( 5 ): 432 - 438. https://doi.org/10.1016/S1081-1206(10)63460-6
dc.identifier.citedreferenceGrossman J, Bronsky EA, Lanier BQ, et al. Loratadine-pseudoephedrine combination versus placebo in patients with seasonal allergic rhinitis. Ann Allergy. 1989; 63 ( 4 ): 317 - 321.
dc.identifier.citedreferenceStorms WW, Bodman SF, Nathan RA, et al. SCH 434: a new antihistamine/decongestant for seasonal allergic rhinitis. J Allergy Clin Immunol. 1989; 83 ( 6 ): 1083 - 1090. https://doi.org/10.1016/0091-6749(89)90450-8
dc.identifier.citedreferenceChen YA, Chang KP, Lin YS, Hao SP. A randomized, double-blind, parallel-group study to compare the efficacy and safety of a once-daily loratadine-pseudoephedrine combination with that of a twice-daily loratadine-pseudoephedrine combination in the treatment of allergic rhinitis. Eur Arch Otorhinolaryngol. 2007; 264 ( 9 ): 1019 - 1025. https://doi.org/10.1007/s00405-007-0316-y
dc.identifier.citedreferenceChiang YC, Shyur SD, Chen TL, et al. A randomized controlled trial of cetirizine plus pseudoephedrine versus loratadine plus pseudoephedrine for perennial allergic rhinitis. Asian Pac J Allergy Immunol. 2006; 24 ( 2-3 ): 97 - 103.
dc.identifier.citedreferenceMoinuddin R, deTineo M, Maleckar B, Naclerio RM, Baroody FM. Comparison of the combinations of fexofenadine-pseudoephedrine and loratadine-montelukast in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004; 92 ( 1 ): 73 - 79. https://doi.org/10.1016/S1081-1206(10)61713-9
dc.identifier.citedreferenceSimola M, Boss I, Holopainen E, et al. Astemizole in combination with pseudoephedrine in the treatment of seasonal allergic rhinitis. Rhinology. 1996; 34 ( 1 ): 21 - 23.
dc.identifier.citedreferenceSegal AT, Falliers CJ, Grant JA, et al. Safety and efficacy of terfenadine/pseudoephedrine versus clemastine/phenylpropanolamine in the treatment of seasonal allergic rhinitis. Ann Allergy. 1993; 70 ( 5 ): 389 - 394.
dc.identifier.citedreferenceZieglmayer UP, Horak F, Toth J, Marks B, Berger UE, Burtin B. Efficacy and safety of an oral formulation of cetirizine and prolonged-release pseudoephedrine versus budesonide nasal spray in the management of nasal congestion in allergic rhinitis. Treat Respir Med. 2005; 4 ( 4 ): 283 - 287. https://doi.org/10.2165/00151829-200504040-00006
dc.identifier.citedreferenceNegrini AC, Troise C, Voltolini S, Horak F, Bachert C, Janssens M. Oral antihistamine/decongestant treatment compared with intranasal corticosteroids in seasonal allergic rhinitis. Clin Exp Allergy. 1995; 25 ( 1 ): 60 - 65. https://doi.org/10.1111/j.1365-2222.1995.tb01003.x
dc.identifier.citedreferenceStubner UP, Toth J, Marks B, Berger UE, Burtin B, Horak F. Efficacy and safety of an oral formulation of cetirizine and prolonged-release pseudoephedrine versus xylometazoline nasal spray in nasal congestion. Arzneimittelforschung. 2001; 51 ( 11 ): 904 - 910. https://doi.org/10.1055/s-0031-1300135
dc.identifier.citedreferenceKaiser HB, Banov CH, Berkowitz RR, et al. Comparative efficacy and safety of once-daily versus twice-daily loratadine-pseudoephedrine combinations versus placebo in seasonal allergic rhinitis. Am J Ther. 1998; 5 ( 4 ): 245 - 251. https://doi.org/10.1097/00045391-199807000-00007
dc.identifier.citedreferencePinar E, Eryigit O, Oncel S, Calli C, Yilmaz O, Yuksel H. Efficacy of nasal corticosteroids alone or combined with antihistamines or montelukast in treatment of allergic rhinitis. Auris Nasus Larynx. 2008; 35 ( 1 ): 61 - 66. https://doi.org/10.1016/j.anl.2007.06.004
dc.identifier.citedreferenceAnolik R, Mometasone Furoate Nasal Spray With Loratadine Study Group. Clinical benefits of combination treatment with mometasone furoate nasal spray and loratadine vs monotherapy with mometasone furoate in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2008; 100 ( 3 ): 264 - 271. https://doi.org/10.1016/S1081-1206(10)60452-8
dc.identifier.citedreferenceBarnes ML, Ward JH, Fardon TC, Lipworth BJ. Effects of levocetirizine as add-on therapy to fluticasone in seasonal allergic rhinitis. Clin Exp Allergy. 2006; 36 ( 5 ): 676 - 684. https://doi.org/10.1111/j.1365-2222.2006.02478.x
dc.identifier.citedreferenceDi Lorenzo G, Pacor ML, Pellitteri ME, et al. Randomized placebo-controlled trial comparing fluticasone aqueous nasal spray in mono-therapy, fluticasone plus cetirizine, fluticasone plus montelukast and cetirizine plus montelukast for seasonal allergic rhinitis. Clin Exp Allergy. 2004; 34 ( 2 ): 259 - 267. https://doi.org/10.1111/j.1365-2222.2004.01877.x
dc.identifier.citedreferenceRatner PH, van Bavel JH, Martin BG, et al. A comparison of the efficacy of fluticasone propionate aqueous nasal spray and loratadine, alone and in combination, for the treatment of seasonal allergic rhinitis. J Fam Pract. 1998; 47 ( 2 ): 118 - 125.
dc.identifier.citedreferenceSeresirikachorn K, Chitsuthipakorn W, Kanjanawasee D, Khattiyawittayakun L, Snidvongs K. Effects of H1 antihistamine addition to intranasal corticosteroid for allergic rhinitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2018; 8 ( 10 ): 1083 - 1092. https://doi.org/10.1002/alr.22166
dc.identifier.citedreferenceWang R, Zhang C. [Clinical evaluation of Montelukast plus Budesonide nasal spray and Desloratadine citrate disodium in treating moderate and severe persistent allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2015; 29 ( 23 ): 2041 - 2043.
dc.identifier.citedreferenceModgill V, Badyal DK, Verghese A. Efficacy and safety of montelukast add-on therapy in allergic rhinitis. Methods Find Exp Clin Pharmacol. 2010; 32 ( 9 ): 669 - 674. https://doi.org/10.1358/mf.2010.32.9.1533686
dc.identifier.citedreferenceBenitez HH, Arvizu VM, Gutiérrez DJ, et al., Budesonida nasal más zafirlukast vs budesonida nasal más loratadina- pseudoefedrina en el control de los síntomas de la rinitis y el asma [Nasal budesonide plus zafirlukast vs nasal budesonide plus loratadine-pseudoephedrine for controlling the symptoms of rhinitis and asthma]. Rev Alerg Mex. 2005; 52 ( 2 ): 90 - 95.
dc.identifier.citedreferenceLanier BQ, Abelson MB, Berger WE, et al. Comparison of the efficacy of combined fluticasone propionate and olopatadine versus combined fluticasone propionate and fexofenadine for the treatment of allergic rhinoconjunctivitis induced by conjunctival allergen challenge. Clin Ther. 2002; 24 ( 7 ): 1161 - 1174. https://doi.org/10.1016/s0149-2918(02)80027-3
dc.identifier.citedreferenceWilson A, Dempsey OJ, Sims EJ, Coutie WJ, Paterson MC, Lipworth BJ. Evaluation of treatment response in patients with seasonal allergic rhinitis using domiciliary nasal peak inspiratory flow. Clin Exp Allergy. 2000; 30 ( 6 ): 833 - 838. https://doi.org/10.1046/j.1365-2222.2000.00749.x
dc.identifier.citedreferenceJuniper EF, Kline PA, Hargreave FE, Dolovich J. Comparison of beclomethasone dipropionate aqueous nasal spray, astemizole, and the combination in the prophylactic treatment of ragweed pollen-induced rhinoconjunctivitis. J Allergy Clin Immunol. 1989; 83 ( 3 ): 627 - 633. https://doi.org/10.1016/0091-6749(89)90075-4
dc.identifier.citedreferenceKim MK, Lee SY, Park HS, et al. A randomized, multicenter, double-blind, phase III study to evaluate the efficacy on allergic rhinitis and safety of a combination therapy of Montelukast and Levocetirizine in patients with asthma and allergic rhinitis. Clin Ther. 2018; 40 ( 7 ): 1096 - 1107. e1. https://doi.org/10.1016/j.clinthera.2018.04.021
dc.identifier.citedreferenceLiu G, Zhou X, Chen J, Liu F. Oral Antihistamines alone vs in combination with leukotriene receptor antagonists for allergic rhinitis: a meta-analysis. Otolaryngol Head Neck Surg. 2018; 158 ( 3 ): 450 - 458. https://doi.org/10.1177/0194599817752624
dc.identifier.citedreferenceMahatme MS, Dakhale GN, Tadke K, Hiware SK, Dudhgaonkar SD, Wankhede S. Comparison of efficacy, safety, and cost-effectiveness of montelukast-levocetirizine and montelukast-fexofenadine in patients of allergic rhinitis: a randomized, double-blind clinical trial. Indian J Pharmacol. 2016; 48 ( 6 ): 649 - 653. https://doi.org/10.4103/0253-7613.194854
dc.identifier.citedreferenceLu S, Malice MP, Dass SB, Reiss TF. Clinical studies of combination montelukast and loratadine in patients with seasonal allergic rhinitis. J Asthma. 2009; 46 ( 9 ): 878 - 883. https://doi.org/10.3109/02770900903104540
dc.identifier.citedreferenceSaengpanich S, deTineo M, Naclerio RM, Baroody FM. Fluticasone nasal spray and the combination of loratadine and montelukast in seasonal allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2003; 129 ( 5 ): 557 - 562. https://doi.org/10.1001/archotol.129.5.557
dc.identifier.citedreferenceCingi C, Gunhan K, Gage-White L, Unlu H. Efficacy of leukotriene antagonists as concomitant therapy in allergic rhinitis. Laryngoscope. 2010; 120 ( 9 ): 1718 - 1723. https://doi.org/10.1002/lary.20941
dc.identifier.citedreferenceLi AM, Abdullah VJ, Tsen CS, et al. Leukotriene receptor antagonist in the treatment of childhood allergic rhinitis – a randomized placebo-controlled study. Pediatr Pulmonol. 2009; 44 ( 11 ): 1085 - 1092. https://doi.org/10.1002/ppul.21102
dc.identifier.citedreferenceCiebiada M, Barylski M, Gorska Ciebiada M. Nasal eosinophilia and serum soluble intercellular adhesion molecule 1 in patients with allergic rhinitis treated with montelukast alone or in combination with desloratadine or levocetirizine. Am J Rhinol Allergy. 2013; 27 ( 2 ): e58 - e62. https://doi.org/10.2500/ajra.2013.27.3881
dc.identifier.citedreferenceYamamoto H, Yamada T, Sakashita M, et al. Efficacy of prophylactic treatment with montelukast and montelukast plus add-on loratadine for seasonal allergic rhinitis. Allergy Asthma Proc. 2012; 33 ( 2 ): e17 - e22. https://doi.org/10.2500/aap.2012.33.3514
dc.identifier.citedreferenceWatanasomsiri A, Poachanukoon O, Vichyanond P. Efficacy of montelukast and loratadine as treatment for allergic rhinitis in children. Asian Pac J Allergy Immunol. 2008; 26 ( 2-3 ): 89 - 95.
dc.identifier.citedreferenceNayak AS, Philip G, Lu S, Malice MP, Reiss TF, Montelukast Fall Rhinitis Investigator Group. Efficacy and tolerability of montelukast alone or in combination with loratadine in seasonal allergic rhinitis: a multicenter, randomized, double-blind, placebo-controlled trial performed in the fall. Ann Allergy Asthma Immunol. 2002; 88 ( 6 ): 592 - 600. https://doi.org/10.1016/S1081-1206(10)61891-1
dc.identifier.citedreferenceMeltzer EO, Malmstrom K, Lu S, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol. 2000; 105 ( 5 ): 917 - 922. https://doi.org/10.1067/mai.2000.106040
dc.identifier.citedreferenceAndrews CP, Mohar D, Salhi Y, Tantry SK. Efficacy and safety of twice-daily and once-daily olopatadine-mometasone combination nasal spray for seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2020; 124 ( 2 ): 171 - 178.e2. https://doi.org/10.1016/j.anai.2019.11.007
dc.identifier.citedreferenceHampel FC, Pedinoff AJ, Jacobs RL, Caracta CF, Tantry SK. Olopatadine-mometasone combination nasal spray: evaluation of efficacy and safety in patients with seasonal allergic rhinitis. Allergy Asthma Proc. 2019; 40 ( 4 ): 261 - 272. https://doi.org/10.2500/aap.2019.40.4223
dc.identifier.citedreferenceGross GN, Berman G, Amar NJ, Caracta CF, Tantry SK. Efficacy and safety of olopatadine-mometasone combination nasal spray for the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2019; 122 ( 6 ): 630 - 638.e3. https://doi.org/10.1016/j.anai.2019.03.017
dc.identifier.citedreferencePatel P, Salapatek AM, Tantry SK. Effect of olopatadine-mometasone combination nasal spray on seasonal allergic rhinitis symptoms in an environmental exposure chamber study. Ann Allergy Asthma Immunol. 2019; 122 ( 2 ): 160 - 166.e1. https://doi.org/10.1016/j.anai.2018.10.011
dc.identifier.citedreferenceKortekaas Krohn I, Callebaut I, Alpizar YA, et al. MP29-02 reduces nasal hyperreactivity and nasal mediators in patients with house dust mite-allergic rhinitis. Allergy. 2018; 73 ( 5 ): 1084 - 1093. https://doi.org/10.1111/all.13349
dc.identifier.citedreferenceBerger W, Meltzer EO, Amar N, et al. Efficacy of MP-AzeFlu in children with seasonal allergic rhinitis: importance of paediatric symptom assessment. Pediatr Allergy Immunol. 2016; 27 ( 2 ): 126 - 133. https://doi.org/10.1111/pai.12540
dc.identifier.citedreferenceMeltzer E, Ratner P, Bachert C, et al. Clinically relevant effect of a new intranasal therapy (MP29-02) in allergic rhinitis assessed by responder analysis. Int Arch Allergy Immunol. 2013; 161 ( 4 ): 369 - 377. https://doi.org/10.1159/000351404
dc.identifier.citedreferencePrice D, Shah S, Bhatia S, et al. A new therapy (MP29-02) is effective for the long-term treatment of chronic rhinitis. J Investig Allergol Clin Immunol. 2013; 23 ( 7 ): 495 - 503.
dc.identifier.citedreferenceCarr W, Bernstein J, Lieberman P, et al. A novel intranasal therapy of azelastine with fluticasone for the treatment of allergic rhinitis. J Allergy Clin Immunol. 2012; 129 ( 5 ): 1282 - 1289.e10. https://doi.org/10.1016/j.jaci.2012.01.077
dc.identifier.citedreferenceMeltzer EO, LaForce C, Ratner P, Price D, Ginsberg D, Carr W. MP29-02 (a novel intranasal formulation of azelastine hydrochloride and fluticasone propionate) in the treatment of seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial of efficacy and safety. Allergy Asthma Proc. 2012; 33 ( 4 ): 324 - 332. https://doi.org/10.2500/aap.2012.33.3587
dc.identifier.citedreferenceSalapatek AM, Lee J, Patel D, et al. Solubilized nasal steroid (CDX-947) when combined in the same solution nasal spray with an antihistamine (CDX-313) provides improved, fast-acting symptom relief in patients with allergic rhinitis. Allergy Asthma Proc. 2011; 32 ( 3 ): 221 - 229. https://doi.org/10.2500/aap.2011.32.3444
dc.identifier.citedreferenceHampel FC, Ratner PH, Van Bavel J, et al. Double-blind, placebo-controlled study of azelastine and fluticasone in a single nasal spray delivery device. Ann Allergy Asthma Immunol. 2010; 105 ( 2 ): 168 - 173. https://doi.org/10.1016/j.anai.2010.06.008
dc.identifier.citedreferenceKilic G. Treatment of allergic rhinitis in children. Antiinflamm Antiallergy Agents Med Chem. 2008; 7: 38 - 44.
dc.identifier.citedreferenceLaForce CF, Carr W, Tilles SA, et al. Evaluation of olopatadine hydrochloride nasal spray,.6%, used in combination with an intranasal corticosteroid in seasonal allergic rhinitis. Allergy Asthma Proc. 2010; 31 ( 2 ): 132 - 140. https://doi.org/10.2500/aap.2010.31.3326
dc.identifier.citedreferenceRatner PH, Hampel F, Van Bavel J, et al. Combination therapy with azelastine hydrochloride nasal spray and fluticasone propionate nasal spray in the treatment of patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2008; 100 ( 1 ): 74 - 81. https://doi.org/10.1016/S1081-1206(10)60408-5
dc.identifier.citedreferenceIlyina NI, Edin AS, Astafieva NG, et al. Efficacy of a novel intranasal formulation of azelastine hydrochloride and fluticasone propionate, delivered in a single spray, for the treatment of seasonal allergic rhinitis: results from Russia. Int Arch Allergy Immunol. 2019; 178 ( 3 ): 255 - 263. https://doi.org/10.1159/000494507
dc.identifier.citedreferenceBerger W, Bousquet J, Fox AT, et al. MP-AzeFlu is more effective than fluticasone propionate for the treatment of allergic rhinitis in children. Allergy. 2016; 71 ( 8 ): 1219 - 1222. https://doi.org/10.1111/all.12903
dc.identifier.citedreferenceKlimek L, Bachert C, Stjarne P, et al. MP-AzeFlu provides rapid and effective allergic rhinitis control in real life: A pan-European study. Allergy Asthma Proc. 2016; 37 ( 5 ): 376 - 386. https://doi.org/10.2500/aap.2016.37.3979
dc.identifier.citedreferenceKlimek L, Bachert C, Mosges R, et al. Effectiveness of MP29-02 for the treatment of allergic rhinitis in real-life: results from a noninterventional study. Allergy Asthma Proc. 2015; 36 ( 1 ): 40 - 47. https://doi.org/10.2500/aap.2015.36.3823
dc.identifier.citedreferenceKlimek L, Poletti SC, Sperl A, et al. Olfaction in patients with allergic rhinitis: an indicator of successful MP-AzeFlu therapy. Int Forum Allergy Rhinol. 2017; 7 ( 3 ): 287 - 292. https://doi.org/10.1002/alr.21877
dc.identifier.citedreferenceDebbaneh PM, Bareiss AK, Wise SK, McCoul ED. Intranasal azelastine and fluticasone as combination therapy for allergic rhinitis: systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2019; 161 ( 3 ): 412 - 418. https://doi.org/10.1177/0194599819841883
dc.identifier.citedreferenceDu K, Qing H, Zheng M, Wang X, Zhang L. Intranasal antihistamine is superior to oral H1 antihistamine as an add-on therapy to intranasal corticosteroid for treating allergic rhinitis. Ann Allergy Asthma Immunol. 2020; 125 ( 5 ): 589 - 596.e3. https://doi.org/10.1016/j.anai.2020.06.038
dc.identifier.citedreferenceSeresirikachorn K, Mullol J, Limitlaohaphan K, Asvapoositkul V, Snidvongs K. Leukotriene receptor antagonist addition to intranasal steroid: systematic review and meta-analysis. Rhinology. 2021; 59 ( 1 ): 2 - 9. https://doi.org/10.4193/Rhin20.126
dc.identifier.citedreferenceChen H, Zhang L, Lou H, Wang Y, Cao F, Wang C. A randomized trial of comparing a combination of montelukast and budesonide with budesonide in allergic rhinitis. Laryngoscope. 2021; 131 ( 4 ): E1054 - E1061. https://doi.org/10.1002/lary.28433
dc.identifier.citedreferenceGoh BS, Ismail MI, Husain S. Quality of life assessment in patients with moderate to severe allergic rhinitis treated with montelukast and/or intranasal steroids: a randomised, double-blind, placebo-controlled study. J Laryngol Otol. 2014; 128 ( 3 ): 242 - 248. https://doi.org/10.1017/S002221511400036X
dc.identifier.citedreferenceEsteitie R, deTineo M, Naclerio RM, Baroody FM. Effect of the addition of montelukast to fluticasone propionate for the treatment of perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2010; 105 ( 2 ): 155 - 161. https://doi.org/10.1016/j.anai.2010.05.017
dc.identifier.citedreferenceFlorinescu-Gheorghe N-A, Popescu F, Alexandru DO. Treatment evaluation with mometasone furoate, alone or in combination with desloratadine/montelukast, in moderate severe allergic rhinitis. Acta Med Marisienis. 2014; 60: 106 - 108.
dc.identifier.citedreferenceHaenisch B, Walstab J, Herberhold S, et al. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010; 24 ( 6 ): 729 - 739. https://doi.org/10.1111/j.1472-8206.2009.00805.x
dc.identifier.citedreferenceKirtsreesakul V, Khanuengkitkong T, Ruttanaphol S. Does oxymetazoline increase the efficacy of nasal steroids in treating nasal polyposis? Am J Rhinol Allergy. 2016; 30 ( 3 ): 195 - 200. https://doi.org/10.2500/ajra.2016.30.4294
dc.identifier.citedreferenceMatreja PS, Gupta V, Kaur J, Singh S. Efficacy of fluticasona nd oxymetazoline as the treatment for allergic rhinitis. J Clin Diagnostic Res. 2012; 6: 4.
dc.identifier.citedreferenceMeltzer EO, Bernstein DI, Prenner BM, Berger WE, Shekar T, Teper AA. Mometasone furoate nasal spray plus oxymetazoline nasal spray: short-term efficacy and safety in seasonal allergic rhinitis. Am J Rhinol Allergy. 2013; 27 ( 2 ): 102 - 108. https://doi.org/10.2500/ajra.2013.27.3864
dc.identifier.citedreferenceRael EL, Ramey J, Lockey RF. Oxymetazoline hydrochloride combined with mometasone nasal spray for persistent nasal congestion (pilot study). World Allergy Organ J. 2011; 4 ( 3 ): 65 - 67. https://doi.org/10.1097/WOX.0b013e31820f8fae
dc.identifier.citedreferenceThongngarm T, Assanasen P, Pradubpongsa P, Tantilipikorn P. The effectiveness of oxymetazoline plus intranasal steroid in the treatment of chronic rhinitis: a randomised controlled trial. Asian Pac J Allergy Immunol. 2016; 34 ( 1 ): 30 - 37. https://doi.org/10.12932/AP0649.34.1.2016
dc.identifier.citedreferenceBaroody FM, Brown D, Gavanescu L, DeTineo M, Naclerio RM. Oxymetazoline adds to the effectiveness of fluticasone furoate in the treatment of perennial allergic rhinitis. J Allergy Clin Immunol. 2011; 127 ( 4 ): 927 - 934. https://doi.org/10.1016/j.jaci.2011.01.037
dc.identifier.citedreferenceKhattiyawittayakun L, Seresirikachorn K, Chitsuthipakorn W, Kanjanawasee D, Snidvongs K. Effects of decongestant addition to intranasal corticosteroid for chronic rhinitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2018; 8 ( 12 ): 1445 - 1453. https://doi.org/10.1002/alr.22193
dc.identifier.citedreferenceYap L, Pothula VB, Warner J, Akhtar S, Yates E. The root and development of otorhinolaryngology in traditional Chinese medicine. Eur Arch Otorhinolaryngol. 2009; 266 ( 9 ): 1353 - 1359. https://doi.org/10.1007/s00405-009-1041-5
dc.identifier.citedreferenceKaptchuk TJ. Acupuncture: theory, efficacy, and practice. Ann Intern Med. 2002; 136 ( 5 ): 374 - 383. https://doi.org/10.7326/0003-4819-136-5-200203050-00010
dc.identifier.citedreferenceYang XY, Shi GX, Li QQ, Zhang ZH, Xu Q, Liu CZ. Characterization of deqi sensation and acupuncture effect. Evid Based Complement Alternat Med. 2013; 2013: 319734. https://doi.org/10.1155/2013/319734
dc.identifier.citedreferencePetti FB, Liguori A, Ippoliti F. Study on cytokines IL-2, IL-6, IL-10 in patients of chronic allergic rhinitis treated with acupuncture. J Tradit Chin Med. 2002; 22 ( 2 ): 104 - 111.
dc.identifier.citedreferenceFeng S, Han M, Fan Y, et al. Acupuncture for the treatment of allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy. 2015; 29 ( 1 ): 57 - 62. https://doi.org/10.2500/ajra.2015.29.4116
dc.identifier.citedreferenceRoberts J, Huissoon A, Dretzke J, Wang D, Hyde C. A systematic review of the clinical effectiveness of acupuncture for allergic rhinitis. BMC Complement Altern Med. 2008; 8: 13. https://doi.org/10.1186/1472-6882-8-13
dc.identifier.citedreferenceLee MS, Pittler MH, Shin BC, Kim JI, Ernst E. Acupuncture for allergic rhinitis: a systematic review. Ann Allergy Asthma Immunol. 2009; 102 ( 4 ): 269 - 279; quiz 279-81, 307. https://doi.org/10.1016/S1081-1206(10)60330-4
dc.identifier.citedreferenceBrinkhaus B, Ortiz M, Witt CM, et al. Acupuncture in patients with seasonal allergic rhinitis: a randomized trial. Ann Intern Med. 2013; 158 ( 4 ): 225 - 234. https://doi.org/10.7326/0003-4819-158-4-201302190-00002
dc.identifier.citedreferenceWu AW, Gettelfinger JD, Ting JY, Mort C, Higgins TS. Alternative therapies for sinusitis and rhinitis: a systematic review utilizing a modified Delphi method. Int Forum Allergy Rhinol. 2020; 10 ( 4 ): 496 - 504. https://doi.org/10.1002/alr.22488
dc.identifier.citedreferenceYin Z, Geng G, Xu G, Zhao L, Liang F. Acupuncture methods for allergic rhinitis: a systematic review and bayesian meta-analysis of randomized controlled trials. Chin Med. 2020; 15: 109. https://doi.org/10.1186/s13020-020-00389-9
dc.identifier.citedreferenceTaw MB, Reddy WD, Omole FS, Seidman MD. Acupuncture and allergic rhinitis. Curr Opin Otolaryngol Head Neck Surg. 2015; 23 ( 3 ): 216 - 220. https://doi.org/10.1097/MOO.0000000000000161
dc.identifier.citedreferenceZhang CS, Yang AW, Zhang AL, et al. Ear-acupressure for allergic rhinitis: a systematic review. Clin Otolaryngol. 2010; 35 ( 1 ): 6 - 12. https://doi.org/10.1111/j.1749-4486.2009.02067.x
dc.identifier.citedreferenceLi XR, Zhang QX, Liu M, et al. Catgut implantation at acupoints for allergic rhinitis: a systematic review. Chin J Integr Med. 2014; 20 ( 3 ): 235 - 240. https://doi.org/10.1007/s11655-014-1748-z
dc.identifier.citedreferenceZhou F, Yan LJ, Yang GY, Liu JP. Acupoint herbal patching for allergic rhinitis: a systematic review and meta-analysis of randomised controlled trials. Clin Otolaryngol. 2015; 40 ( 6 ): 551 - 568. https://doi.org/10.1111/coa.12410
dc.identifier.citedreferenceFu Q, Zhang L, Liu Y, et al. Effectiveness of acupuncturing at the sphenopalatine ganglion acupoint alone for treatment of allergic rhinitis: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2019; 2019: 6478102. https://doi.org/10.1155/2019/6478102
dc.identifier.citedreferenceLi X. The mechanism analysis of treating nasal disease by sphenopalatine ganglion (acupoint “ZhiBi 3”) stimulation with acupuncture needle and an introduction to the relevant needling method. J Clin Otorhinolaryngol Head Neck Surg. 2011; 5: 193.
dc.identifier.citedreferenceLi XW, Tian ZP. A preliminary summary of the treatment on rhinitis puncturing sphenopalatine ganglion. Beijing J Chinese Med. 1990; 9: 36 - 38.
dc.identifier.citedreferenceZhang J, Zhang Y, Huang X, et al. Different acupuncture therapies for allergic rhinitis: overview of systematic reviews and network meta-analysis. Evid Based Complement Alternat Med. 2020; 2020: 8363027. https://doi.org/10.1155/2020/8363027
dc.identifier.citedreferenceWang LL. [ Characteristic of moxibustion and its warming-dredging effect ]. Zhongguo Zhen Jiu. 2011; 31 ( 10 ): 865 - 868.
dc.identifier.citedreferenceYuan T, Xiong J, Yang J, et al. The effectiveness and safety of thunder fire moxibustion for treating allergic rhinitis: a PRISMA compliant systematic review and meta-analysis. Evid Based Complement Alternat Med. 2020; 2020: 6760436. https://doi.org/10.1155/2020/6760436
dc.identifier.citedreferenceKacaniova M, Pavlicova S, Hascik P, et al. Microbial communities in bees, pollen and honey from Slovakia. Acta Microbiol Immunol Hung. 2009; 56 ( 3 ): 285 - 295. https://doi.org/10.1556/AMicr.56.2009.3.7
dc.identifier.citedreferenceDuddukuri GR, Kumar PS, Kumar VB, Athota RR. Immunosuppressive effect of honey on the induction of allergen-specific humoral antibody response in mice. Int Arch Allergy Immunol. 1997; 114 ( 4 ): 385 - 388. https://doi.org/10.1159/000237699
dc.identifier.citedreferenceIshikawa Y, Tokura T, Nakano N, et al. Inhibitory effect of honeybee-collected pollen on mast cell degranulation in vivo and in vitro. J Med Food. 2008; 11 ( 1 ): 14 - 20. https://doi.org/10.1089/jmf.2006.163
dc.identifier.citedreferenceIshikawa Y, Tokura T, Ushio H, et al. Lipid-soluble components of honeybee-collected pollen exert antiallergic effect by inhibiting IgE-mediated mast cell activation in vivo. Phytother Res. 2009; 23 ( 11 ): 1581 - 1586. https://doi.org/10.1002/ptr.2824
dc.identifier.citedreferenceSubrahmanyam M. A prospective randomised clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine. Burns. 1998; 24 ( 2 ): 157 - 161. https://doi.org/10.1016/s0305-4179(97)00113-7
dc.identifier.citedreferenceAl-Waili NS, Boni NS. Natural honey lowers plasma prostaglandin concentrations in normal individuals. J Med Food. 2003; 6 ( 2 ): 129 - 133. https://doi.org/10.1089/109662003322233530
dc.identifier.citedreferenceAsha’ari ZA, Ahmad MZ, Jihan WS, Che CM, Leman I. Ingestion of honey improves the symptoms of allergic rhinitis: evidence from a randomized placebo-controlled trial in the East coast of Peninsular Malaysia. Ann Saudi Med. 2013; 33 ( 5 ): 469 - 475. https://doi.org/10.5144/0256-4947.2013.469
dc.identifier.citedreferenceSaarinen K, Jantunen J, Haahtela T. Birch pollen honey for birch pollen allergy – a randomized controlled pilot study. Int Arch Allergy Immunol. 2011; 155 ( 2 ): 160 - 166. https://doi.org/10.1159/000319821
dc.identifier.citedreferenceRajan TV, Tennen H, Lindquist RL, Cohen L, Clive J. Effect of ingestion of honey on symptoms of rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2002; 88 ( 2 ): 198 - 203. https://doi.org/10.1016/S1081-1206(10)61996-5
dc.identifier.citedreferenceBogdanov S, Jurendic T, Sieber R, Gallmann P. Honey for nutrition and health: a review. J Am Coll Nutr. 2008; 27 ( 6 ): 677 - 689. https://doi.org/10.1080/07315724.2008.10719745
dc.identifier.citedreferencePassalacqua G, Bousquet PJ, Carlsen KH, et al. ARIA update: I – systematic review of complementary and alternative medicine for rhinitis and asthma. J Allergy Clin Immunol. 2006; 117 ( 5 ): 1054 - 1062. https://doi.org/10.1016/j.jaci.2005.12.1308
dc.identifier.citedreferenceEnomoto T, Nagasako-Akazome Y, Kanda T, Ikeda M, Dake Y. Clinical effects of apple polyphenols on persistent allergic rhinitis: a randomized double-blind placebo-controlled parallel arm study. J Investig Allergol Clin Immunol. 2006; 16 ( 5 ): 283 - 289.
dc.identifier.citedreferenceMatkovic Z, Zivkovic V, Korica M, Plavec D, Pecanic S, Tudoric N. Efficacy and safety of Astragalus membranaceus in the treatment of patients with seasonal allergic rhinitis. Phytother Res. 2010; 24 ( 2 ): 175 - 181. https://doi.org/10.1002/ptr.2877
dc.identifier.citedreferenceD’Souza P, Amit A, Saxena VS, Bagchi D, Bagchi M, Stohs SJ. Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis. Drugs Exp Clin Res. 2004; 30 ( 3 ): 99 - 109.
dc.identifier.citedreferencePratibha N, Saxena VS, Amit A, D’Souza P, Bagchi M, Bagchi D. Anti-inflammatory activities of Aller-7, a novel polyherbal formulation for allergic rhinitis. Int J Tissue React. 2004; 26 ( 1-2 ): 43 - 51.
dc.identifier.citedreferenceAmit A, Saxena VS, Pratibha N, et al. Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis. Drugs Exp Clin Res. 2003; 29 ( 3 ): 107 - 115.
dc.identifier.citedreferenceGuo R, Pittler MH, Ernst E. Herbal medicines for the treatment of allergic rhinitis: a systematic review. Ann Allergy Asthma Immunol. 2007; 99 ( 6 ): 483 - 495. https://doi.org/10.1016/S1081-1206(10)60375-4
dc.identifier.citedreferenceSuzuki M, Yoshino K, Maeda-Yamamoto M, Miyase T, Sano M. Inhibitory effects of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate on mouse type IV allergy. J Agric Food Chem. 2000; 48 ( 11 ): 5649 - 5653. https://doi.org/10.1021/jf000313d
dc.identifier.citedreferenceMaeda-Yamamoto M, Inagaki N, Kitaura J, et al. O-methylated catechins from tea leaves inhibit multiple protein kinases in mast cells. J Immunol. 2004; 172 ( 7 ): 4486 - 4492. https://doi.org/10.4049/jimmunol.172.7.4486
dc.identifier.citedreferenceMasuda S, Maeda-Yamamoto M, Usui S, Fujisawa T. ’Benifuuki’ green tea containing o-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double-blind, placebo-controlled trial. Allergol Int. 2014; 63 ( 2 ): 211 - 217. https://doi.org/10.2332/allergolint.13-OA-0620
dc.identifier.citedreferenceHu G, Walls RS, Bass D, et al. The Chinese herbal formulation biminne in management of perennial allergic rhinitis: a randomized, double-blind, placebo-controlled, 12-week clinical trial. Ann Allergy Asthma Immunol. 2002; 88 ( 5 ): 478 - 487. https://doi.org/10.1016/s1081-1206(10)62386-1
dc.identifier.citedreferenceShimoda H, Tanaka J, Yamada E, Morikawa T, Kasajima N, Yoshikawa M. Anti type I allergic property of Japanese butterbur extract and its mast cell degranulation inhibitory ingredients. J Agric Food Chem. 2006; 54 ( 8 ): 2915 - 2920. https://doi.org/10.1021/jf052994o
dc.identifier.citedreferenceRussell LC, Burchiel KJ. Neurophysiological effects of capsaicin. Brain Res. 1984; 320 ( 2-3 ): 165 - 176. https://doi.org/10.1016/0165-0173(84)90005-5
dc.identifier.citedreferencePhilip G, Baroody FM, Proud D, Naclerio RM, Togias AG. The human nasal response to capsaicin. J Allergy Clin Immunol. 1994; 94 (6 pt 1): 1035 - 1045. https://doi.org/10.1016/0091-6749(94)90122-8
dc.identifier.citedreferenceCheng J, Yang XN, Liu X, Zhang SP. Capsaicin for allergic rhinitis in adults. Cochrane Database Syst Rev. 2006;( 2 ): CD004460. https://doi.org/10.1002/14651858.CD004460.pub2
dc.identifier.citedreferenceFujiwara T, Nishida N, Nota J, et al. Efficacy of chlorophyll c2 for seasonal allergic rhinitis: single-center double-blind randomized control trial. Eur Arch Otorhinolaryngol. 2016; 273 ( 12 ): 4289 - 4294. https://doi.org/10.1007/s00405-016-4133-z
dc.identifier.citedreferenceCorren J, Lemay M, Lin Y, Rozga L, Randolph RK. Clinical and biochemical effects of a combination botanical product (ClearGuard) for allergy: a pilot randomized double-blind placebo-controlled trial. Nutr J. 2008; 7: 20. https://doi.org/10.1186/1475-2891-7-20
dc.identifier.citedreferenceTurpeinen AM, Ylonen N, von Willebrand E, Basu S, Aro A. Immunological and metabolic effects of cis-9, trans-11-conjugated linoleic acid in subjects with birch pollen allergy. Br J Nutr. 2008; 100 ( 1 ): 112 - 119. https://doi.org/10.1017/S0007114507886326
dc.identifier.citedreferenceKrespi YP, Wilson KA, Kizhner V. Laser ablation of posterior nasal nerves for rhinitis. Am J Otolaryngol. 2020; 41 ( 3 ): 102396. https://doi.org/10.1016/j.amjoto.2020.102396
dc.identifier.citedreferenceBernstein DI, Bernstein CK, Deng C, et al. Evaluation of the clinical efficacy and safety of grapeseed extract in the treatment of fall seasonal allergic rhinitis: a pilot study. Ann Allergy Asthma Immunol. 2002; 88 ( 3 ): 272 - 278. https://doi.org/10.1016/S1081-1206(10)62008-X
dc.identifier.citedreferenceHirano T, Kawai M, Arimitsu J, et al. Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis. Allergol Int. 2009; 58 ( 3 ): 373 - 382. https://doi.org/10.2332/allergolint.08-OA-0070
dc.identifier.citedreferenceKawai M, Hirano T, Arimitsu J, et al. Effect of enzymatically modified isoquercitrin, a flavonoid, on symptoms of Japanese cedar pollinosis: a randomized double-blind placebo-controlled trial. Int Arch Allergy Immunol. 2009; 149 ( 4 ): 359 - 368. https://doi.org/10.1159/000205582
dc.identifier.citedreferenceYamprasert R, Chanvimalueng W, Mukkasombut N, Itharat A. Ginger extract versus Loratadine in the treatment of allergic rhinitis: a randomized controlled trial. BMC Complement Med Ther. 2020; 20 ( 1 ): 119. https://doi.org/10.1186/s12906-020-2875-z
dc.identifier.citedreferenceHewlings S, Kalman DS. Evaluating the impacts of methylsulfonylmethane on allergic rhinitis after a standard allergen challenge: randomized double-blind exploratory study. JMIR Res Protoc. 2018; 7 ( 11 ): e11139. https://doi.org/10.2196/11139
dc.identifier.citedreferenceChakravarty N. Inhibition of histamine release from mast cells by nigellone. Ann Allergy. 1993; 70 ( 3 ): 237 - 242.
dc.identifier.citedreferenceEl Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol. 2006; 6 ( 7 ): 1135 - 1142. https://doi.org/10.1016/j.intimp.2006.02.004
dc.identifier.citedreferenceKalus U, Pruss A, Bystron J, et al. Effect of Nigella sativa (black seed) on subjective feeling in patients with allergic diseases. Phytother Res. 2003; 17 ( 10 ): 1209 - 1214. https://doi.org/10.1002/ptr.1356
dc.identifier.citedreferenceNikakhlagh S, Rahim F, Aryani FH, Syahpoush A, Brougerdnya MG, Saki N. Herbal treatment of allergic rhinitis: the use of Nigella sativa. Am J Otolaryngol. 2011; 32 ( 5 ): 402 - 407. https://doi.org/10.1016/j.amjoto.2010.07.019
dc.identifier.citedreferenceAlsamarai AM, Abdulsatar M, Ahmed Alobaidi AH. Evaluation of topical black seed oil in the treatment of allergic rhinitis. Antiinflamm Antiallergy Agents Med Chem. 2014; 13 ( 1 ): 75 - 82. https://doi.org/10.2174/18715230113129990014
dc.identifier.citedreferenceRotondo S, Rajtar G, Manarini S, et al. Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. Br J Pharmacol. 1998; 123 ( 8 ): 1691 - 1699. https://doi.org/10.1038/sj.bjp.0701784
dc.identifier.citedreferenceVarilek GW, Yang F, Lee EY, et al. Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J Nutr. 2001; 131 ( 7 ): 2034 - 2039. https://doi.org/10.1093/jn/131.7.2034
dc.identifier.citedreferenceYang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr. 1998; 128 ( 12 ): 2334 - 2340. https://doi.org/10.1093/jn/128.12.2334
dc.identifier.citedreferenceMakino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res. 2003; 17 ( 3 ): 240 - 243. https://doi.org/10.1002/ptr.1115
dc.identifier.citedreferenceTakano H, Osakabe N, Sanbongi C, et al. Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med (Maywood). 2004; 229 ( 3 ): 247 - 254. https://doi.org/10.1177/153537020422900305
dc.identifier.citedreferenceWassenberg J, Nutten S, Audran R, et al. Effect of Lactobacillus paracasei ST11 on a nasal provocation test with grass pollen in allergic rhinitis. Clin Exp Allergy. 2011; 41 ( 4 ): 565 - 573. https://doi.org/10.1111/j.1365-2222.2011.03695.x
dc.identifier.citedreferencePerrin Y, Nutten S, Audran R, et al. Comparison of two oral probiotic preparations in a randomized crossover trial highlights a potentially beneficial effect of Lactobacillus paracasei NCC2461 in patients with allergic rhinitis. Clin Transl Allergy. 2014; 4 ( 1 ): 1. https://doi.org/10.1186/2045-7022-4-1
dc.identifier.citedreferenceLenon GB, Xue CC, Story DF, Thien FC, McPhee S, Li CG. Inhibition of release of inflammatory mediators in primary and cultured cells by a Chinese herbal medicine formula for allergic rhinitis. Chin Med. 2007; 2: 2. https://doi.org/10.1186/1749-8546-2-2
dc.identifier.citedreferenceLenon GB, Li CG, Xue CC, Thien FC, Story DF. Inhibition of release of vasoactive and inflammatory mediators in airway and vascular tissues and macrophages by a chinese herbal medicine formula for allergic rhinitis. Evid Based Complement Alternat Med. 2007; 4 ( 2 ): 209 - 217. https://doi.org/10.1093/ecam/nel083
dc.identifier.citedreferenceXue CC, Thien FC, Zhang JJ, Da Costa C, Li CG. Treatment for seasonal allergic rhinitis by Chinese herbal medicine: a randomized placebo controlled trial. Altern Ther Health Med. 2003; 9 ( 5 ): 80 - 87.
dc.identifier.citedreferenceMao TK, Van de Water J, Gershwin ME. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food. 2005; 8 ( 1 ): 27 - 30. https://doi.org/10.1089/jmf.2005.8.27
dc.identifier.citedreferenceKarkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med. 2011; 2011: 531053. https://doi.org/10.1093/ecam/nen058
dc.identifier.citedreferenceCingi C, Conk-Dalay M, Cakli H, Bal C. The effects of spirulina on allergic rhinitis. Eur Arch Otorhinolaryngol. 2008; 265 ( 10 ): 1219 - 1223. https://doi.org/10.1007/s00405-008-0642-8
dc.identifier.citedreferenceIshikura Y, Suwa Y, Okada T. Anti-allergic effects of Rubus suavissimus extract. Japanese J Inflamm. 1995; 15: 167 - 173.
dc.identifier.citedreferenceYonekura S, Okamoto Y, Yamasaki K, et al. A randomized, double-blind, placebo-controlled study of ten-cha (Rubus suavissimus) on house dust mite allergic rhinitis. Auris Nasus Larynx. 2011; 38 ( 5 ): 600 - 607. https://doi.org/10.1016/j.anl.2010.11.017
dc.identifier.citedreferenceDas AK, Mizuguchi H, Kodama M, et al. Sho-seiryu-to suppresses histamine signaling at the transcriptional level in TDI-sensitized nasal allergy model rats. Allergol Int. 2009; 58 ( 1 ): 81 - 88. https://doi.org/10.2332/allergolint.O-07-526
dc.identifier.citedreferenceBaba S. Double-blind clinical trial of Sho-seiryu-to (TJ-19) for perennial allergic rhinitis. Pract Otol. 1995; 88: 389 - 405.
dc.identifier.citedreferenceBadar VA, Thawani VR, Wakode PT, et al. Efficacy of Tinospora cordifolia in allergic rhinitis. J Ethnopharmacol. 2005; 96 ( 3 ): 445 - 449. https://doi.org/10.1016/j.jep.2004.09.034
dc.identifier.citedreferenceYoshimura M, Enomoto T, Dake Y, et al. An evaluation of the clinical efficacy of tomato extract for perennial allergic rhinitis. Allergol Int. 2007; 56 ( 3 ): 225 - 230. https://doi.org/10.2332/allergolint.O-06-443
dc.identifier.citedreferenceRoschek Jr B, Fink RC, McMichael M, Alberte RS. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytother Res. 2009; 23 ( 7 ): 920 - 926. https://doi.org/10.1002/ptr.2763
dc.identifier.citedreferenceMittman P. Randomized, double-blind study of freeze-dried Urtica dioica in the treatment of allergic rhinitis. Planta Med. 1990; 56 ( 1 ): 44 - 47. https://doi.org/10.1055/s-2006-960881
dc.identifier.citedreferencePodoshin L, Gertner R, Fradis M. Treatment of perennial allergic rhinitis with ascorbic acid solution. Ear Nose Throat J. 1991; 70 ( 1 ): 54 - 55.
dc.identifier.citedreferenceShahar E, Hassoun G, Pollack S. Effect of vitamin E supplementation on the regular treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004; 92 ( 6 ): 654 - 658. https://doi.org/10.1016/S1081-1206(10)61432-9
dc.identifier.citedreferenceMontano Velazquez BB, Jauregui-Renaud K, Banuelos Arias Adel C, et al. Vitamin E effects on nasal symptoms and serum specific IgE levels in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2006; 96 ( 1 ): 45 - 50. https://doi.org/10.1016/s1081-1206(10)61039-3
dc.identifier.citedreferenceCheng L, Chen J, Fu Q, et al. Chinese Society of Allergy Guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2018; 10 ( 4 ): 300 - 353. https://doi.org/10.4168/aair.2018.10.4.300
dc.identifier.citedreferenceChen S, Guo SN, Marmori F, et al. Clinical Practice Guideline for allergic rhinitis treatment with acupuncture. Chin J Integr Med. 2021; 27 ( 2 ): 83 - 90. https://doi.org/10.1007/s11655-020-3161-0
dc.identifier.citedreferenceFjermedal O, Saunte C, Pedersen S. Septoplasty and/or submucous resection? 5 years nasal septum operations. J Laryngol Otol. 1988; 102 ( 9 ): 796 - 798. https://doi.org/10.1017/s0022215100106486
dc.identifier.citedreferenceKaratzanis AD, Fragiadakis G, Moshandrea J, Zenk J, Iro H, Velegrakis GA. Septoplasty outcome in patients with and without allergic rhinitis. Rhinology. 2009; 47 ( 4 ): 444 - 449. https://doi.org/10.4193/Rhin08.126
dc.identifier.citedreferenceMondina M, Marro M, Maurice S, Stoll D, de Gabory L. Assessment of nasal septoplasty using NOSE and RhinoQoL questionnaires. Eur Arch Otorhinolaryngol. 2012; 269 ( 10 ): 2189 - 2195. https://doi.org/10.1007/s00405-011-1916-0
dc.identifier.citedreferenceStoksted P, Gutierrez C. The nasal passage following rhinoplastic surgery. J Laryngol Otol. 1983; 97 ( 1 ): 49 - 54. https://doi.org/10.1017/s0022215100093798
dc.identifier.citedreferenceStewart MG, Smith TL, Weaver EM, et al. Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness (NOSE) study. Otolaryngol Head Neck Surg. 2004; 130 ( 3 ): 283 - 290. https://doi.org/10.1016/j.otohns.2003.12.004
dc.identifier.citedreferenceBugten V, Nilsen AH, Thorstensen WM, Moxness MH, Amundsen MF, Nordgard S. Quality of life and symptoms before and after nasal septoplasty compared with healthy individuals. BMC Ear Nose Throat Disord. 2016; 16: 13. https://doi.org/10.1186/s12901-016-0031-7
dc.identifier.citedreferenceManteghi A, Din H, Bundogji N, Leuin SC. Pediatric septoplasty and functional septorhinoplasty: a quality of life outcome study. Int J Pediatr Otorhinolaryngol. 2018; 111: 16 - 20. https://doi.org/10.1016/j.ijporl.2018.05.016
dc.identifier.citedreferenceSokoya M, Gonzalez JR, Winkler AA. Effect of allergic rhinitis on nasal obstruction outcomes after functional open septorhinoplasty. Am J Otolaryngol. 2018; 39 ( 3 ): 303 - 306. https://doi.org/10.1016/j.amjoto.2018.03.014
dc.identifier.citedreferenceKokubo LCP, Carvalho TBO, Fornazieri MA, Gomes EMC, Alves CMF, Sampaio ALL. Effects of septorhinoplasty on smell perception. Eur Arch Otorhinolaryngol. 2019; 276 ( 4 ): 1247 - 1250. https://doi.org/10.1007/s00405-019-05356-1
dc.identifier.citedreferenceGerecci D, Casanueva FJ, Mace JC, et al. Nasal obstruction symptom evaluation (NOSE) score outcomes after septorhinoplasty. Laryngoscope. 2019; 129 ( 4 ): 841 - 846. https://doi.org/10.1002/lary.27578
dc.identifier.citedreferenceKim SD, Jung DW, Lee JW, Park JH, Mun SJ, Cho KS. Relationship between allergic rhinitis and nasal surgery success in patients with obstructive sleep apnea. Am J Otolaryngol. 2021; 42 ( 6 ): 103079. https://doi.org/10.1016/j.amjoto.2021.103079
dc.identifier.citedreferenceGhosh SK, Dutta M, Haldar D. Role of bilateral inferior turbinoplasty as an adjunct to septoplasty in improving nasal obstruction and subjective performance in patients with deviated nasal septum associated with allergic rhinitis: an interventional, prospective study. Ear Nose Throat J. 2021: 1455613211015440. https://doi.org/10.1177/01455613211015440
dc.identifier.citedreferenceTopal O, Celik SB, Erbek S, Erbek SS. Risk of nasal septal perforation following septoplasty in patients with allergic rhinitis. Eur Arch Otorhinolaryngol. 2011; 268 ( 2 ): 231 - 233. https://doi.org/10.1007/s00405-010-1323-y
dc.identifier.citedreferenceEren E, Balci MK, Islek A. Analysis of patient- and procedure-related risk factors for nasal septal perforations following septoplasty. Eur Arch Otorhinolaryngol. 2022; 279 ( 3 ): 1357 - 1361. https://doi.org/10.1007/s00405-021-06887-2
dc.identifier.citedreferenceKim YH, Kim BJ, Bang KH, Hwang Y, Jang TY. Septoplasty improves life quality related to allergy in patients with septal deviation and allergic rhinitis. Otolaryngol Head Neck Surg. 2011; 145 ( 6 ): 910 - 914. https://doi.org/10.1177/0194599811424119
dc.identifier.citedreferenceChhabra N, Houser SM. The surgical management of allergic rhinitis. Otolaryngol Clin North Am. 2011; 44 ( 3 ): 779 - 795, xi. https://doi.org/10.1016/j.otc.2011.03.007
dc.identifier.citedreferenceChhabra N, Houser SM. Surgery for allergic rhinitis. Int Forum Allergy Rhinol. 2014; 4 (suppl 2): S79 - S83. https://doi.org/10.1002/alr.21387
dc.identifier.citedreferenceAksoy F, Yildirim YS, Veyseller B, Ozturan O, Demirhan H. Midterm outcomes of outfracture of the inferior turbinate. Otolaryngol Head Neck Surg. 2010; 143 ( 4 ): 579 - 584. https://doi.org/10.1016/j.otohns.2010.06.915
dc.identifier.citedreferenceMori S, Fujieda S, Igarashi M, Fan GK, Saito H. Submucous turbinectomy decreases not only nasal stiffness but also sneezing and rhinorrhea in patients with perennial allergic rhinitis. Clin Exp Allergy. 1999; 29 ( 11 ): 1542 - 1548. https://doi.org/10.1046/j.1365-2222.1999.00645.x
dc.identifier.citedreferenceKaymakci M, Gur OE, Ozdem C. Nasal obstruction: comparison of radiofrequency with lateral displacement of the inferior turbinate and radiofrequency alone. J Pak Med Assoc. 2014; 64 ( 1 ): 33 - 37.
dc.identifier.citedreferenceAssanasen P, Banhiran W, Tantilipikorn P, Pinkaew B. Combined radiofrequency volumetric tissue reduction and lateral outfracture of hypertrophic inferior turbinate in the treatment of chronic rhinitis: short-term and long-term outcome. Int Forum Allergy Rhinol. 2014; 4 ( 4 ): 339 - 344. https://doi.org/10.1002/alr.21278
dc.identifier.citedreferenceLi KK, Powell NB, Riley RW, Troell RJ, Guilleminault C. Radiofrequency volumetric tissue reduction for treatment of turbinate hypertrophy: a pilot study. Otolaryngol Head Neck Surg. 1998; 119 ( 6 ): 569 - 573. https://doi.org/10.1016/S0194-5998(98)70013-0
dc.identifier.citedreferencePassali D, Lauriello M, Anselmi M, Bellussi L. Treatment of hypertrophy of the inferior turbinate: long-term results in 382 patients randomly assigned to therapy. Ann Otol Rhinol Laryngol. 1999; 108 ( 6 ): 569 - 575. https://doi.org/10.1177/000348949910800608
dc.identifier.citedreferenceZagólski O. Skuteczność mukotomii przy uzyciu pesety bipolarnej w leczeniu spływania do gardła u chorych z przewlekłym niezytem nosa–doniesienie wstepne [Effectiveness of bipolar coagulation in treatment of post-nasal drip in patients with chronic rhinitis–preliminary report]. Przegl Lek. 2007; 64 ( 1 ): 9 - 11.
dc.identifier.citedreferenceTani T, Seno S, Hanamitsu M, Shimizu T. [ Clinical effectiveness of coblation-assisted inferior turbinoplasty ]. Arerugi. 2008; 57 ( 8 ): 1053 - 1060.
dc.identifier.citedreferenceLiu CM, Tan CD, Lee FP, Lin KN, Huang HM. Microdebrider-assisted versus radiofrequency-assisted inferior turbinoplasty. Laryngoscope. 2009; 119 ( 2 ): 414 - 418. https://doi.org/10.1002/lary.20088
dc.identifier.citedreferenceHytonen ML, Back LJ, Malmivaara AV, Roine RP. Radiofrequency thermal ablation for patients with nasal symptoms: a systematic review of effectiveness and complications. Eur Arch Otorhinolaryngol. 2009; 266 ( 8 ): 1257 - 1266. https://doi.org/10.1007/s00405-009-0914-y
dc.identifier.citedreferenceIwasaki A, Tokano H, Kamiyama R, Suzuki Y, Kitamura K. A 24-month-follow-up study of argon plasma coagulation of the inferior turbinate in patients with perennial nasal allergy. J Med Dent Sci. 2010; 57 ( 1 ): 11 - 15.
dc.identifier.citedreferenceZagolski O. Factors affecting outcome of inferior turbinate mucotomy in treatment of postnasal drip syndrome. Am J Rhinol Allergy. 2010; 24 ( 6 ): 459 - 463. https://doi.org/10.2500/ajra.2010.24.3524
dc.identifier.citedreferenceLin HC, Lin PW, Friedman M, et al. Long-term results of radiofrequency turbinoplasty for allergic rhinitis refractory to medical therapy. Arch Otolaryngol Head Neck Surg. 2010; 136 ( 9 ): 892 - 895. https://doi.org/10.1001/archoto.2010.135
dc.identifier.citedreferenceSimeon R, Soufflet B, Souchal Delacour I. Coblation turbinate reduction in childhood allergic rhinitis. Eur Ann Otorhinolaryngol Head Neck Dis. 2010; 127 ( 2 ): 77 - 82. https://doi.org/10.1016/j.anorl.2010.04.004
dc.identifier.citedreferenceGunhan K, Unlu H, Yuceturk AV, Songu M. Intranasal steroids or radiofrequency turbinoplasty in persistent allergic rhinitis: effects on quality of life and objective parameters. Eur Arch Otorhinolaryngol. 2011; 268 ( 6 ): 845 - 850. https://doi.org/10.1007/s00405-010-1462-1
dc.identifier.citedreferenceDi Rienzo Businco L, Di Rienzo Businco A, Ventura L, Laurino S, Lauriello M. Turbinoplasty with quantic molecular resonance in the treatment of persistent moderate-severe allergic rhinitis: Comparative analysis of efficacy. Am J Rhinol Allergy. 2014; 28 ( 2 ): 164 - 168. https://doi.org/10.2500/ajra.2014.28.3990
dc.identifier.citedreferenceGarzaro M, Pezzoli M, Pecorari G, Landolfo V, Defilippi S, Giordano C. Radiofrequency inferior turbinate reduction: an evaluation of olfactory and respiratory function. Otolaryngol Head Neck Surg. 2010; 143 ( 3 ): 348 - 352. https://doi.org/10.1016/j.otohns.2010.06.908
dc.identifier.citedreferenceBanhiran W, Tantilipikorn P, Metheetrairut C, Assanasen P, Bunnag C. Quality of life in patients with chronic rhinitis after radiofrequency inferior turbinate reduction. J Med Assoc Thai. 2010; 93 ( 8 ): 950 - 960.
dc.identifier.citedreferenceDeenadayal DS, Kumar MN, Sudhakshin P, Hameed S. Radiofrequency reduction of inferior turbinates in allergic and non allergic rhinitis. Indian J Otolaryngol Head Neck Surg. 2014; 66 (suppl 1): 231 - 236. https://doi.org/10.1007/s12070-011-0445-x
dc.identifier.citedreferenceUngkhara G, Purpermpulsiri P. Acoustic rhinometry evaluation in allergic rhinitis patients before and after turbinate radiofrequency ablation. J Med Assoc Thai. 2011; 94 ( 2 ): 200 - 204.
dc.identifier.citedreferenceParida PK, Santhosh K, Ganesan S, Surianarayanan G, Saxena SK. The efficacy of radiofrequency volumetric tissue reduction of hypertrophied inferior turbinate in allergic rhinitis. Indian J Med Sci. 2011; 65 ( 7 ): 269 - 77.
dc.identifier.citedreferenceLavinsky-Wolff M, Camargo Jr HL, Barone CR, et al. Effect of turbinate surgery in rhinoseptoplasty on quality-of-life and acoustic rhinometry outcomes: a randomized clinical trial. Laryngoscope. 2013; 123 ( 1 ): 82 - 89. https://doi.org/10.1002/lary.23628
dc.identifier.citedreferenceGarzaro M, Pezzoli M, Landolfo V, Defilippi S, Giordano C, Pecorari G. Radiofrequency inferior turbinate reduction: long-term olfactory and functional outcomes. Otolaryngol Head Neck Surg. 2012; 146 ( 1 ): 146 - 150. https://doi.org/10.1177/0194599811423008
dc.identifier.citedreferenceIncandela C, Calamusa G, Massenti MF, Incandela S, Speciale R, Amodio E. Long-term efficacy of radiofrequency treatment of turbinate hypertrophy: a patient based point of view. Indian J Otolaryngol Head Neck Surg. 2013; 65 (suppl 2): 226 - 230. https://doi.org/10.1007/s12070-011-0337-0
dc.identifier.citedreferenceFradis M, Malatskey S, Magamsa I, Golz A. Effect of submucosal diathermy in chronic nasal obstruction due to turbinate enlargement. Am J Otolaryngol. 2002; 23 ( 6 ): 332 - 336. https://doi.org/10.1053/ajot.2002.126857
dc.identifier.citedreferenceKojima Y, Tsuzuki K, Takebayashi H, Oka H, Sakagami M. Therapeutic evaluation of outpatient submucosal inferior turbinate surgery for patients with severe allergic rhinitis. Allergol Int. 2013; 62 ( 4 ): 479 - 485. https://doi.org/10.2332/allergolint.12-OA-0533
dc.identifier.citedreferenceBitar MA, Kanaan AA, Sinno S. Efficacy and safety of inferior turbinates coblation in children. J Laryngol Otol. 2014; 128 (suppl 2): S48 - S54. https://doi.org/10.1017/S0022215114000206
dc.identifier.citedreferenceAkdag M, Dasdag S, Ozkurt FE, et al. Long-term effect of radiofrequency turbinoplasty in nasal obstruction. Biotechnol Biotechnol Equip. 2014; 28 ( 2 ): 285 - 294. https://doi.org/10.1080/13102818.2014.909083
dc.identifier.citedreferenceAssanasen P, Choochurn P, Banhiran W, Bunnag C. Radiofrequency inferior turbinate reduction improves smell ability of patients with chronic rhinitis and inferior turbinate hypertrophy. Allergy Rhinol (Providence). 2014; 5 ( 1 ): 12 - 16. https://doi.org/10.2500/ar.2014.5.0077
dc.identifier.citedreferenceAcevedo JL, Camacho M, Brietzke SE. Radiofrequency Ablation turbinoplasty versus microdebrider-assisted turbinoplasty: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2015; 153 ( 6 ): 951 - 956. https://doi.org/10.1177/0194599815607211
dc.identifier.citedreferenceArganbright JM, Jensen EL, Mattingly J, Gao D, Chan KH. Utility of inferior turbinoplasty for the treatment of nasal obstruction in children: a 10-year review. JAMA Otolaryngol Head Neck Surg. 2015; 141 ( 10 ): 901 - 904. https://doi.org/10.1001/jamaoto.2015.1560
dc.identifier.citedreferenceShah AN, Brewster D, Mitzen K, Mullin D. Radiofrequency coblation versus intramural bipolar cautery for the treatment of inferior turbinate hypertrophy. Ann Otol Rhinol Laryngol. 2015; 124 ( 9 ): 691 - 697. https://doi.org/10.1177/0003489415578709
dc.identifier.citedreferenceBanhiran W, Assanasen P, Tantilipikorn P, Nujchanart N, Voraprayoon S, Bunnag C. A randomized study of temperature-controlled versus bipolar radiofrequency for inferior turbinate reduction. Eur Arch Otorhinolaryngol. 2015; 272 ( 10 ): 2877 - 2884. https://doi.org/10.1007/s00405-014-3410-y
dc.identifier.citedreferenceSinno S, Mehta K, Lee ZH, Kidwai S, Saadeh PB, Lee MR. Inferior turbinate hypertrophy in rhinoplasty: systematic review of surgical techniques. Plast Reconstr Surg. 2016; 138 ( 3 ): 419e - 429e. https://doi.org/10.1097/PRS.0000000000002433
dc.identifier.citedreferenceIshida H, Yoshida T, Hasegawa T, Mohri M, Amatsu M. Submucous electrocautery following submucous resection of turbinate bone – a rationale of surgical treatment for allergic rhinitis. Auris Nasus Larynx. 2003; 30 ( 2 ): 147 - 152. https://doi.org/10.1016/s0385-8146(03)00010-5
dc.identifier.citedreferenceDe Corso E, Bastanza G, Di Donfrancesco V, et al., Radiofrequency volumetric inferior turbinate reduction: long-term clinical results. Acta Otorhinolaryngol Ital. 2016; 36 ( 3 ): 199 - 205. doi: https://doi.org/10.14639/0392-100X-964
dc.identifier.citedreferenceLukka VK, Jacob TM, Jeyaseelan V, Rupa V. Do turbinate reduction procedures restore epithelial integrity in patients with turbinate hypertrophy secondary to allergic rhinitis? A histopathological study. Eur Arch Otorhinolaryngol. 2018; 275 ( 6 ): 1457 - 1467. https://doi.org/10.1007/s00405-018-4955-y
dc.identifier.citedreferenceTurk B, Korkut AY, Kaya KS, et al. Results of radiofrequency ablation of inferior turbinate hypertrophy in patients with allergic and non-allergic rhinitis. Sisli Etfal Hastan Tip Bul. 2018; 52 ( 4 ): 296 - 301. https://doi.org/10.14744/SEMB.2018.77992
dc.identifier.citedreferenceZhong B, Li LK, Deng D, et al. Effect of high-intensity focused ultrasound versus plasma radiofrequency ablation on recurrent allergic rhinitis. Med Sci Monit. 2019; 25: 6775 - 6781. https://doi.org/10.12659/MSM.916228
dc.identifier.citedreferenceKang T, Sung CM, Yang HC. Radiofrequency ablation of turbinates after septoplasty has no effect on allergic rhinitis symptoms other than nasal obstruction. Int Forum Allergy Rhinol. 2019; 9 ( 11 ): 1257 - 1262. https://doi.org/10.1002/alr.22420
dc.identifier.citedreferenceMaguire P, Nicodemus C, Robinson D, Aaronson D, Umetsu DT. The safety and efficacy of ALLERVAX CAT in cat allergic patients. Clin Immunol. 1999; 93 ( 3 ): 222 - 231. https://doi.org/10.1006/clim.1999.4795
dc.identifier.citedreferenceMun IK, Yoo SH, Mo JH. Long-term outcome of concurrent coblator turbinoplasty with adenotonsillectomy in children with allergic rhinitis. Acta Otolaryngol. 2021; 141 ( 3 ): 286 - 292. https://doi.org/10.1080/00016489.2020.1846782
dc.identifier.citedreferencePecorari G, Riva G, Bartoli C, et al. Nasal cytology in radiofrequency turbinate volume reduction. ORL J Otorhinolaryngol Relat Spec. 2021; 83 ( 4 ): 252 - 257. https://doi.org/10.1159/000513629
dc.identifier.citedreferenceWhelan RL, Shaffer AD, Stapleton AL. Efficacy of inferior turbinate reduction in pediatric patients: a prospective analysis. Int Forum Allergy Rhinol. 2021; 11 ( 12 ): 1654 - 1662. https://doi.org/10.1002/alr.22849
dc.identifier.citedreferenceOgino-Nishimura E, Okamura HO, Takiguchi Y. Argon plasma coagulation for intractable nasal obstruction occurring in patients with allergic rhinitis. Fukushima J Med Sci. 2003; 49 ( 1 ): 15 - 22. https://doi.org/10.5387/fms.49.15
dc.identifier.citedreferenceLin HC, Lin PW, Su CY, Chang HW. Radiofrequency for the treatment of allergic rhinitis refractory to medical therapy. Laryngoscope. 2003; 113 ( 4 ): 673 - 678. https://doi.org/10.1097/00005537-200304000-00017
dc.identifier.citedreferenceTokano H, Maehara H, Nakamura H, Makino N, Iwasaki A, Kitamura K. Short-term effect of argon plasma coagulation of the inferior turbinate in patients with perennial nasal allergy. Auris Nasus Larynx. 2005; 32 ( 2 ): 145 - 50. https://doi.org/10.1016/j.anl.2005.01.002
dc.identifier.citedreferenceFang CX, Zhen SS. [ Nasal endoscopy combined with multiple radiofrequency for perennial allergic rhinitis ]. Di Yi Jun Yi Da Xue Xue Bao. 2005; 25 ( 7 ): 876 - 877.
dc.identifier.citedreferenceDing H, Liu J, Wang T, Xia G, Liu W. [ Combination application of radiofrequency ablation in nasal operation ]. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2005; 19 ( 20 ): 918 - 919. 922.
dc.identifier.citedreferenceQuine SM, Aitken PM, Eccles R. Effect of submucosal diathermy to the inferior turbinates on unilateral and total nasal airflow in patients with rhinitis. Acta Otolaryngol. 1999; 119 ( 8 ): 911 - 915. https://doi.org/10.1080/00016489950180270
dc.identifier.citedreferenceSroka R, Janda P, Killian T, Vaz F, Betz CS, Leunig A. Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates. Lasers Surg Med. 2007; 39 ( 4 ): 324 - 331. https://doi.org/10.1002/lsm.20479
dc.identifier.citedreferenceChusakul S, Choktaweekarn T, Snidvongs K, Phannaso C, Aeumjaturapat S. Effect of the KTP laser in inferior turbinate surgery on eosinophil influx in allergic rhinitis. Otolaryngol Head Neck Surg. 2011; 144 ( 2 ): 237 - 240. https://doi.org/10.1177/0194599810390448
dc.identifier.citedreferenceCaffier PP, Scherer H, Neumann K, Luck S, Enzmann H, Haisch A. Diode laser treatment in therapy-resistant allergic rhinitis: impact on nasal obstruction and associated symptoms. Lasers Med Sci. 2011; 26 ( 1 ): 57 - 67. https://doi.org/10.1007/s10103-010-0813-x
dc.identifier.citedreferenceGupta P, Kc T, Regmi D. Diode laser turbinate reduction in allergic rhinitis: a cross-sectional study. JNMA J Nepal Med Assoc. 2018; 56 ( 214 ): 949 - 952.
dc.identifier.citedreferenceSasaki K, Ohshiro T, Sakio R, et al. Efficacy of seasonal allergic rhinitis using an 810 nm diode laser system. Laser Ther. 2019; 28 ( 1 ): 11 - 18. https://doi.org/10.5978/islsm.28_19-OR-01
dc.identifier.citedreferenceTanigawa T, Yashiki T, Hayashi K, Sato T. Carbon dioxide laser vaporization for turbinate: optimal conditions and indications. Auris Nasus Larynx. 2000; 27 ( 2 ): 137 - 140. https://doi.org/10.1016/s0385-8146(99)00061-9
dc.identifier.citedreferenceKunachak S, Kulapaditharom B, Prakunhungsit S. Minimally invasive KTP laser treatment of perennial allergic rhinitis: a preliminary report. J Otolaryngol. 2000; 29 ( 3 ): 139 - 143.
dc.identifier.citedreferenceJanda P, Sroka R, Betz CS, Grevers G, Leunig A. [Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates]. Die Laserkonchotomie mit Ho:YAG- und Dioden-Laser zur Behandlung von hyperplastischen Nasenmuscheln. Laryngorhinootologie. 2002; 81 ( 7 ): 484 - 490. https://doi.org/10.1055/s-2002-33288
dc.identifier.citedreferenceJanda P, Sroka R, Tauber S, Baumgartner R, Grevers G, Leunig A. Diode laser treatment of hyperplastic inferior nasal turbinates. Lasers Surg Med. 2000; 27 ( 2 ): 129 - 39. https://doi.org/10.1002/1096-9101(2000)27:2 <129::aid-lsm4>3.0.co;2-r
dc.identifier.citedreferenceTakeno S, Osada R, Ishino T, Yajin K. Laser surgery of the inferior turbinate for allergic rhinitis with seasonal exacerbation: an acoustic rhinometry study. Ann Otol Rhinol Laryngol. 2003; 112 ( 5 ): 455 - 460. https://doi.org/10.1177/000348940311200513
dc.identifier.citedreferenceImamura S, Honda H. Carbon dioxide laser vaporization of the inferior turbinate for allergic rhinitis: short-term results. Ann Otol Rhinol Laryngol. 2003; 112 ( 12 ): 1043 - 1049. https://doi.org/10.1177/000348940311201209
dc.identifier.citedreferenceSandhu AS, Temple RH, Timms MS. Partial laser turbinectomy: two year outcomes in patients with allergic and non-allergic rhinitis. Rhinology. 2004; 42 ( 2 ): 81 - 84.
dc.identifier.citedreferenceTakeno S, Osada R, Furukido K, Yajin K. Analysis of local cytokine gene expression in patients with allergic rhinitis treated with CO2 laser surgery. Laryngoscope. 2000; 110 ( 11 ): 1968 - 1974. https://doi.org/10.1097/00005537-200011000-00038
dc.identifier.citedreferenceLee JY. Efficacy of intra- and extraturbinal microdebrider turbinoplasty in perennial allergic rhinitis. Laryngoscope. 2013; 123 ( 12 ): 2945 - 9. https://doi.org/10.1002/lary.24215
dc.identifier.citedreferenceParthasarathi K, Christensen JM, Alvarado R, Barham HP, Sacks R, Harvey RJ. Airflow and symptom outcomes between allergic and non-allergic rhinitis patients from turbinoplasty. Rhinology. 2017; 55 ( 4 ): 332 - 338. https://doi.org/10.4193/Rhin16.210
dc.identifier.citedreferenceIkeda K, Oshima T, Suzuki M, Suzuki H, Shimomura A. Functional inferior turbinosurgery (FITS) for the treatment of resistant chronic rhinitis. Acta Otolaryngol. 2006; 126 ( 7 ): 739 - 745. https://doi.org/10.1080/00016480500472853
dc.identifier.citedreferenceHuang TW, Cheng PW. Changes in nasal resistance and quality of life after endoscopic microdebrider-assisted inferior turbinoplasty in patients with perennial allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2006; 132 ( 9 ): 990 - 993. https://doi.org/10.1001/archotol.132.9.990
dc.identifier.citedreferenceWu CC, Lee SY, Hsu CJ, Yeh TH. Patients with positive allergen test have less favorable outcome after endoscopic microdebrider-assisted inferior turbinoplasty. Am J Rhinol. 2008; 22 ( 1 ): 20 - 23. https://doi.org/10.2500/ajr.2008.22.3116
dc.identifier.citedreferenceChen YL, Tan CT, Huang HM. Long-term efficacy of microdebrider-assisted inferior turbinoplasty with lateralization for hypertrophic inferior turbinates in patients with perennial allergic rhinitis. Laryngoscope. 2008; 118 ( 7 ): 1270 - 1274. https://doi.org/10.1097/MLG.0b013e31816d728e
dc.identifier.citedreferenceNeri G, Mastronardi V, Traini T, D’Orazio F, Pugliese M, Cazzato F. Respecting nasal mucosa during turbinate surgery: end of the dogma? Rhinology. 2013; 51 ( 4 ): 368 - 375. https://doi.org/10.4193/Rhino12.124
dc.identifier.citedreferencede Moura BH, Migliavacca RO, Lima RK, et al. Partial inferior turbinectomy in rhinoseptoplasty has no effect in quality-of-life outcomes: a randomized clinical trial. Laryngoscope. 2018; 128 ( 1 ): 57 - 63. https://doi.org/10.1002/lary.26831
dc.identifier.citedreferenceSuzuki M, Yokota M, Ozaki S, Murakami S. The effects of resection of the peripheral branches of the posterior nasal nerves in the inferior turbinate, with special focus on olfactory dysfunction. J Laryngol Otol. 2019; 133 ( 12 ): 1046 - 1049. https://doi.org/10.1017/S0022215119002238
dc.identifier.citedreferenceMori S, Fujieda S, Yamada T, Kimura Y, Takahashi N, Saito H. Long-term effect of submucous turbinectomy in patients with perennial allergic rhinitis. Laryngoscope. 2002; 112 ( 5 ): 865 - 869. https://doi.org/10.1097/00005537-200205000-00016
dc.identifier.citedreferenceOgawa T, Takeno S, Ishino T, Hirakawa K. Submucous turbinectomy combined with posterior nasal neurectomy in the management of severe allergic rhinitis: clinical outcomes and local cytokine changes. Auris Nasus Larynx. 2007; 34 ( 3 ): 319 - 326. https://doi.org/10.1016/j.anl.2007.01.008
dc.identifier.citedreferenceTan G, Ma Y, Li H, Li W, Wang J. Long-term results of bilateral endoscopic vidian neurectomy in the management of moderate to severe persistent allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2012; 138 ( 5 ): 492 - 497. https://doi.org/10.1001/archoto.2012.284
dc.identifier.citedreferenceHamerschmidt R, Hamerschmidt R, Moreira AT, Tenorio SB, Timi JR. Comparison of turbinoplasty surgery efficacy in patients with and without allergic rhinitis. Braz J Otorhinolaryngol. 2016; 82 ( 2 ): 131 - 139. https://doi.org/10.1016/j.bjorl.2015.10.010
dc.identifier.citedreferencePiromchai P, Pornumnouy W, Saeseow P, Chainansamit S. The minimum effective dose of abobotulinum toxin A injection for allergic rhinitis: a dose-escalation randomized controlled trial. Laryngoscope Investig Otolaryngol. 2021; 6 ( 1 ): 6 - 12. https://doi.org/10.1002/lio2.499
dc.identifier.citedreferenceAbtahi SM, Hashemi SM, Abtahi SH, Bastani B. Septal injection in comparison with inferior turbinates injection of botulinum toxin A in patients with allergic rhinitis. J Res Med Sci. 2013; 18 ( 5 ): 400 - 404.
dc.identifier.citedreferenceUnal M, Sevim S, Dogu O, Vayisoglu Y, Kanik A. Effect of botulinum toxin type A on nasal symptoms in patients with allergic rhinitis: a double-blind, placebo-controlled clinical trial. Acta Otolaryngol. 2003; 123 ( 9 ): 1060 - 1063. https://doi.org/10.1080/00016480310000755
dc.identifier.citedreferenceWei H, Zhang Y, Shi L, et al. Higher dosage of HIFU treatment may lead to higher and longer efficacy for moderate to severe perennial allergic rhinitis. Int J Med Sci. 2013; 10 ( 13 ): 1914 - 1920. https://doi.org/10.7150/ijms.7117
dc.identifier.citedreferenceWei H, Shi L, Zhang J, et al. High-intensity focused ultrasound leads to histopathologic changes of the inferior turbinate mucosa with allergic inflammation. Ultrasound Med Biol. 2014; 40 ( 10 ): 2425 - 2430. https://doi.org/10.1016/j.ultrasmedbio.2014.05.016
dc.identifier.citedreferenceIbrahim N, Tyler MA, Borchard NA, Rathor A, Nayak JV. Nasal vestibular body treatment for recalcitrant nasal obstruction. Int Forum Allergy Rhinol. 2020; 10 ( 3 ): 388 - 394. https://doi.org/10.1002/alr.22463
dc.identifier.citedreferenceKim SJ, Kim HT, Park YH, Kim JY, Bae JH. Coblation nasal septal swell body reduction for treatment of nasal obstruction: a preliminary report. Eur Arch Otorhinolaryngol. 2016; 273 ( 9 ): 2575 - 2578. https://doi.org/10.1007/s00405-016-3946-0
dc.identifier.citedreferenceKarpishchenko S, Ulupov M, Gindryuk A, Kaplun D. Using thermal effect of 970 nm diode laser to reduce nasal swell body. Am J Otolaryngol. 2021; 42 ( 6 ): 103165. https://doi.org/10.1016/j.amjoto.2021.103165
dc.identifier.citedreferenceCatalano P, Ashmead MG, Carlson D. Radiofrequency ablation of septal swell body. Ann Otolaryngol Rhinol. 2015; 2 ( 11 ): 1069.
dc.identifier.citedreferenceYu MS, Kim JY, Kim BH, Kang SH, Lim DJ. Feasibility of septal body volume reduction for patients with nasal obstruction. Laryngoscope. 2015; 125 ( 7 ): 1523 - 1528. https://doi.org/10.1002/lary.25154
dc.identifier.citedreferenceLai WS, Cheng SY, Lin YY, et al. Clinical assessment of diode laser-assisted endoscopic intrasphenoidal vidian neurectomy in the treatment of refractory rhinitis. Lasers Med Sci. 2017; 32 ( 9 ): 2097 - 2104. https://doi.org/10.1007/s10103-017-2330-7
dc.identifier.citedreferenceSu WF, Liu SC, Chiu FS, Lee CH. Antegrade transsphenoidal vidian neurectomy: short-term surgical outcome analysis. Am J Rhinol Allergy. 2011; 25 ( 6 ): e217 - e220. https://doi.org/10.2500/ajra.2011.25.3704
dc.identifier.citedreferenceAi J, Xie Z, Qing X, et al. Clinical effect of endoscopic vidian neurectomy on bronchial asthma outcomes in patients with coexisting refractory allergic rhinitis and asthma. Am J Rhinol Allergy. 2018; 32 ( 3 ): 139 - 146. https://doi.org/10.1177/1945892418764964
dc.identifier.citedreferenceShen L, Wang J, Kang X, et al. Clinical efficacy and possible mechanism of endoscopic vidian neurectomy for house dust mite-sensitive allergic rhinitis. ORL J Otorhinolaryngol Relat Spec. 2021; 83 ( 2 ): 75 - 84. https://doi.org/10.1159/000511711
dc.identifier.citedreferenceMaimaitiaili G, Kahaer K, Tang L, Zhang J. The effect of vidian neurectomy on pulmonary function in patients with allergic rhinitis and chronic rhinosinusitis with nasal polyps. Am J Med Sci. 2020; 360 ( 2 ): 137 - 145. https://doi.org/10.1016/j.amjms.2020.04.024
dc.identifier.citedreferenceQi Y, Liu J, Peng S, Hou S, Zhang M, Wang Z. Efficacy of selective vidian neurectomy for allergic rhinitis combined with chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec. 2021; 83 ( 5 ): 327 - 334. https://doi.org/10.1159/000512083
dc.identifier.citedreferenceKonno A. Historical, pathophysiological, and therapeutic aspects of vidian neurectomy. Curr Allergy Asthma Rep. 2010; 10 ( 2 ): 105 - 112. https://doi.org/10.1007/s11882-010-0093-3
dc.identifier.citedreferenceBleier BS, Schlosser RJ. Endoscopic anatomy of the postganglionic pterygopalatine innervation of the posterolateral nasal mucosa. Int Forum Allergy Rhinol. 2011; 1 ( 2 ): 113 - 117. https://doi.org/10.1002/alr.20011
dc.identifier.citedreferenceWang EW, Gardner PA, Fraser S, Stefko ST, Fernandez-Miranda JC, Snyderman CH. Reduced tearing with stable quality of life after vidian neurectomy: a prospective controlled trial. Laryngoscope. 2021; 131 ( 7 ): 1487 - 1491. https://doi.org/10.1002/lary.29287
dc.identifier.citedreferenceMakihara S, Okano M, Miyamoto S, et al. Underwater posterior nasal neurectomy compared to resection of peripheral branches of posterior nerve in severe allergic rhinitis. Acta Otolaryngol. 2021; 141 ( 8 ): 780 - 785. https://doi.org/10.1080/00016489.2021.1925151
dc.identifier.citedreferenceHua H, Wang G, Zhao Y, Wang D, Qiu Z, Fang P. The long-term outcomes of posterior nasal neurectomy with or without pharyngeal neurectomy in patients with allergic rhinitis: a randomized controlled trial. Braz J Otorhinolaryngol. 2022; 88 (Suppl 1 ): S147 - S155. https://doi.org/10.1016/j.bjorl.2021.05.006
dc.identifier.citedreferenceWang L, Chen M, Xu M. Effect of posterior nasal neurectomy on the suppression of allergic rhinitis. Am J Otolaryngol. 2020; 41 ( 3 ): 102410. https://doi.org/10.1016/j.amjoto.2020.102410
dc.identifier.citedreferenceLi S, Cheng J, Yang J, et al. Efficacy of posterior nasal neurectomy for allergic rhinitis combined with chronic rhinosinusitis with nasal polyps. Acta Otolaryngol. 2019; 139 ( 10 ): 890 - 894. https://doi.org/10.1080/00016489.2019.1654132
dc.identifier.citedreferenceTakahara D, Takeno S, Hamamoto T, Ishino T, Hirakawa K. Management of intractable nasal hyperreactivity by selective resection of posterior nasal nerve branches. Int J Otolaryngol. 2017; 2017: 1907862. https://doi.org/10.1155/2017/1907862
dc.identifier.citedreferenceOgi K, Manabe Y, Mori S, et al. Long-term effect of combined submucous turbinectomy and posterior nasal neurectomy in patients with allergic rhinitis. SN Comp Clin Med. 2019; 1: 540 - 546.
dc.identifier.citedreferenceAlbu S, Trombitas V, Nagy A. Endoscopic microdebrider-assisted inferior turbinoplasty with and without posterior nasal neurectomy. Auris Nasus Larynx. 2014; 41 ( 3 ): 273 - 277. https://doi.org/10.1016/j.anl.2013.10.018
dc.identifier.citedreferenceTerao A, Meshitsuka K, Suzaki H, Fukuda S. Cryosurgery on postganglionic fibers (posterior nasal branches) of the pterygopalatine ganglion for vasomotor rhinitis. Acta Otolaryngol. 1983; 96 ( 1-2 ): 139 - 148. https://doi.org/10.3109/00016488309132884
dc.identifier.citedreferenceM Yen D, B Conley D, O’Malley EM, Byerly TA, Johnson J. Multiple site cryoablation treatment of the posterior nasal nerve for treatment of chronic rhinitis: an observational feasibility study. Allergy Rhinol (Providence). 2020; 11: 2152656720946996. https://doi.org/10.1177/2152656720946996
dc.identifier.citedreferenceDel Signore AG, Greene JB, Russell JL, Yen DM, O’Malley EM, Schlosser RJ. Cryotherapy for treatment of chronic rhinitis: 3-month outcomes of a randomized, sham-controlled trial. Int Forum Allergy Rhinol. 2022; 12 ( 1 ): 51 - 61. https://doi.org/10.1002/alr.22868
dc.identifier.citedreferenceOw RA, O’Malley EM, Han JK, Lam KK, Yen DM. Cryosurgical ablation for treatment of rhinitis: two-year results of a prospective multicenter study. Laryngoscope. 2021; 131 ( 9 ): 1952 - 1957. https://doi.org/10.1002/lary.29453
dc.identifier.citedreferenceGerka Stuyt JA, Luk L, Keschner D, Garg R. Evaluation of in-office cryoablation of posterior nasal nerves for the treatment of rhinitis. Allergy Rhinol (Providence). 2021; 12: 2152656720988565. https://doi.org/10.1177/2152656720988565
dc.identifier.citedreferenceChang MT, Song S, Hwang PH. Cryosurgical ablation for treatment of rhinitis: a prospective multicenter study. Laryngoscope. 2020; 130 ( 8 ): 1877 - 1884. https://doi.org/10.1002/lary.28301
dc.identifier.citedreferenceYoo F, Kuan EC, Batra PS, Chan CK, Tajudeen BA, Craig JR. Predictors of rhinorrhea response after posterior nasal nerve cryoablation for chronic rhinitis. Int Forum Allergy Rhinol. 2020; 10 ( 7 ): 913 - 919. https://doi.org/10.1002/alr.22574
dc.identifier.citedreferenceEhmer D, McDuffie CM, Scurry Jr WC, et al. Temperature-controlled radiofrequency neurolysis for the treatment of rhinitis. Am J Rhinol Allergy. 2022; 36 ( 1 ): 149 - 156. https://doi.org/10.1177/19458924211033400
dc.identifier.citedreferenceStolovitzky JP, Ow RA, Silvers SL, Bikhazi NB, Johnson CD, Takashima M. Effect of radiofrequency neurolysis on the symptoms of chronic rhinitis: a randomized controlled trial. OTO Open. 2021; 5 ( 3 ): 2473974X211041124. https://doi.org/10.1177/2473974X211041124
dc.identifier.citedreferenceSingh AK, Kasle DA, Torabi SJ, Manes RP. Adverse events associated with ClariFix posterior nasal nerve cryoablation: a MAUDE database analysis. Otolaryngol Head Neck Surg. 2021; 165 ( 4 ): 597 - 601. https://doi.org/10.1177/0194599820986581
dc.identifier.citedreferenceJose J, Coatesworth AP. Inferior turbinate surgery for nasal obstruction in allergic rhinitis after failed medical treatment. Cochrane Database Syst Rev. 2010;( 12 ): CD005235. https://doi.org/10.1002/14651858.CD005235.pub2
dc.identifier.citedreferenceLangille M, El-Hakim H. Pediatric inferior turbinoplasty with or without adenoidectomy: preliminary report on improvement of quality of life, symptom control, and safety. J Otolaryngol Head Neck Surg. 2011; 40 ( 5 ): 420 - 426.
dc.identifier.citedreferenceDi Rienzo Businco L, Di Rienzo Businco A, Lauriello M. Comparative study on the effectiveness of Coblation-assisted turbinoplasty in allergic rhinitis. Rhinology. 2010; 48 ( 2 ): 174 - 178. https://doi.org/10.4193/Rhin09.149
dc.identifier.citedreferenceKobayashi T, Hyodo M, Nakamura K, Komobuchi H, Honda N. Resection of peripheral branches of the posterior nasal nerve compared to conventional posterior neurectomy in severe allergic rhinitis. Auris Nasus Larynx. 2012; 39 ( 6 ): 593 - 596. https://doi.org/10.1016/j.anl.2011.11.006
dc.identifier.citedreferenceRoberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on allergen immunotherapy: allergic rhinoconjunctivitis. Allergy. 2018; 73 ( 4 ): 765 - 798. https://doi.org/10.1111/all.13317
dc.identifier.citedreferenceCox L, Nelson H, Lockey R, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011; 127 (1 suppl): S1 - S55. https://doi.org/10.1016/j.jaci.2010.09.034
dc.identifier.citedreferenceMatricardi PM, Kuna P, Panetta V, Wahn U, Narkus A. Subcutaneous immunotherapy and pharmacotherapy in seasonal allergic rhinitis: a comparison based on meta-analyses. J Allergy Clin Immunol. 2011; 128 ( 4 ): 791 - 799.e6. https://doi.org/10.1016/j.jaci.2011.03.049
dc.identifier.citedreferenceRadulovic S, Calderon MA, Wilson D, Durham S. Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev. 2010;( 12 ): CD002893. https://doi.org/10.1002/14651858.CD002893.pub2
dc.identifier.citedreferenceTie K, Miller C, Zanation AM, Ebert Jr CS. Subcutaneous versus sublingual immunotherapy for adults with allergic rhinitis: a systematic review with meta-analyses. Laryngoscope. 2022; 132 ( 3 ): 499 - 508. https://doi.org/10.1002/lary.29586
dc.identifier.citedreferenceDurham SR, Walker SM, Varga EM, et al. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med. 1999; 341 ( 7 ): 468 - 475. https://doi.org/10.1056/NEJM199908123410702
dc.identifier.citedreferenceEbner C, Kraft D, Ebner H. Booster immunotherapy (BIT). Allergy. 1994; 49 ( 1 ): 38 - 42. https://doi.org/10.1111/j.1398-9995.1994.tb00771.x
dc.identifier.citedreferenceArroabarren E, Tabar AI, Echechipia S, Cambra K, Garcia BE, Alvarez-Puebla MJ. Optimal duration of allergen immunotherapy in children with dust mite respiratory allergy. Pediatr Allergy Immunol. 2015; 26 ( 1 ): 34 - 41. https://doi.org/10.1111/pai.12296
dc.identifier.citedreferenceKristiansen M, Dhami S, Netuveli G, et al. Allergen immunotherapy for the prevention of allergy: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2017; 28 ( 1 ): 18 - 29. https://doi.org/10.1111/pai.12661
dc.identifier.citedreferenceSchmitt J, Schwarz K, Stadler E, Wustenberg EG. Allergy immunotherapy for allergic rhinitis effectively prevents asthma: results from a large retrospective cohort study. J Allergy Clin Immunol. 2015; 136 ( 6 ): 1511 - 1516. https://doi.org/10.1016/j.jaci.2015.07.038
dc.identifier.citedreferenceJacobsen L, Niggemann B, Dreborg S, et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy. 2007; 62 ( 8 ): 943 - 948. https://doi.org/10.1111/j.1398-9995.2007.01451.x
dc.identifier.citedreferenceValovirta E, Petersen TH, Piotrowska T, et al. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J Allergy Clin Immunol. 2018; 141 ( 2 ): 529 - 538.e13. https://doi.org/10.1016/j.jaci.2017.06.014
dc.identifier.citedreferenceFiocchi A, Pajno G, La Grutta S, et al. Safety of sublingual-swallow immunotherapy in children aged 3 to 7 years. Ann Allergy Asthma Immunol. 2005; 95 ( 3 ): 254 - 258. https://doi.org/10.1016/S1081-1206(10)61222-7
dc.identifier.citedreferenceAgostinis F, Tellarini L, Canonica GW, Falagiani P, Passalacqua G. Safety of sublingual immunotherapy with a monomeric allergoid in very young children. Allergy. 2005; 60 ( 1 ): 133. https://doi.org/10.1111/j.1398-9995.2004.00616.x
dc.identifier.citedreferenceDarsow U. Allergen-specific immunotherapy for atopic eczema: updated. Curr Opin Allergy Clin Immunol. 2012; 12 ( 6 ): 665 - 669. https://doi.org/10.1097/ACI.0b013e3283588cf4
dc.identifier.citedreferencePassalacqua G, Canonica GW. Allergen immunotherapy: history and future developments. Immunol Allergy Clin North Am. 2016; 36 ( 1 ): 1 - 12. https://doi.org/10.1016/j.iac.2015.08.001
dc.identifier.citedreferenceGreenhawt M, Oppenheimer J, Nelson M, et al. Sublingual immunotherapy: a focused allergen immunotherapy practice parameter update. Ann Allergy Asthma Immunol. 2017; 118 ( 3 ): 276 - 282.e2. https://doi.org/10.1016/j.anai.2016.12.009
dc.identifier.citedreferenceAkdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014; 133 ( 3 ): 621 - 631. https://doi.org/10.1016/j.jaci.2013.12.1088
dc.identifier.citedreferenceNelson HS, Makatsori M, Calderon MA. Subcutaneous immunotherapy and sublingual immunotherapy: comparative efficacy, current and potential indications, and warnings – United States Versus Europe. Immunol Allergy Clin North Am. 2016; 36 ( 1 ): 13 - 24. https://doi.org/10.1016/j.iac.2015.08.005
dc.identifier.citedreferenceLawrence MG, Steinke JW, Borish L. Basic science for the clinician: mechanisms of sublingual and subcutaneous immunotherapy. Ann Allergy Asthma Immunol. 2016; 117 ( 2 ): 138 - 142. https://doi.org/10.1016/j.anai.2016.06.027
dc.identifier.citedreferenceDhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: a systematic review and meta-analysis. Allergy. 2017; 72 ( 11 ): 1597 - 1631. https://doi.org/10.1111/all.13201
dc.identifier.citedreferenceNurmatov U, Dhami S, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: a systematic overview of systematic reviews. Clin Transl Allergy. 2017; 7: 24. https://doi.org/10.1186/s13601-017-0159-6
dc.identifier.citedreferenceLin SY, Erekosima N, Suarez-Cuervo C, et al. Agency for Healthcare Research and Quality Comparative Effectiveness Reviews. Allergen-Specific Immunotherapy for the Treatment of Allergic Rhinoconjunctivitis and/or Asthma: Comparative Effectiveness Review. 2013.
dc.identifier.citedreferenceEpstein TG, Murphy-Berendts K, Liss GM, Bernstein DI. Risk factors for fatal and nonfatal reactions to immunotherapy (2008-2018): postinjection monitoring and severe asthma. Ann Allergy Asthma Immunol. 2021; 127 ( 1 ): 64 - 69.e1. https://doi.org/10.1016/j.anai.2021.03.011
dc.identifier.citedreferenceBernstein DI, Wanner M, Borish L, Liss GM, Immunotherapy Committee, American Academy of Allergy, Asthma and Immunology. Twelve-year survey of fatal reactions to allergen injections and skin testing: 1990-2001. J Allergy Clin Immunol. 2004; 113 ( 6 ): 1129 - 1136. https://doi.org/10.1016/j.jaci.2004.02.006
dc.identifier.citedreferenceEpstein TG, Liss GM, Murphy-Berendts K, Bernstein DI. AAAAI and ACAAI surveillance study of subcutaneous immunotherapy, Year 3: what practices modify the risk of systemic reactions? Ann Allergy Asthma Immunol. 2013; 110 ( 4 ): 274 - 278, 278.e1. https://doi.org/10.1016/j.anai.2013.01.015
dc.identifier.citedreferenceLee S, Hess EP, Nestler DM, et al. Antihypertensive medication use is associated with increased organ system involvement and hospitalization in emergency department patients with anaphylaxis. J Allergy Clin Immunol. 2013; 131 ( 4 ): 1103 - 1108. https://doi.org/10.1016/j.jaci.2013.01.011
dc.identifier.citedreferenceMuller UR, Haeberli G. Use of beta-blockers during immunotherapy for Hymenoptera venom allergy. J Allergy Clin Immunol. 2005; 115 ( 3 ): 606 - 610. https://doi.org/10.1016/j.jaci.2004.11.012
dc.identifier.citedreferencePitsios C, Tsoumani M, Bilo MB, et al. Contraindications to immunotherapy: a global approach. Clin Transl Allergy. 2019; 9: 45. https://doi.org/10.1186/s13601-019-0285-4
dc.identifier.citedreferenceWohrl S, Kinaciyan T, Jalili A, Stingl G, Moritz KB. Malignancy and specific allergen immunotherapy: the results of a case series. Int Arch Allergy Immunol. 2011; 156 ( 3 ): 313 - 319. https://doi.org/10.1159/000323519
dc.identifier.citedreferenceLinneberg A, Jacobsen RK, Jespersen L, Abildstrom SZ. Association of subcutaneous allergen-specific immunotherapy with incidence of autoimmune disease, ischemic heart disease, and mortality. J Allergy Clin Immunol. 2012; 129 ( 2 ): 413 - 419. https://doi.org/10.1016/j.jaci.2011.09.007
dc.identifier.citedreferenceBozek A, Kolodziejczyk K, Bednarski P. The relationship between autoimmunity and specific immunotherapy for allergic diseases. Hum Vaccin Immunother. 2015; 11 ( 12 ): 2764 - 2768. https://doi.org/10.1080/21645515.2015.1087627
dc.identifier.citedreferenceShaikh WA. A retrospective study on the safety of immunotherapy in pregnancy. Clin Exp Allergy. 1993; 23 ( 10 ): 857 - 860. https://doi.org/10.1111/j.1365-2222.1993.tb00264.x
dc.identifier.citedreferenceShaikh WA, Shaikh SW. A prospective study on the safety of sublingual immunotherapy in pregnancy. Allergy. 2012; 67 ( 6 ): 741 - 743. https://doi.org/10.1111/j.1398-9995.2012.02815.x
dc.identifier.citedreferenceOdactra House Dust Mite. (Dermatophagoides farinae and Dermatophagoides pteronyssinus) allergen extract tablet for sublingual use. Accessed October 8, 2021. fda.gov/media/103380/download
dc.identifier.citedreferenceORALAIR. (Sweet Vernal, Orchard, Perennial Rye, Timothy, and Kentucky Blue Grass Mixed Pollens Allergen Extract) tablet for sublingual use. Accessed July 3, 2022. https://www.fda.gov/media/87935/download
dc.identifier.citedreferenceGrastek Timothy grass pollen extract tablet for sublingual use. Accessed July 3, 2022. https://www.fda.gov/media/88510/download
dc.identifier.citedreferenceRagwitek short ragweed pollen extract tablet for sublingual use. Accessed July 3, 2022. https://www.fda.gov/media/88712/download
dc.identifier.citedreferenceOsguthorpe JD. The evolution of understanding inhalant allergy. Otolaryngol Clin North Am. 2011; 44 ( 3 ): 519 - 535, vii. https://doi.org/10.1016/j.otc.2011.03.008
dc.identifier.citedreferenceNoon L. Prophylactic inoculation against hayfever. Lancet. 1911; 1: 1572 - 1573.
dc.identifier.citedreferenceMason WW, Ward WA. Standardized extracts. Otolaryngol Clin North Am. 1992; 25 ( 1 ): 101 - 17.
dc.identifier.citedreferenceZimmer J, Vieths S, Kaul S. Standardization and regulation of allergen products in the European Union. Curr Allergy Asthma Rep. 2016; 16 ( 3 ): 21. https://doi.org/10.1007/s11882-016-0599-4
dc.identifier.citedreferenceCarnes J, Iraola V, Gallego M, Leonor JR. Control process for manufacturing and standardization of allergenic molecules. Curr Allergy Asthma Rep. 2015; 15 ( 7 ): 37. https://doi.org/10.1007/s11882-015-0541-1
dc.identifier.citedreferenceZimmer J, Bridgewater J, Ferreira F, van Ree R, Rabin RL, Vieths S. The history, present and future of allergen standardization in the United States and Europe. Front Immunol. 2021; 12: 725831. https://doi.org/10.3389/fimmu.2021.725831
dc.identifier.citedreferenceNorman PS, Ohman Jr JL, Long AA, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996; 154 (6 pt 1): 1623 - 1628. https://doi.org/10.1164/ajrccm.154.6.8970345
dc.identifier.citedreferencePark KH, Son M, Choi SY, et al. In vitro evaluation of allergen potencies of commercial house dust mite sublingual immunotherapy reagents. Allergy Asthma Immunol Res. 2015; 7 ( 2 ): 124 - 129. https://doi.org/10.4168/aair.2015.7.2.124
dc.identifier.citedreferenceThomsen GF, Schlunssen V, Skadhauge LR, et al. Are allergen batch differences and the use of double skin prick test important? BMC Pulm Med. 2015; 15: 33. https://doi.org/10.1186/s12890-015-0021-3
dc.identifier.citedreferenceSlater JE. Standardized allergen extracts in the United States. Clin Allergy Immunol. 2004; 18: 421 - 432.
dc.identifier.citedreferenceJutel M, Agache I, Bonini S, et al. International consensus on allergen immunotherapy II: mechanisms, standardization, and pharmacoeconomics. J Allergy Clin Immunol. 2016; 137 ( 2 ): 358 - 368. https://doi.org/10.1016/j.jaci.2015.12.1300
dc.identifier.citedreferenceZakzuk J, Kilimajer J, Lockey R. World Allergy Organization Allergen Standardization and Characterization. Updated January 2019. Accessed June 3, 2022. https://www.worldallergy.org/education-and-programs/education/allergic-disease-resource-center/professionals/allergen-standardization-and-characterization
dc.identifier.citedreferencevan Ree R, Chapman MD, Ferreira F, et al. The CREATE project: development of certified reference materials for allergenic products and validation of methods for their quantification. Allergy. 2008; 63 ( 3 ): 310 - 326. https://doi.org/10.1111/j.1398-9995.2007.01612.x
dc.identifier.citedreferencePetrovsky N. Comparative Safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 2015; 38 ( 11 ): 1059 - 1074. https://doi.org/10.1007/s40264-015-0350-4
dc.identifier.citedreferenceGunawardana NC, Durham SR. New approaches to allergen immunotherapy. Ann Allergy Asthma Immunol. 2018; 121 ( 3 ): 293 - 305. https://doi.org/10.1016/j.anai.2018.07.014
dc.identifier.citedreferenceLeuthard DS, Duda A, Freiberger SN, et al. Microcrystalline tyrosine and aluminum as adjuvants in allergen-specific immunotherapy protect from IgE-mediated reactivity in mouse models and act independently of inflammasome and TLR signaling. J Immunol. 2018; 200 ( 9 ): 3151 - 3159. https://doi.org/10.4049/jimmunol.1800035
dc.identifier.citedreferenceZubeldia JM, Ferrer M, Davila I, Justicia JL. adjuvants in allergen-specific immunotherapy: modulating and enhancing the immune response. J Investig Allergol Clin Immunol. 2019; 29 ( 2 ): 103 - 111. https://doi.org/10.18176/jiaci.0349
dc.identifier.citedreferenceJohnson L, Duschl A, Himly M. Nanotechnology-based vaccines for allergen-specific immunotherapy: potentials and challenges of conventional and novel adjuvants under research. Vaccines (Basel). 2020; 8 ( 2 ): 237. https://doi.org/10.3390/vaccines8020237
dc.identifier.citedreferenceKirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Front Immunol. 2020; 11: 599083. https://doi.org/10.3389/fimmu.2020.599083
dc.identifier.citedreferenceFeng Z, Yi X, Hajavi J. New and old adjuvants in allergen-specific immunotherapy: with a focus on nanoparticles. J Cell Physiol. 2021; 236 ( 2 ): 863 - 876. https://doi.org/10.1002/jcp.29941
dc.identifier.citedreferenceNorman PS, Lichtenstein LM. Comparisons of alum-precipitated and unprecipitated aqueous ragweed pollen extracts in the treatment of hay fever. J Allergy Clin Immunol. 1978; 61 ( 6 ): 384 - 389. https://doi.org/10.1016/0091-6749(78)90118-5
dc.identifier.citedreferenceJensen-Jarolim E, Bachmann MF, Bonini S, et al. State-of-the-art in marketed adjuvants and formulations in allergen immunotherapy: a position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020; 75 ( 4 ): 746 - 760. https://doi.org/10.1111/all.14134
dc.identifier.citedreferenceCorrigan CJ, Kettner J, Doemer C, Cromwell O, Narkus A, Study G. Efficacy and safety of preseasonal-specific immunotherapy with an aluminium-adsorbed six-grass pollen allergoid. Allergy. 2005; 60 ( 6 ): 801 - 807. https://doi.org/10.1111/j.1398-9995.2005.00790.x
dc.identifier.citedreferenceDrachenberg KJ, Wheeler AW, Stuebner P, Horak F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy. 2001; 56 ( 6 ): 498 - 505. https://doi.org/10.1034/j.1398-9995.2001.056006498.x
dc.identifier.citedreferenceTulic MK, Fiset PO, Christodoulopoulos P, et al. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J Allergy Clin Immunol. 2004; 113 ( 2 ): 235 - 241. https://doi.org/10.1016/j.jaci.2003.11.001
dc.identifier.citedreferenceTorii Y, Ito T, Amakawa R, et al. Imidazoquinoline acts as immune adjuvant for functional alteration of thymic stromal lymphopoietin-mediated allergic T cell response. J Immunol. 2008; 181 ( 8 ): 5340 - 5349. https://doi.org/10.4049/jimmunol.181.8.5340
dc.identifier.citedreferenceTversky JR, Bieneman AP, Chichester KL, Hamilton RG, Schroeder JT. Subcutaneous allergen immunotherapy restores human dendritic cell innate immune function. Clin Exp Allergy. 2010; 40 ( 1 ): 94 - 102. https://doi.org/10.1111/j.1365-2222.2009.03388.x
dc.identifier.citedreferenceTversky JR, Le TV, Bieneman AP, Chichester KL, Hamilton RG, Schroeder JT. Human blood dendritic cells from allergic subjects have impaired capacity to produce interferon-alpha via Toll-like receptor 9. Clin Exp Allergy. 2008; 38 ( 5 ): 781 - 788. https://doi.org/10.1111/j.1365-2222.2008.02954.x
dc.identifier.citedreferenceCreticos PS, Schroeder JT, Hamilton RG, et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med. 2006; 355 ( 14 ): 1445 - 1455. https://doi.org/10.1056/NEJMoa052916
dc.identifier.citedreferenceBusse W, Korenblat P, Nayak A, et al. Phase 2/3 study of the novel vaccine Amb a 1 immunostimulatory oligodeoxyriboneucleotide conjugate AIC in ragweed allergic adults. J Allergy Clin Immunol. 2006; 117: S88 - S89.
dc.identifier.citedreferenceLeonard C, Montamat G, Davril C, et al. Comprehensive mapping of immune tolerance yields a regulatory TNF receptor 2 signature in a murine model of successful Fel d 1-specific immunotherapy using high-dose CpG adjuvant. Allergy. 2021; 76 ( 7 ): 2153 - 2165. https://doi.org/10.1111/all.14716
dc.identifier.citedreferenceSenti G, Johansen P, Haug S, et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009; 39 ( 4 ): 562 - 570. https://doi.org/10.1111/j.1365-2222.2008.03191.x
dc.identifier.citedreferenceRosewich M, Lee D, Zielen S. Pollinex Quattro: an innovative four injections immunotherapy in allergic rhinitis. Hum Vaccin Immunother. 2013; 9 ( 7 ): 1523 - 1531. https://doi.org/10.4161/hv.24631
dc.identifier.citedreferenceDuBuske LM, Frew AJ, Horak F, et al. Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011; 32 ( 6 ): 466. https://doi.org/10.2500/108854111798840203
dc.identifier.citedreferenceFeynman R. Plenty of room at the bottom. 1959. Lecture to the American Physical Society.
dc.identifier.citedreferenceMarty JJ, Oppenheim RC, Speiser P. Nanoparticles–a new colloidal drug delivery system. Pharm Acta Helv. 1978; 53 ( 1 ): 17 - 23.
dc.identifier.citedreferenceToh ZQ, Anzela A, Tang ML, Licciardi PV. Probiotic therapy as a novel approach for allergic disease. Front Pharmacol. 2012; 3: 171. https://doi.org/10.3389/fphar.2012.00171
dc.identifier.citedreferenceHo HE, Bunyavanich S. Microbial adjuncts for food allergen immunotherapy. Curr Allergy Asthma Rep. 2019; 19 ( 5 ): 25. https://doi.org/10.1007/s11882-019-0859-1
dc.identifier.citedreferenceLiu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311 ( 5768 ): 1770 - 1773. https://doi.org/10.1126/science.1123933
dc.identifier.citedreferenceHesse L, van Ieperen N, Petersen AH, Elberink J, van Oosterhout AJM, Nawijn MC. High dose vitamin D3 empowers effects of subcutaneous immunotherapy in a grass pollen-driven mouse model of asthma. Sci Rep. 2020; 10 ( 1 ): 20876. https://doi.org/10.1038/s41598-020-77947-6
dc.identifier.citedreferenceHeine G, Francuzik W, Doelle-Bierke S, et al. Immunomodulation of high-dose vitamin D supplementation during allergen-specific immunotherapy. Allergy. 2021; 76 ( 3 ): 930 - 933. https://doi.org/10.1111/all.14541
dc.identifier.citedreferenceGrundstrom J, Neimert-Andersson T, Kemi C, et al. Covalent coupling of vitamin D3 to the major cat allergen Fel d 1 improves the effects of allergen-specific immunotherapy in a mouse model for cat allergy. Int Arch Allergy Immunol. 2012; 157 ( 2 ): 136 - 146. https://doi.org/10.1159/000327546
dc.identifier.citedreferenceLiu C, Yang N, Song Y, et al. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI suppresses TNF-alpha production by mouse macrophages and peripheral blood mononuclear cells from asthma patients. Int Immunopharmacol. 2015; 27 ( 2 ): 224 - 231. https://doi.org/10.1016/j.intimp.2015.05.018
dc.identifier.citedreferenceWen MC, Wei CH, Hu ZQ, et al. Efficacy and tolerability of anti-asthma herbal medicine intervention in adult patients with moderate-severe allergic asthma. J Allergy Clin Immunol. 2005; 116 ( 3 ): 517 - 524. https://doi.org/10.1016/j.jaci.2005.05.029
dc.identifier.citedreferenceMahler V, Esch RE, Kleine-Tebbe J, et al. Understanding differences in allergen immunotherapy products and practices in North America and Europe. J Allergy Clin Immunol. 2019; 143 ( 3 ): 813 - 828. https://doi.org/10.1016/j.jaci.2019.01.024
dc.identifier.citedreferenceValenta R, Niespodziana K, Focke-Tejkl M, et al. Recombinant allergens: what does the future hold? J Allergy Clin Immunol. 2011; 127 ( 4 ): 860 - 864. https://doi.org/10.1016/j.jaci.2011.02.016
dc.identifier.citedreferenceZhernov Y, Curin M, Khaitov M, Karaulov A, Valenta R. Recombinant allergens for immunotherapy: state of the art. Curr Opin Allergy Clin Immunol. 2019; 19 ( 4 ): 402 - 414. https://doi.org/10.1097/ACI.0000000000000536
dc.identifier.citedreferenceJutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 2005; 116 ( 3 ): 608 - 613. https://doi.org/10.1016/j.jaci.2005.06.004
dc.identifier.citedreferenceKlimek L, Schendzielorz P, Pinol R, Pfaar O. Specific subcutaneous immunotherapy with recombinant grass pollen allergens: first randomized dose-ranging safety study. Clin Exp Allergy. 2012; 42 ( 6 ): 936 - 945. https://doi.org/10.1111/j.1365-2222.2012.03971.x
dc.identifier.citedreferencePauli G, Larsen TH, Rak S, et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2008; 122 ( 5 ): 951 - 960. https://doi.org/10.1016/j.jaci.2008.09.017
dc.identifier.citedreferenceNony E, Bouley J, Le Mignon M, et al. Development and evaluation of a sublingual tablet based on recombinant Bet v 1 in birch pollen-allergic patients. Allergy. 2015; 70 ( 7 ): 795 - 804. https://doi.org/10.1111/all.12622
dc.identifier.citedreferenceLitwin A, Pesce AJ, Fischer T, Michael M, Michael JG. Regulation of the human immune response to ragweed pollen by immunotherapy. A controlled trial comparing the effect of immunosuppressive peptic fragments of short ragweed with standard treatment. Clin Exp Allergy. 1991; 21 ( 4 ): 457 - 465. https://doi.org/10.1111/j.1365-2222.1991.tb01686.x
dc.identifier.citedreferencePurohit A, Niederberger V, Kronqvist M, et al. Clinical effects of immunotherapy with genetically modified recombinant birch pollen Bet v 1 derivatives. Clin Exp Allergy. 2008; 38 ( 9 ): 1514 - 1525. https://doi.org/10.1111/j.1365-2222.2008.03042.x
dc.identifier.citedreferenceCouroux P, Patel D, Armstrong K, Larche M, Hafner RP. Fel d 1-derived synthetic peptide immuno-regulatory epitopes show a long-term treatment effect in cat allergic subjects. Clin Exp Allergy. 2015; 45 ( 5 ): 974 - 981. https://doi.org/10.1111/cea.12488
dc.identifier.citedreferenceSpertini F, Perrin Y, Audran R, et al. Safety and immunogenicity of immunotherapy with Bet v 1-derived contiguous overlapping peptides. J Allergy Clin Immunol. 2014; 134 ( 1 ): 239 - 240.e13. https://doi.org/10.1016/j.jaci.2014.04.001
dc.identifier.citedreferenceSpertini F, DellaCorte G, Kettner A, et al. Efficacy of 2 months of allergen-specific immunotherapy with Bet v 1-derived contiguous overlapping peptides in patients with allergic rhinoconjunctivitis: Results of a phase IIb study. J Allergy Clin Immunol. 2016; 138 ( 1 ): 162 - 168. https://doi.org/10.1016/j.jaci.2016.02.044
dc.identifier.citedreferenceKettner A, DellaCorte G, de Blay F, et al. Benefit of Bet v 1 contiguous overlapping peptide immunotherapy persists during first follow-up season. J Allergy Clin Immunol. 2018; 142 ( 2 ): 678 - 680.e7. https://doi.org/10.1016/j.jaci.2018.01.052
dc.identifier.citedreferenceJutel M, Kosowska A, Smolinska S. Allergen immunotherapy: past, present, and future. Allergy Asthma Immunol Res. 2016; 8 ( 3 ): 191 - 197. https://doi.org/10.4168/aair.2016.8.3.191
dc.identifier.citedreferenceValenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol. 2016; 137 ( 2 ): 351 - 357. https://doi.org/10.1016/j.jaci.2015.12.1299
dc.identifier.citedreferenceNorman PS, Lichtenstein LM, Marsh DG. Studies on allergoids from naturally occurring allergens. IV. Efficacy and safety of long-term allergoid treatment of ragweed hay fever. J Allergy Clin Immunol. 1981; 68 ( 6 ): 460 - 470. https://doi.org/10.1016/0091-6749(81)90200-1
dc.identifier.citedreferenceGrammer LC, Zeiss CR, Suszko IM, Shaughnessy MA, Patterson R. A double-blind, placebo-controlled trial of polymerized whole ragweed for immunotherapy of ragweed allergy. J Allergy Clin Immunol. 1982; 69 ( 6 ): 494 - 499. https://doi.org/10.1016/0091-6749(82)90173-7
dc.identifier.citedreferenceBousquet J, Hejjaoui A, Soussana M, Michel FB. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. IV. Comparison of the safety and efficacy of two dosages of a high-molecular-weight allergoid. J Allergy Clin Immunol. 1990; 85 ( 2 ): 490 - 497. https://doi.org/10.1016/0091-6749(90)90160-6
dc.identifier.citedreferenceBousquet J, Maasch HJ, Hejjaoui A, et al. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. III. Efficacy and safety of unfractionated and high-molecular-weight preparations in rhinoconjunctivitis and asthma. J Allergy Clin Immunol. 1989; 84 (4 pt 1): 546 - 556. https://doi.org/10.1016/0091-6749(89)90369-2
dc.identifier.citedreferenceRiechelmann H, Schmutzhard J, van der Werf JF, Distler A, Kleinjans HA. Efficacy and safety of a glutaraldehyde-modified house dust mite extract in allergic rhinitis. Am J Rhinol Allergy. 2010; 24 ( 5 ): e104 - e109. https://doi.org/10.2500/ajra.2010.24.3508
dc.identifier.citedreferencePassalacqua G, Albano M, Fregonese L, et al. Randomised controlled trial of local allergoid immunotherapy on allergic inflammation in mite-induced rhinoconjunctivitis. Lancet. 1998; 351 ( 9103 ): 629 - 632. https://doi.org/10.1016/S0140-6736(97)07055-4
dc.identifier.citedreferenceRauber MM, Wu HK, Adams B, et al. Birch pollen allergen-specific immunotherapy with glutaraldehyde-modified allergoid induces IL-10 secretion and protective antibody responses. Allergy. 2019; 74 ( 8 ): 1575 - 1579. https://doi.org/10.1111/all.13774
dc.identifier.citedreferenceRamesh M, Karagic M. New modalities of allergen immunotherapy. Hum Vaccin Immunother. 2018; 14 ( 12 ): 2848 - 2863. https://doi.org/10.1080/21645515.2018.1502126
dc.identifier.citedreferencePohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy. 2017; 72 ( 10 ): 1461 - 1474. https://doi.org/10.1111/all.13199
dc.identifier.citedreferenceBasomba A, Tabar AI, de Rojas DH, et al. Allergen vaccination with a liposome-encapsulated extract of Dermatophagoides pteronyssinus: a randomized, double-blind, placebo-controlled trial in asthmatic patients. J Allergy Clin Immunol. 2002; 109 ( 6 ): 943 - 948. https://doi.org/10.1067/mai.2002.124465
dc.identifier.citedreferenceTePas EC, Hoyte EG, McIntire JJ, Umetsu DT. Clinical efficacy of microencapsulated timothy grass pollen extract in grass-allergic individuals. Ann Allergy Asthma Immunol. 2004; 92 ( 1 ): 25 - 31. https://doi.org/10.1016/S1081-1206(10)61706-1
dc.identifier.citedreferenceFrankland AW, Augustin R. Prophylaxis of summer hay-fever and asthma: a controlled trial comparing crude grass-pollen extracts with the isolated main protein component. Lancet. 1954; 266 ( 6821 ): 1055 - 1057. https://doi.org/10.1016/s0140-6736(54)91620-7
dc.identifier.citedreferencePenagos M, Eifan AO, Durham SR, Scadding GW. Duration of allergen immunotherapy for long-term efficacy in allergic rhinoconjunctivitis. Curr Treat Options Allergy. 2018; 5 ( 3 ): 275 - 290. https://doi.org/10.1007/s40521-018-0176-2
dc.identifier.citedreferenceBachert C, Larche M, Bonini S, et al. Allergen immunotherapy on the way to product-based evaluation – a WAO statement. World Allergy Organ J. 2015; 8 ( 1 ): 29. https://doi.org/10.1186/s40413-015-0078-8
dc.identifier.citedreferenceMcEldowney SJ, Bush RK. Pollen immunotherapy: selection,prevention, and future directions. Curr Allergy Asthma Rep. 2006; 6 ( 5 ): 420 - 426. https://doi.org/10.1007/s11882-996-0016-5
dc.identifier.citedreferenceCoop CA. Immunotherapy for mold allergy. Clin Rev Allergy Immunol. 2014; 47 ( 3 ): 289 - 298. https://doi.org/10.1007/s12016-013-8389-4
dc.identifier.citedreferenceNelson HS. Immunotherapy for house-dust mite allergy. Allergy Asthma Proc. 2018; 39 ( 4 ): 264 - 272. https://doi.org/10.2500/aap.2018.39.4145
dc.identifier.citedreferenceDhami S, Agarwal A. Does evidence support the use of cat allergen immunotherapy? Curr Opin Allergy Clin Immunol. 2018; 18 ( 4 ): 350 - 355. https://doi.org/10.1097/ACI.0000000000000457
dc.identifier.citedreferenceLarenas-Linnemann D. Allergen immunotherapy: an update on protocols of administration. Curr Opin Allergy Clin Immunol. 2015; 15 ( 6 ): 556 - 567. https://doi.org/10.1097/ACI.0000000000000220
dc.identifier.citedreferenceEpstein TG, Liss GM, Murphy-Berendts K, Bernstein DI. AAAAI/ACAAI surveillance study of subcutaneous immunotherapy, years 2008-2012: an update on fatal and nonfatal systemic allergic reactions. J Allergy Clin Immunol Pract. 2014; 2 ( 2 ): 161 - 167. https://doi.org/10.1016/j.jaip.2014.01.004
dc.identifier.citedreferenceEpstein TG, Liss GM, Berendts KM, Bernstein DI. AAAAI/ACAAI Subcutaneous Immunotherapy Surveillance Study (2013-2017): fatalities, infections, delayed reactions, and use of epinephrine autoinjectors. J Allergy Clin Immunol Pract. 2019; 7 ( 6 ): 1996 - 2003.e1. https://doi.org/10.1016/j.jaip.2019.01.058
dc.identifier.citedreferenceDaVeiga SP, Liu X, Caruso K, Golubski S, Xu M, Lang DM. Systemic reactions associated with subcutaneous allergen immunotherapy: timing and risk assessment. Ann Allergy Asthma Immunol. 2011; 106 ( 6 ): 533 - 537.e2. https://doi.org/10.1016/j.anai.2011.02.007
dc.identifier.citedreferenceHankin CS, Cox L, Lang D, et al. Allergy immunotherapy among Medicaid-enrolled children with allergic rhinitis: patterns of care, resource use, and costs. J Allergy Clin Immunol. 2008; 121 ( 1 ): 227 - 232. https://doi.org/10.1016/j.jaci.2007.10.026
dc.identifier.citedreferenceHankin CS, Cox L, Lang D, et al. Allergen immunotherapy and health care cost benefits for children with allergic rhinitis: a large-scale, retrospective, matched cohort study. Ann Allergy Asthma Immunol. 2010; 104 ( 1 ): 79 - 85. https://doi.org/10.1016/j.anai.2009.11.010
dc.identifier.citedreferenceSun D, Cafone J, Shaker M, Greenhawt M. The cost-effectiveness of requiring universal vs contextual self-injectable epinephrine autoinjector for allergen immunotherapy. Ann Allergy Asthma Immunol. 2019; 123 ( 6 ): 582 - 589. https://doi.org/10.1016/j.anai.2019.09.009
dc.identifier.citedreferenceEng PA, Borer-Reinhold M, Heijnen IA, Gnehm HP. Twelve-year follow-up after discontinuation of preseasonal grass pollen immunotherapy in childhood. Allergy. 2006; 61 ( 2 ): 198 - 201. https://doi.org/10.1111/j.1398-9995.2006.01011.x
dc.identifier.citedreferenceHalken S, Larenas-Linnemann D, Roberts G, et al. EAACI guidelines on allergen immunotherapy: prevention of allergy. Pediatr Allergy Immunol. 2017; 28 ( 8 ): 728 - 745. https://doi.org/10.1111/pai.12807
dc.identifier.citedreferenceDes Roches A, Paradis L, Menardo JL, Bouges S, Daures JP, Bousquet J. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. VI. Specific immunotherapy prevents the onset of new sensitizations in children. J Allergy Clin Immunol. 1997; 99 ( 4 ): 450 - 453. https://doi.org/10.1016/s0091-6749(97)70069-1
dc.identifier.citedreferencePajno GB, Barberio G, De Luca F, Morabito L, Parmiani S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin Exp Allergy. 2001; 31 ( 9 ): 1392 - 1397. https://doi.org/10.1046/j.1365-2222.2001.01161.x
dc.identifier.citedreferenceWorm M, Rak S, Samolinski B, et al. Efficacy and safety of birch pollen allergoid subcutaneous immunotherapy: a 2-year double-blind, placebo-controlled, randomized trial plus 1-year open-label extension. Clin Exp Allergy. 2019; 49 ( 4 ): 516 - 525. https://doi.org/10.1111/cea.13331
dc.identifier.citedreferenceWang ZX, Shi H. Single-allergen sublingual immunotherapy versus multi-allergen subcutaneous immunotherapy for children with allergic rhinitis. J Huazhong Univ Sci Technolog Med Sci. 2017; 37 ( 3 ): 407 - 411. https://doi.org/10.1007/s11596-017-1748-2
dc.identifier.citedreferenceBozek A, Kolodziejczyk K, Krajewska-Wojtys A, Jarzab J. Pre-seasonal, subcutaneous immunotherapy: a double-blinded, placebo-controlled study in elderly patients with an allergy to grass. Ann Allergy Asthma Immunol. 2016; 116 ( 2 ): 156 - 161. https://doi.org/10.1016/j.anai.2015.12.013
dc.identifier.citedreferenceBozek A, Kolodziejczyk K, Kozlowska R, Canonica GW. Evidence of the efficacy and safety of house dust mite subcutaneous immunotherapy in elderly allergic rhinitis patients: a randomized, double-blind placebo-controlled trial. Clin Transl Allergy. 2017; 7: 43. https://doi.org/10.1186/s13601-017-0180-9
dc.identifier.citedreferenceKim JY, Jang MJ, Kim DY, Park SW, Han DH. Efficacy of subcutaneous and sublingual immunotherapy for house dust mite allergy: a network meta-analysis-based comparison. J Allergy Clin Immunol Pract. 2021; 9 ( 12 ): 4450 - 4458.e6. https://doi.org/10.1016/j.jaip.2021.08.018
dc.identifier.citedreferenceJutel M, Agache I, Bonini S, et al. International consensus on allergy immunotherapy. J Allergy Clin Immunol. 2015; 136 ( 3 ): 556 - 568. https://doi.org/10.1016/j.jaci.2015.04.047
dc.identifier.citedreferenceShamji MH, Larson D, Eifan A, et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol. 2021; 148 ( 4 ): 1061 - 1071.e11. https://doi.org/10.1016/j.jaci.2021.03.030
dc.identifier.citedreferenceRondon C, Campo P, Salas M, et al. Efficacy and safety of D. pteronyssinus immunotherapy in local allergic rhinitis: a double-blind placebo-controlled clinical trial. Allergy. 2016; 71 ( 7 ): 1057 - 1061. https://doi.org/10.1111/all.12889
dc.identifier.citedreferenceKleine-Tebbe J, Walmar M, Bitsch-Jensen K, et al. Negative clinical results from a randomised, double-blind, placebo-controlled trial evaluating the efficacy of two doses of immunologically enhanced, grass subcutaneous immunotherapy despite dose-dependent immunological response. Clin Drug Investig. 2014; 34 ( 8 ): 577 - 586. https://doi.org/10.1007/s40261-014-0216-z
dc.identifier.citedreferenceAllergenics. FDA. Accessed October 29, 2021. https://www.fda.gov/vaccines-blood-biologics/allergenics
dc.identifier.citedreferenceKlimek L, Uhlig J, Mosges R, Rettig K, Pfaar O. A high polymerized grass pollen extract is efficacious and safe in a randomized double-blind, placebo-controlled study using a novel up-dosing cluster-protocol. Allergy. 2014; 69 ( 12 ): 1629 - 1638. https://doi.org/10.1111/all.12513
dc.identifier.citedreferenceTworek D, Bochenska-Marciniak M, Kuprys-Lipinska I, Kupczyk M, Kuna P. Perennial is more effective than preseasonal subcutaneous immunotherapy in the treatment of seasonal allergic rhinoconjunctivitis. Am J Rhinol Allergy. 2013; 27 ( 4 ): 304 - 308. https://doi.org/10.2500/ajra.2013.27.3935
dc.identifier.citedreferenceJames LK, Shamji MH, Walker SM, et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol. 2011; 127 ( 2 ):509-516.e1-5. https://doi.org/10.1016/j.jaci.2010.12.1080
dc.identifier.citedreferenceKuna P, Kaczmarek J, Kupczyk M. Efficacy and safety of immunotherapy for allergies to Alternaria alternata in children. J Allergy Clin Immunol. 2011; 127 ( 2 ):502-508.e1-6. https://doi.org/10.1016/j.jaci.2010.11.036
dc.identifier.citedreferencePfaar O, Robinson DS, Sager A, Emuzyte R. Immunotherapy with depigmented-polymerized mixed tree pollen extract: a clinical trial and responder analysis. Allergy. 2010; 65 ( 12 ): 1614 - 1621. https://doi.org/10.1111/j.1398-9995.2010.02413.x
dc.identifier.citedreferenceTabar AI, Lizaso MT, Garcia BE, et al. Double-blind, placebo-controlled study of Alternaria alternata immunotherapy: clinical efficacy and safety. Pediatr Allergy Immunol. 2008; 19 ( 1 ): 67 - 75. https://doi.org/10.1111/j.1399-3038.2007.00589.x
dc.identifier.citedreferenceCharpin D, Gouitaa M, Dron-Gonzalvez M, et al. Immunotherapy with an aluminum hydroxide-adsorbed Juniperus ashei foreign pollen extract in seasonal indigenous cypress pollen rhinoconjunctivitis. A double-blind, placebo-controlled study. Int Arch Allergy Immunol. 2007; 143 ( 2 ): 83 - 91. https://doi.org/10.1159/000098656
dc.identifier.citedreferencePowell RJ, Frew AJ, Corrigan CJ, Durham SR. Effect of grass pollen immunotherapy with Alutard SQ on quality of life in seasonal allergic rhinoconjunctivitis. Allergy. 2007; 62 ( 11 ): 1335 - 1338. https://doi.org/10.1111/j.1398-9995.2007.01455.x
dc.identifier.citedreferenceAlvarez-Cuesta E, Aragoneses-Gilsanz E, Martin-Garcia C, Berges-Gimeno P, Gonzalez-Mancebo E, Cuesta-Herranz J. Immunotherapy with depigmented glutaraldehyde-polymerized extracts: changes in quality of life. Clin Exp Allergy. 2005; 35 ( 5 ): 572 - 578. https://doi.org/10.1111/j.1365-2222.2005.02245.x
dc.identifier.citedreferenceDokic D, Schnitker J, Narkus A, Cromwell O, Frank E. Clinical effects of specific immunotherapy: a two-year double-blind, placebo-controlled study with a one year follow-up. Prilozi. 2005; 26 ( 2 ): 113 - 129.
dc.identifier.citedreferenceFerrer M, Burches E, Pelaez A, et al. Double-blind, placebo-controlled study of immunotherapy with Parietaria judaica: clinical efficacy and tolerance. J Investig Allergol Clin Immunol. 2005; 15 ( 4 ): 283 - 292.
dc.identifier.citedreferenceTabar AI, Echechipia S, Garcia BE, et al. Double-blind comparative study of cluster and conventional immunotherapy schedules with Dermatophagoides pteronyssinus. J Allergy Clin Immunol. 2005; 116 ( 1 ): 109 - 118. https://doi.org/10.1016/j.jaci.2005.05.005
dc.identifier.citedreferenceCrimi N, Li Gotti F, Mangano G, et al. A randomized, controlled study of specific immunotherapy in monosensitized subjects with seasonal rhinitis: effect on bronchial hyperresponsiveness, sputum inflammatory markers and development of asthma symptoms. Ann Ital Med Int. 2004; 19 ( 2 ): 98 - 108.
dc.identifier.citedreferenceMirone C, Albert F, Tosi A, et al. Efficacy and safety of subcutaneous immunotherapy with a biologically standardized extract of Ambrosia artemisiifolia pollen: a double-blind, placebo-controlled study. Clin Exp Allergy. 2004; 34 ( 9 ): 1408 - 1414. https://doi.org/10.1111/j.1365-2222.2004.02056.x
dc.identifier.citedreferenceVarney VA, Tabbah K, Mavroleon G, Frew AJ. Usefulness of specific immunotherapy in patients with severe perennial allergic rhinitis induced by house dust mite: a double-blind, randomized, placebo-controlled trial. Clin Exp Allergy. 2003; 33 ( 8 ): 1076 - 1082. https://doi.org/10.1046/j.1365-2222.2003.01735.x
dc.identifier.citedreferenceArvidsson MB, Lowhagen O, Rak S. Effect of 2-year placebo-controlled immunotherapy on airway symptoms and medication in patients with birch pollen allergy. J Allergy Clin Immunol. 2002; 109 ( 5 ): 777 - 783. https://doi.org/10.1067/mai.2002.123868
dc.identifier.citedreferenceBodtger U, Poulsen LK, Jacobi HH, Malling HJ. The safety and efficacy of subcutaneous birch pollen immunotherapy – a one-year, randomised, double-blind, placebo-controlled study. Allergy. 2002; 57 ( 4 ): 297 - 305. https://doi.org/10.1034/j.1398-9995.2002.1o3532.x
dc.identifier.citedreferenceDrachenberg K, Heinzkill M, Urban E. Short-term immunotherapy with tree pollen allergoids and the adjuvant monophosphoryl lipid-A – results from a multicentre, placebo-controlled, randomised, double-blind study. [Kurzzeit-Immuntherapie mit Baumpollen – Allergoiden und dem Adjuvans Monophosphoryl Lipid-A: Ergebnisse einer randomisierten, doppelblinden, plazebokontrollierten Multicenterstudie]. Allergologie. 2002; 25: 466 - 474.
dc.identifier.citedreferenceLeynadier F, Banoun L, Dollois B, et al. Immunotherapy with a calcium phosphate-adsorbed five-grass-pollen extract in seasonal rhinoconjunctivitis: a double-blind, placebo-controlled study. Clin Exp Allergy. 2001; 31 ( 7 ): 988 - 996. https://doi.org/10.1046/j.1365-2222.2001.01145.x
dc.identifier.citedreferenceWalker SM, Pajno GB, Lima MT, Wilson DR, Durham SR. Grass pollen immunotherapy for seasonal rhinitis and asthma: a randomized, controlled trial. J Allergy Clin Immunol. 2001; 107 ( 1 ): 87 - 93. https://doi.org/10.1067/mai.2001.112027
dc.identifier.citedreferenceBalda BR, Wolf H, Baumgarten C, et al. Tree-pollen allergy is efficiently treated by short-term immunotherapy (STI) with seven preseasonal injections of molecular standardized allergens. Allergy. 1998; 53 ( 8 ): 740 - 748. https://doi.org/10.1111/j.1398-9995.1998.tb03969.x
dc.identifier.citedreferenceZenner HP, Baumgarten C, Rasp G, et al. Short-term immunotherapy: a prospective, randomized, double-blind, placebo-controlled multicenter study of molecular standardized grass and rye allergens in patients with grass pollen-induced allergic rhinitis. J Allergy Clin Immunol. 1997; 100 ( 1 ): 23 - 29. https://doi.org/10.1016/s0091-6749(97)70190-8
dc.identifier.citedreferenceOlsen OT, Frolund L, Heinig J, Jacobsen L, Svendsen UG. A double-blind, randomized study investigating the efficacy and specificity of immunotherapy with Artemisia vulgaris or Phleum pratense/betula verrucosa. Allergol Immunopathol (Madr). 1995; 23 ( 2 ): 73 - 78.
dc.identifier.citedreferenceOrtolani C, Pastorello EA, Incorvaia C, et al. A double-blind, placebo-controlled study of immunotherapy with an alginate-conjugated extract of Parietaria judaica in patients with Parietaria hay fever. Allergy. 1994; 49 ( 1 ): 13 - 21. https://doi.org/10.1111/j.1398-9995.1994.tb00767.x
dc.identifier.citedreferencePastorello EA, Pravettoni V, Incorvaia C, et al. Clinical and immunological effects of immunotherapy with alum-absorbed grass allergoid in grass-pollen-induced hay fever. Allergy. 1992; 47 (4 pt 1): 281 - 290. https://doi.org/10.1111/j.1398-9995.1992.tb02054.x
dc.identifier.citedreferenceVarney VA, Gaga M, Frew AJ, Aber VR, Kay AB, Durham SR. Usefulness of immunotherapy in patients with severe summer hay fever uncontrolled by antiallergic drugs. BMJ. 1991; 302 ( 6771 ): 265 - 269. https://doi.org/10.1136/bmj.302.6771.265
dc.identifier.citedreferenceGrammer LC, Shaughnessy MA, Suszko IM, Shaughnessy JJ, Patterson R. A double-blind histamine placebo-controlled trial of polymerized whole grass for immunotherapy of grass allergy. J Allergy Clin Immunol. 1983; 72 (5 pt 1): 448 - 453. https://doi.org/10.1016/0091-6749(83)90580-8
dc.identifier.citedreferenceWeyer A, Donat N, L’Heritier C, et al. Grass pollen hyposensitization versus placebo therapy. I. Clinical effectiveness and methodological aspects of a pre-seasonal course of desensitization with a four-grass pollen extract. Allergy. 1981; 36 ( 5 ): 309 - 317. https://doi.org/10.1111/j.1398-9995.1981.tb01582.x
dc.identifier.citedreferenceMoreno V, Alvarino M, Rodriguez F, et al. Randomized dose-response study of subcutaneous immunotherapy with a Dermatophagoides pteronyssinus extract in patients with respiratory allergy. Immunotherapy. 2016; 8 ( 3 ): 265 - 77. https://doi.org/10.2217/imt.15.124
dc.identifier.citedreferencePfaar O, Urry Z, Robinson DS, et al. A randomized placebo-controlled trial of rush preseasonal depigmented polymerized grass pollen immunotherapy. Allergy. 2012; 67 ( 2 ): 272 - 279. https://doi.org/10.1111/j.1398-9995.2011.02736.x
dc.identifier.citedreferenceDuBuske LM, Frew AJ, Horak F, et al. Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011; 32 ( 3 ): 239 - 247. https://doi.org/10.2500/aap.2011.32.3453
dc.identifier.citedreferenceCeuppens JL, Bullens D, Kleinjans H, van der Werf J, Group PBES. Immunotherapy with a modified birch pollen extract in allergic rhinoconjunctivitis: clinical and immunological effects. Clin Exp Allergy. 2009; 39 ( 12 ): 1903 - 1909. https://doi.org/10.1111/j.1365-2222.2009.03379.x
dc.identifier.citedreferenceChakraborty P, Roy I, Chatterjee S, Chanda S, Gupta-Bharracharya S. Phoenix sylvestris Roxb pollen allergy: a 2-year randomized controlled trial and follow-up study of immunotherapy in patients with seasonal allergy in an agricultural area of West Bengal, India. J Investig Allergol Clin Immunol. 2006; 16 ( 6 ): 377 - 384.
dc.identifier.citedreferenceFrew AJ, Powell RJ, Corrigan CJ, Durham SR, Group UKIS. Efficacy and safety of specific immunotherapy with SQ allergen extract in treatment-resistant seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006; 117 ( 2 ): 319 - 325. https://doi.org/10.1016/j.jaci.2005.11.014
dc.identifier.citedreferenceRak S, Heinrich C, Jacobsen L, Scheynius A, Venge P. A double-blinded, comparative study of the effects of short preseason specific immunotherapy and topical steroids in patients with allergic rhinoconjunctivitis and asthma. J Allergy Clin Immunol. 2001; 108 ( 6 ): 921 - 928. https://doi.org/10.1067/mai.2001.119743
dc.identifier.citedreferenceAriano R, Kroon AM, Augeri G, Canonica GW, Passalacqua G. Long-term treatment with allergoid immunotherapy with Parietaria. Clinical and immunologic effects in a randomized, controlled trial. Allergy. 1999; 54 ( 4 ): 313 - 319. https://doi.org/10.1034/j.1398-9995.1999.00900.x
dc.identifier.citedreferenceTari MG, Mancino M, Ghezzi E, Frank E, Cromwell O. Immunotherapy with an alum-adsorbed Parietaria-pollen allergoid: a 2-year, double-blind, placebo-controlled study. Allergy. 1997; 52 ( 1 ): 65 - 74. https://doi.org/10.1111/j.1398-9995.1997.tb02547.x
dc.identifier.citedreferenceDolz I, Martinez-Cocera C, Bartolome JM, Cimarra M. A double-blind, placebo-controlled study of immunotherapy with grass-pollen extract Alutard SQ during a 3-year period with initial rush immunotherapy. Allergy. 1996; 51 ( 7 ): 489 - 500. https://doi.org/10.1111/j.1398-9995.1996.tb04655.x
dc.identifier.citedreferenceBrunet C, Bedard PM, Lavoie A, Jobin M, Hebert J. Allergic rhinitis to ragweed pollen. I. Reassessment of the effects of immunotherapy on cellular and humoral responses. J Allergy Clin Immunol. 1992; 89 (1 pt 1): 76 - 86. https://doi.org/10.1016/s0091-6749(05)80043-0
dc.identifier.citedreferenceBousquet J, Becker WM, Hejjaoui A, et al. Differences in clinical and immunologic reactivity of patients allergic to grass pollens and to multiple-pollen species. II. Efficacy of a double-blind, placebo-controlled, specific immunotherapy with standardized extracts. J Allergy Clin Immunol. 1991; 88 ( 1 ): 43 - 53. https://doi.org/10.1016/0091-6749(91)90299-4
dc.identifier.citedreferenceIliopoulos O, Proud D, Adkinson Jr NF, et al. Effects of immunotherapy on the early, late, and rechallenge nasal reaction to provocation with allergen: changes in inflammatory mediators and cells. J Allergy Clin Immunol. 1991; 87 ( 4 ): 855 - 866. https://doi.org/10.1016/0091-6749(91)90134-a
dc.identifier.citedreferenceFell P, Brostoff J. A single dose desensitization for summer hay fever. Results of a double blind study-1988. Eur J Clin Pharmacol. 1990; 38 ( 1 ): 77 - 79. https://doi.org/10.1007/BF00314808
dc.identifier.citedreferenceHorst M, Hejjaoui A, Horst V, Michel FB, Bousquet J. Double-blind, placebo-controlled rush immunotherapy with a standardized Alternaria extract. J Allergy Clin Immunol. 1990; 85 ( 2 ): 460 - 472. https://doi.org/10.1016/0091-6749(90)90156-x
dc.identifier.citedreferenceJuniper EF, Kline PA, Ramsdale EH, Hargreave FE. Comparison of the efficacy and side effects of aqueous steroid nasal spray (budesonide) and allergen-injection therapy (Pollinex-R) in the treatment of seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 1990; 85 ( 3 ): 606 - 611. https://doi.org/10.1016/0091-6749(90)90100-i
dc.identifier.citedreferenceEwan PW, Alexander MM, Snape C, Ind PW, Agrell B, Dreborg S. Effective hyposensitization in allergic rhinitis using a potent partially purified extract of house dust mite. Clin Allergy. 1988; 18 ( 5 ): 501 - 508. https://doi.org/10.1111/j.1365-2222.1988.tb02900.x
dc.identifier.citedreferenceBousquet J, Hejjaoui A, Skassa-Brociek W, et al. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. I. Rush immunotherapy with allergoids and standardized orchard grass-pollen extract. J Allergy Clin Immunol. 1987; 80 ( 4 ): 591 - 598. https://doi.org/10.1016/0091-6749(87)90013-3
dc.identifier.citedreferenceGrammer LC, Shaughnessy MA, Bernhard MI, et al. The safety and activity of polymerized ragweed: a double-blind, placebo-controlled trial in 81 patients with ragweed rhinitis. J Allergy Clin Immunol. 1987; 80 ( 2 ): 177 - 183. https://doi.org/10.1016/0091-6749(87)90127-8
dc.identifier.citedreferenceGrammer LC, Shaughnessy MA, Suszko IM, Shaughnessy JJ, Patterson R. Persistence of efficacy after a brief course of polymerized ragweed allergen: a controlled study. J Allergy Clin Immunol. 1984; 73 ( 4 ): 484 - 489. https://doi.org/10.1016/0091-6749(84)90359-2
dc.identifier.citedreferenceMetzger WJ, Dorminey HC, Richerson HB, Weiler JM, Donnelly A, Moran D. Clinical and immunologic evaluation of glutaraldehyde-modified tyrosine-adsorbed short ragweed extract: a double-blind, placebo-controlled trial. J Allergy Clin Immunol. 1981; 68 ( 6 ): 442 - 448. https://doi.org/10.1016/0091-6749(81)90198-6
dc.identifier.citedreferenceCox L. Accelerated immunotherapy schedules: review of efficacy and safety. Ann Allergy Asthma Immunol. 2006; 97 ( 2 ): 126 - 137; quiz 137-140, 202. https://doi.org/10.1016/S1081-1206(10)60003-8
dc.identifier.citedreferenceMore DR, Hagan LL. Factors affecting compliance with allergen immunotherapy at a military medical center. Ann Allergy Asthma Immunol. 2002; 88 ( 4 ): 391 - 394. https://doi.org/10.1016/S1081-1206(10)62370-8
dc.identifier.citedreferencePfaar O, Biedermann T, Klimek L, Sager A, Robinson DS. Depigmented-polymerized mixed grass/birch pollen extract immunotherapy is effective in polysensitized patients. Allergy. 2013; 68 ( 10 ): 1306 - 1313. https://doi.org/10.1111/all.12219
dc.identifier.citedreferenceKlunker S, Saggar LR, Seyfert-Margolis V, et al. Combination treatment with omalizumab and rush immunotherapy for ragweed-induced allergic rhinitis: Inhibition of IgE-facilitated allergen binding. J Allergy Clin Immunol. 2007; 120 ( 3 ): 688 - 695. https://doi.org/10.1016/j.jaci.2007.05.034
dc.identifier.citedreferenceMorais-Almeida M, Arede C, Sampaio G, Borrego LM. Ultrarush schedule of subcutaneous immunotherapy with modified allergen extracts is safe in paediatric age. Asia Pac Allergy. 2016; 6 ( 1 ): 35 - 42. https://doi.org/10.5415/apallergy.2016.6.1.35
dc.identifier.citedreferenceAkmanlar N, Altintas DU, Guneser KS, Yilmaz M, Bingol G. Comparison of conventional and rush immunotherapy with der PI in childhood respiratory allergy. Allergol Immunopathol (Madr). 2000; 28 ( 4 ): 213 - 218.
dc.identifier.citedreferenceLilja G, Sundin B, Graff-Lonnevig V, et al. Immunotherapy with cat- and dog-dander extracts. IV. Effects of 2 years of treatment. J Allergy Clin Immunol. 1989; 83 ( 1 ): 37 - 44. https://doi.org/10.1016/0091-6749(89)90475-2
dc.identifier.citedreferenceBousquet J, Hejjaoui A, Dhivert H, Clauzel AM, Michel FB. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. Systemic reactions during the rush protocol in patients suffering from asthma. J Allergy Clin Immunol. 1989; 83 ( 4 ): 797 - 802. https://doi.org/10.1016/0091-6749(89)90017-1
dc.identifier.citedreferenceWinslow AW, Turbyville JC, Sublett JW, Sublett JL, Pollard SJ. Comparison of systemic reactions in rush, cluster, and standard-build aeroallergen immunotherapy. Ann Allergy Asthma Immunol. 2016; 117 ( 5 ): 542 - 545. https://doi.org/10.1016/j.anai.2016.09.005
dc.identifier.citedreferenceCasanovas M, Martin R, Jimenez C, Caballero R, Fernandez-Caldas E. Safety of an ultra-rush immunotherapy build-up schedule with therapeutic vaccines containing depigmented and polymerized allergen extracts. Int Arch Allergy Immunol. 2006; 139 ( 2 ): 153 - 158. https://doi.org/10.1159/000090392
dc.identifier.citedreferenceCook KA, Kelso JM, White AA. Increased risk of systemic reactions extends beyond completion of rush immunotherapy. J Allergy Clin Immunol Pract. 2017; 5 ( 6 ): 1773 - 1775. https://doi.org/10.1016/j.jaip.2017.04.015
dc.identifier.citedreferencePortnoy J, Bagstad K, Kanarek H, Pacheco F, Hall B, Barnes C. Premedication reduces the incidence of systemic reactions during inhalant rush immunotherapy with mixtures of allergenic extracts. Ann Allergy. 1994; 73 ( 5 ): 409 - 418.
dc.identifier.citedreferenceHejjaoui A, Dhivert H, Michel FB, Bousquet J. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. IV. Systemic reactions according to the immunotherapy schedule. J Allergy Clin Immunol. 1990; 85 ( 2 ): 473 - 479. https://doi.org/10.1016/0091-6749(90)90157-y
dc.identifier.citedreferenceFeng S, Xu Y, Ma R, Sun Y, Luo X, Li H. Cluster subcutaneous allergen specific immunotherapy for the treatment of allergic rhinitis: a systematic review and meta-analysis. PLoS One. 2014; 9 ( 1 ): e86529. https://doi.org/10.1371/journal.pone.0086529
dc.identifier.citedreferenceJiang Z, Xiao H, Zhang H, Liu S, Meng J. Comparison of adverse events between cluster and conventional immunotherapy for allergic rhinitis patients with or without asthma: A systematic review and meta-analysis. Am J Otolaryngol. 2019; 40 ( 6 ): 102269. https://doi.org/10.1016/j.amjoto.2019.07.013
dc.identifier.citedreferenceFan Q, Liu X, Gao J, Huang S, Ni L. Comparative analysis of cluster versus conventional immunotherapy in patients with allergic rhinitis. Exp Ther Med. 2017; 13 ( 2 ): 717 - 722. https://doi.org/10.3892/etm.2017.4032
dc.identifier.citedreferenceNanda A, O’Connor M, Anand M, et al. Dose dependence and time course of the immunologic response to administration of standardized cat allergen extract. J Allergy Clin Immunol. 2004; 114 ( 6 ): 1339 - 1344. https://doi.org/10.1016/j.jaci.2004.08.049
dc.identifier.citedreferenceSubiza J, Feliu A, Subiza JL, Uhlig J, Fernandez-Caldas E. Cluster immunotherapy with a glutaraldehyde-modified mixture of grasses results in an improvement in specific nasal provocation tests in less than 2.5 months of treatment. Clin Exp Allergy. 2008; 38 ( 6 ): 987 - 994. https://doi.org/10.1111/j.1365-2222.2008.02995.x
dc.identifier.citedreferenceYu J, Zhong N, Luo Q, et al. Early efficacy analysis of cluster and conventional immunotherapy in patients with allergic rhinitis. Ear Nose Throat J. 2021; 100 ( 5 ): 378 - 385. https://doi.org/10.1177/0145561319863370
dc.identifier.citedreferenceZhang L, Wang C, Han D, Wang X, Zhao Y, Liu J. Comparative study of cluster and conventional immunotherapy schedules with dermatophagoides pteronyssinus in the treatment of persistent allergic rhinitis. Int Arch Allergy Immunol. 2009; 148 ( 2 ): 161 - 169. https://doi.org/10.1159/000155747
dc.identifier.citedreferenceWang CS, Zhang W, Wang XD, et al. [ Comparative study on cluster and conventional immunotherapy with Dermatophagoides pteronyssinus in patients with allergic rhinitis ]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2011; 46 ( 12 ): 981 - 985.
dc.identifier.citedreferenceCook KA, Ford CM, Leyvas EA, Waalen J, White AA. Half of systemic reactions to allergen immunotherapy are delayed, majority require treatment with epinephrine. J Allergy Clin Immunol Pract. 2017; 5 ( 5 ): 1415 - 1417. https://doi.org/10.1016/j.jaip.2017.03.025
dc.identifier.citedreferenceNielsen L, Johnsen CR, Mosbech H, Poulsen LK, Malling HJ. Antihistamine premedication in specific cluster immunotherapy: a double-blind, placebo-controlled study. J Allergy Clin Immunol. 1996; 97 ( 6 ): 1207 - 1213. https://doi.org/10.1016/s0091-6749(96)70186-0
dc.identifier.citedreferenceLarenas Linnemann DE. One hundred years of immunotherapy: review of the first landmark studies. Allergy Asthma Proc. 2012; 33 ( 2 ): 122 - 128. https://doi.org/10.2500/aap.2012.33.3515
dc.identifier.citedreferenceScadding GK, Brostoff J. Low dose sublingual therapy in patients with allergic rhinitis due to house dust mite. Clin Allergy. 1986; 16 ( 5 ): 483 - 491. https://doi.org/10.1111/j.1365-2222.1986.tb01983.x
dc.identifier.citedreferenceDurham SR, Yang WH, Pedersen MR, Johansen N, Rak S. Sublingual immunotherapy with once-daily grass allergen tablets: a randomized controlled trial in seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006; 117 ( 4 ): 802 - 809. https://doi.org/10.1016/j.jaci.2005.12.1358
dc.identifier.citedreferenceDidier A, Malling HJ, Worm M, et al. Optimal dose, efficacy, and safety of once-daily sublingual immunotherapy with a 5-grass pollen tablet for seasonal allergic rhinitis. J Allergy Clin Immunol. 2007; 120 ( 6 ): 1338 - 1345. https://doi.org/10.1016/j.jaci.2007.07.046
dc.identifier.citedreferenceCalderon MA. Meta-analyses of specific immunotherapy trials. Drugs Today (Barc). 2008; 44 (suppl B): 31 - 34.
dc.identifier.citedreferenceCohen J. Statistical Power Analysis for the Behavioral Scienes. 2nd ed. Lawrence Erlbaum Associates; 1988.
dc.identifier.citedreferencede Bot CM, Moed H, Berger MY, Roder E, van Wijk RG, van der Wouden JC. Sublingual immunotherapy in children with allergic rhinitis: quality of systematic reviews. Pediatr Allergy Immunol. 2011; 22 ( 6 ): 548 - 558. https://doi.org/10.1111/j.1399-3038.2011.01165.x
dc.identifier.citedreferenceKim JM, Lin SY, Suarez-Cuervo C, et al. Allergen-specific immunotherapy for pediatric asthma and rhinoconjunctivitis: a systematic review. Pediatrics. 2013; 131 ( 6 ): 1155 - 1167. https://doi.org/10.1542/peds.2013-0343
dc.identifier.citedreferenceLarenas-Linnemann D, Blaiss M, Van Bever HP, Compalati E, Baena-Cagnani CE. Pediatric sublingual immunotherapy efficacy: evidence analysis, 2009-2012. Ann Allergy Asthma Immunol. 2013; 110 ( 6 ): 402 - 415.e9. https://doi.org/10.1016/j.anai.2013.02.017
dc.identifier.citedreferenceChen L, Lei L, Cai Y, Li T. Specific sublingual immunotherapy in children with perennial rhinitis: a systemic review and meta-analysis. Int Forum Allergy Rhinol. 2020; 10 ( 11 ): 1226 - 1235. https://doi.org/10.1002/alr.22589
dc.identifier.citedreferenceFeng B, Wu J, Chen B, et al. Efficacy and safety of sublingual immunotherapy for allergic rhinitis in pediatric patients: a meta-analysis of randomized controlled trials. Am J Rhinol Allergy. 2017; 31 ( 1 ): 27 - 35. https://doi.org/10.2500/ajra.2017.31.4382
dc.identifier.citedreferenceDi Bona D, Plaia A, Leto-Barone MS, La Piana S, Di Lorenzo G. Efficacy of subcutaneous and sublingual immunotherapy with grass allergens for seasonal allergic rhinitis: a meta-analysis-based comparison. J Allergy Clin Immunol. 2012; 130 ( 5 ): 1097 - 1107.e2. https://doi.org/10.1016/j.jaci.2012.08.012
dc.identifier.citedreferenceNelson H, Cartier S, Allen-Ramey F, Lawton S, Calderon MA. Network meta-analysis shows commercialized subcutaneous and sublingual grass products have comparable efficacy. J Allergy Clin Immunol Pract. 2015; 3 ( 2 ): 256 - 266.e3. https://doi.org/10.1016/j.jaip.2014.09.018
dc.identifier.citedreferenceDranitsaris G, Ellis AK. Sublingual or subcutaneous immunotherapy for seasonal allergic rhinitis: an indirect analysis of efficacy, safety and cost. J Eval Clin Pract. 2014; 20 ( 3 ): 225 - 238. https://doi.org/10.1111/jep.12112
dc.identifier.citedreferenceChelladurai Y, Suarez-Cuervo C, Erekosima N, et al. Effectiveness of subcutaneous versus sublingual immunotherapy for the treatment of allergic rhinoconjunctivitis and asthma: a systematic review. J Allergy Clin Immunol Pract. 2013; 1 ( 4 ): 361 - 369. https://doi.org/10.1016/j.jaip.2013.04.005
dc.identifier.citedreferenceAasbjerg K, Dalhoff KP, Backer V. Adverse events during immunotherapy against grass pollen-induced allergic rhinitis – differences between subcutaneous and sublingual treatment. Basic Clin Pharmacol Toxicol. 2015; 117 ( 2 ): 73 - 84. https://doi.org/10.1111/bcpt.12416
dc.identifier.citedreferenceCalderon MA, Casale TB, Nelson HS, Demoly P. An evidence-based analysis of house dust mite allergen immunotherapy: a call for more rigorous clinical studies. J Allergy Clin Immunol. 2013; 132 ( 6 ): 1322 - 1336. https://doi.org/10.1016/j.jaci.2013.09.004
dc.identifier.citedreferenceJi DX, Tan JR, Yu HW. [ Efficacy, safety and compliance of immunotherapy in the treatment of allergic rhinitis: a Meta-analysis ]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019; 54 ( 12 ): 894 - 901. https://doi.org/10.3760/cma.j.issn.1673-0860.2019.12.003
dc.identifier.citedreferenceDi Bona D, Plaia A, Leto-Barone MS, La Piana S, Macchia L, Di Lorenzo G. Efficacy of allergen immunotherapy in reducing the likelihood of developing new allergen sensitizations: a systematic review. Allergy. 2017; 72 ( 5 ): 691 - 704. https://doi.org/10.1111/all.13104
dc.identifier.citedreferenceDi Bona D, Plaia A, Leto-Barone MS, La Piana S, Di Lorenzo G. Efficacy of grass pollen allergen sublingual immunotherapy tablets for seasonal allergic rhinoconjunctivitis: a systematic review and meta-analysis. JAMA Intern Med. 2015; 175 ( 8 ): 1301 - 1309. https://doi.org/10.1001/jamainternmed.2015.2840
dc.identifier.citedreferencede Groot H, Bijl A. Anaphylactic reaction after the first dose of sublingual immunotherapy with grass pollen tablet. Allergy. 2009; 64 ( 6 ): 963 - 964. https://doi.org/10.1111/j.1398-9995.2009.01998.x
dc.identifier.citedreferenceCochard MM, Eigenmann PA. Sublingual immunotherapy is not always a safe alternative to subcutaneous immunotherapy. J Allergy Clin Immunol. 2009; 124 ( 2 ): 378 - 379. https://doi.org/10.1016/j.jaci.2009.04.040
dc.identifier.citedreferenceJanssens NS, van Ouwerkerk L, Gerth van Wijk R, Karim F. Acute systemic reactions to sublingual immunotherapy for house dust mite. Allergy. 2020; 75 ( 11 ): 2962 - 2963. https://doi.org/10.1111/all.14417
dc.identifier.citedreferenceCreticos PS, Bernstein DI, Casale TB, Lockey RF, Maloney J, Nolte H. Coseasonal initiation of allergen immunotherapy: a systematic review. J Allergy Clin Immunol Pract. 2016; 4 ( 6 ): 1194 - 1204.e4. https://doi.org/10.1016/j.jaip.2016.05.014
dc.identifier.citedreferenceMaloney J, Durham S, Skoner D, et al. Safety of sublingual immunotherapy Timothy grass tablet in subjects with allergic rhinitis with or without conjunctivitis and history of asthma. Allergy. 2015; 70 ( 3 ): 302 - 309. https://doi.org/10.1111/all.12560
dc.identifier.citedreferenceMakatsori M, Scadding GW, Lombardo C, et al. Dropouts in sublingual allergen immunotherapy trials – a systematic review. Allergy. 2014; 69 ( 5 ): 571 - 580. https://doi.org/10.1111/all.12385
dc.identifier.citedreferenceCafone J, Capucilli P, Hill DA, Spergel JM. Eosinophilic esophagitis during sublingual and oral allergen immunotherapy. Curr Opin Allergy Clin Immunol. 2019; 19 ( 4 ): 350 - 357. https://doi.org/10.1097/ACI.0000000000000537
dc.identifier.citedreferenceOykhman P, Kim HL, Ellis AK. Allergen immunotherapy in pregnancy. Allergy Asthma Clin Immunol. 2015; 11: 31. https://doi.org/10.1186/s13223-015-0096-7
dc.identifier.citedreferenceLarenas-Linnemann D. How does the efficacy and safety of Oralair((R)) compare to other products on the market? Ther Clin Risk Manag. 2016; 12: 831 - 850. https://doi.org/10.2147/TCRM.S70363
dc.identifier.citedreferenceLarenas-Linnemann D. Direct comparison of efficacy of sublingual immunotherapy tablets for rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2016; 116 ( 4 ): 274 - 286. https://doi.org/10.1016/j.anai.2016.02.008
dc.identifier.citedreferenceMeadows A, Kaambwa B, Novielli N, et al. A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis. Health Technol Assess. 2013; 17 ( 27 ): 1 - 322, vi, xi-xiv, https://doi.org/10.3310/hta17270
dc.identifier.citedreferenceAsaria M, Dhami S, van Ree R, et al. Health economic analysis of allergen immunotherapy for the management of allergic rhinitis, asthma, food allergy and venom allergy: a systematic overview. Allergy. 2018; 73 ( 2 ): 269 - 283. https://doi.org/10.1111/all.13254
dc.identifier.citedreferenceYonekura S, Gotoh M, Kaneko S, Maekawa Y, Okubo K, Okamoto Y. Disease-modifying effect of Japanese cedar pollen sublingual immunotherapy tablets. J Allergy Clin Immunol Pract. 2021; 9 ( 11 ): 4103 - 4116.e14. https://doi.org/10.1016/j.jaip.2021.06.060
dc.identifier.citedreferenceNolte H, Waserman S, Ellis AK, Biedermann T, Wurtzen PA. Treatment effect of the tree pollen SLIT-tablet on allergic rhinoconjunctivitis during oak pollen season. J Allergy Clin Immunol Pract. 2021; 9 ( 5 ): 1871 - 1878. https://doi.org/10.1016/j.jaip.2021.01.035
dc.identifier.citedreferenceKim JY, Hwang D, Jang M, Rhee CS, Han DH. Clinical effectiveness of house dust mite immunotherapy in mono- versus poly-sensitised patients with allergic rhinitis: a systematic review and meta-analysis. Rhinology. 2021; 59 ( 4 ): 352 - 359. https://doi.org/10.4193/Rhin20.588
dc.identifier.citedreferenceBoldovjakova D, Cordoni S, Fraser CJ, et al. Sublingual immunotherapy vs placebo in the management of grass pollen-induced allergic rhinitis in adults: a systematic review and meta-analysis. Clin Otolaryngol. 2021; 46 ( 1 ): 52 - 59. https://doi.org/10.1111/coa.13651
dc.identifier.citedreferenceBlanco C, Bazire R, Argiz L, Hernandez-Pena J. Sublingual allergen immunotherapy for respiratory allergy: a systematic review. Drugs Context. 2018; 7: 212552. https://doi.org/10.7573/dic.212552
dc.identifier.citedreferenceRadulovic S, Wilson D, Calderon M, Durham S. Systematic reviews of sublingual immunotherapy (SLIT). Allergy. 2011; 66 ( 6 ): 740 - 752. https://doi.org/10.1111/j.1398-9995.2011.02583.x
dc.identifier.citedreferenceDi Bona D, Plaia A, Scafidi V, Leto-Barone MS, Di Lorenzo G. Efficacy of sublingual immunotherapy with grass allergens for seasonal allergic rhinitis: a systematic review and meta-analysis. J Allergy Clin Immunol. 2010; 126 ( 3 ): 558 - 566. https://doi.org/10.1016/j.jaci.2010.06.013
dc.identifier.citedreferenceLin SY, Erekosima N, Kim JM, et al. Sublingual immunotherapy for the treatment of allergic rhinoconjunctivitis and asthma: a systematic review. JAMA. 2013; 309 ( 12 ): 1278 - 1288. https://doi.org/10.1001/jama.2013.2049
dc.identifier.citedreferenceOrtiz AS, McMains KC, Laury AM. Single vs multiallergen sublingual immunotherapy in the polysensitized patient: a pilot study. Int Forum Allergy Rhinol. 2018; 8 ( 4 ): 490 - 494. https://doi.org/10.1002/alr.22071
dc.identifier.citedreferenceLi P, Li Q, Huang Z, Chen W, Lu Y, Tian M. Efficacy and safety of house dust mite sublingual immunotherapy in monosensitized and polysensitized children with respiratory allergic diseases. Int Forum Allergy Rhinol. 2014; 4 ( 10 ): 796 - 801. https://doi.org/10.1002/alr.21397
dc.identifier.citedreferenceAmar SM, Harbeck RJ, Sills M, Silveira LJ, O’Brien H, Nelson HS. Response to sublingual immunotherapy with grass pollen extract: monotherapy versus combination in a multiallergen extract. J Allergy Clin Immunol. 2009; 124 ( 1 ):150-156.e1-5. https://doi.org/10.1016/j.jaci.2009.04.037
dc.identifier.citedreferenceMoreno-Ancillo A, Moreno C, Ojeda P, et al. Efficacy and quality of life with once-daily sublingual immunotherapy with grasses plus olive pollen extract without updosing. J Investig Allergol Clin Immunol. 2007; 17 ( 6 ): 399 - 405.
dc.identifier.citedreferenceLee JE, Choi YS, Kim MS, et al. Efficacy of sublingual immunotherapy with house dust mite extract in polyallergen sensitized patients with allergic rhinitis. Ann Allergy Asthma Immunol. 2011; 107 ( 1 ): 79 - 84. https://doi.org/10.1016/j.anai.2011.03.012
dc.identifier.citedreferenceLi Y, Yu SY, Tang R, Zhao ZT, Sun JL. Sublingual immunotherapy tablets relieve symptoms in adults with allergic rhinitis: a meta-analysis of randomized clinical trials. Chin Med J (Engl). 2018; 131 ( 21 ): 2583 - 2588. https://doi.org/10.4103/0366-6999.244108
dc.identifier.citedreferenceRoder E, Berger MY, de Groot H, van Wijk RG. Immunotherapy in children and adolescents with allergic rhinoconjunctivitis: a systematic review. Pediatr Allergy Immunol. 2008; 19 ( 3 ): 197 - 207. https://doi.org/10.1111/j.1399-3038.2007.00648.x
dc.identifier.citedreferenceDretzke J, Meadows A, Novielli N, Huissoon A, Fry-Smith A, Meads C. Subcutaneous and sublingual immunotherapy for seasonal allergic rhinitis: a systematic review and indirect comparison. J Allergy Clin Immunol. 2013; 131 ( 5 ): 1361 - 1366. https://doi.org/10.1016/j.jaci.2013.02.013
dc.identifier.citedreferenceDurham SR, Emminger W, Kapp A, et al. SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol. 2012; 129 ( 3 ): 717 - 725.e5. https://doi.org/10.1016/j.jaci.2011.12.973
dc.identifier.citedreferenceDidier A, Malling HJ, Worm M, Horak F, Sussman GL. Prolonged efficacy of the 300IR 5-grass pollen tablet up to 2 years after treatment cessation, as measured by a recommended daily combined score. Clin Transl Allergy. 2015; 5: 12. https://doi.org/10.1186/s13601-015-0057-8
dc.identifier.citedreferenceValovirta E, Jacobsen L, Ljorring C, Koivikko A, Savolainen J. Clinical efficacy and safety of sublingual immunotherapy with tree pollen extract in children. Allergy. 2006; 61 ( 10 ): 1177 - 1183. https://doi.org/10.1111/j.1398-9995.2006.01190.x
dc.identifier.citedreferenceNolte H, Hebert J, Berman G, et al. Randomized controlled trial of ragweed allergy immunotherapy tablet efficacy and safety in North American adults. Ann Allergy Asthma Immunol. 2013; 110 ( 6 ): 450 - 456.e4. https://doi.org/10.1016/j.anai.2013.03.013
dc.identifier.citedreferenceCreticos PS, Maloney J, Bernstein DI, et al. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J Allergy Clin Immunol. 2013; 131 ( 5 ): 1342 - 1349.e6. https://doi.org/10.1016/j.jaci.2013.03.019
dc.identifier.citedreferenceSkoner D, Gentile D, Bush R, Fasano MB, McLaughlin A, Esch RE. Sublingual immunotherapy in patients with allergic rhinoconjunctivitis caused by ragweed pollen. J Allergy Clin Immunol. 2010; 125 ( 3 ): 660 - 666, 666.e1-666.e4. https://doi.org/10.1016/j.jaci.2009.12.931
dc.identifier.citedreferenceBergmann KC, Demoly P, Worm M, et al. Efficacy and safety of sublingual tablets of house dust mite allergen extracts in adults with allergic rhinitis. J Allergy Clin Immunol. 2014; 133 ( 6 ): 1608 - 1614.e6. https://doi.org/10.1016/j.jaci.2013.11.012
dc.identifier.citedreferenceCortellini G, Spadolini I, Patella V, et al. Sublingual immunotherapy for Alternaria-induced allergic rhinitis: a randomized placebo-controlled trial. Ann Allergy Asthma Immunol. 2010; 105 ( 5 ): 382 - 386. https://doi.org/10.1016/j.anai.2010.08.007
dc.identifier.citedreferenceHorak F, Jaeger S, Worm M, Melac M, Didier A. Implementation of pre-seasonal sublingual immunotherapy with a five-grass pollen tablet during optimal dosage assessment. Clin Exp Allergy. 2009; 39 ( 3 ): 394 - 400. https://doi.org/10.1111/j.1365-2222.2008.03153.x
dc.identifier.citedreferenceMalling HJ, Montagut A, Melac M, et al. Efficacy and safety of 5-grass pollen sublingual immunotherapy tablets in patients with different clinical profiles of allergic rhinoconjunctivitis. Clin Exp Allergy. 2009; 39 ( 3 ): 387 - 393. https://doi.org/10.1111/j.1365-2222.2008.03152.x
dc.identifier.citedreferenceGotoh M, Okubo K, Yuta A, et al. Safety profile and immunological response of dual sublingual immunotherapy with house dust mite tablet and Japanese cedar pollen tablet. Allergol Int. 2020; 69 ( 1 ): 104 - 110. https://doi.org/10.1016/j.alit.2019.07.007
dc.identifier.citedreferenceLeatherman BD, Khalid A, Lee S, et al. Dosing of sublingual immunotherapy for allergic rhinitis: evidence-based review with recommendations. Int Forum Allergy Rhinol. 2015; 5 ( 9 ): 773 - 783. https://doi.org/10.1002/alr.21561
dc.identifier.citedreferenceJin JJ, Li JT, Klimek L, Pfaar O. Sublingual immunotherapy dosing regimens: what is ideal? J Allergy Clin Immunol Pract. 2017; 5 ( 1 ): 1 - 10. https://doi.org/10.1016/j.jaip.2016.09.027
dc.identifier.citedreferenceMarogna M, Spadolini I, Massolo A, et al. Effects of sublingual immunotherapy for multiple or single allergens in polysensitized patients. Ann Allergy Asthma Immunol. 2007; 98 ( 3 ): 274 - 280. https://doi.org/10.1016/S1081-1206(10)60718-1
dc.identifier.citedreferencePfaar O, Nell MJ, Boot JD, et al. A randomized, 5-arm dose finding study with a mite allergoid SCIT in allergic rhinoconjunctivitis patients. Allergy. 2016; 71 ( 7 ): 967 - 976. https://doi.org/10.1111/all.12860
dc.identifier.citedreferenceBozek A, Ignasiak B, Filipowska B, Jarzab J. House dust mite sublingual immunotherapy: a double-blind, placebo-controlled study in elderly patients with allergic rhinitis. Clin Exp Allergy. 2013; 43 ( 2 ): 242 - 248. https://doi.org/10.1111/cea.12039
dc.identifier.citedreferenceDidier A, Melac M, Montagut A, Lheritier-Barrand M, Tabar A, Worm M. Agreement of efficacy assessments for five-grass pollen sublingual tablet immunotherapy. Allergy. 2009; 64 ( 1 ): 166 - 171. https://doi.org/10.1111/j.1398-9995.2008.01767.x
dc.identifier.citedreferenceSaporta D. Efficacy of sublingual immunotherapy versus subcutaneous injection immunotherapy in allergic patients. J Environ Public Health. 2012; 2012: 492405. https://doi.org/10.1155/2012/492405
dc.identifier.citedreferenceTsabouri S, Mavroudi A, Feketea G, Guibas GV. Subcutaneous and sublingual immunotherapy in allergic asthma in children. Front Pediatr. 2017; 5: 82. https://doi.org/10.3389/fped.2017.00082
dc.identifier.citedreferenceDhami S, Kakourou A, Asamoah F, et al. Allergen immunotherapy for allergic asthma: A systematic review and meta-analysis. Allergy. 2017; 72 ( 12 ): 1825 - 1848. https://doi.org/10.1111/all.13208
dc.identifier.citedreferenceRice JL, Diette GB, Suarez-Cuervo C, et al. Allergen-specific immunotherapy in the treatment of pediatric asthma: a systematic review. Pediatrics. 2018; 141 ( 5 ): e20173833. https://doi.org/10.1542/peds.2017-3833
dc.identifier.citedreferenceEpstein TG, Calabria C, Cox LS, Dreborg S. Current Evidence on safety and practical considerations for administration of sublingual allergen immunotherapy (SLIT) in the United States. J Allergy Clin Immunol Pract. 2017; 5 ( 1 ): 34 - 40.e2. https://doi.org/10.1016/j.jaip.2016.09.017
dc.identifier.citedreferenceSeiberling K, Hiebert J, Nyirady J, Lin S, Chang D. Cost of allergy immunotherapy: sublingual vs subcutaneous administration. Int Forum Allergy Rhinol. 2012; 2 ( 6 ): 460 - 464. https://doi.org/10.1002/alr.21061
dc.identifier.citedreferenceReinhold T, Bruggenjurgen B. Cost-effectiveness of grass pollen SCIT compared with SLIT and symptomatic treatment. Allergo J Int. 2017; 26 ( 1 ): 7 - 15. https://doi.org/10.1007/s40629-016-0002-y
dc.identifier.citedreferenceDrazdauskaite G, Layhadi JA, Shamji MH. Mechanisms of allergen immunotherapy in allergic rhinitis. Curr Allergy Asthma Rep. 2020; 21 ( 1 ): 2. https://doi.org/10.1007/s11882-020-00977-7
dc.identifier.citedreferencePfaar O, Bachert C, Bufe A, et al. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases: S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (OGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto- Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). Allergo J Int. 2014; 23 ( 8 ): 282 - 319. https://doi.org/10.1007/s40629-014-0032-2
dc.identifier.citedreferenceOtt H, Sieber J, Brehler R, et al. Efficacy of grass pollen sublingual immunotherapy for three consecutive seasons and after cessation of treatment: the ECRIT study. Allergy. 2009; 64 ( 9 ): 1394 - 1401. https://doi.org/10.1111/j.1398-9995.2009.02194.x
dc.identifier.citedreferenceNaclerio RM, Proud D, Moylan B, et al. A double-blind study of the discontinuation of ragweed immunotherapy. J Allergy Clin Immunol. 1997; 100 ( 3 ): 293 - 300. https://doi.org/10.1016/s0091-6749(97)70240-9
dc.identifier.citedreferenceCox LS, Hankin C, Lockey R. Allergy immunotherapy adherence and delivery route: location does not matter. J Allergy Clin Immunol Pract. 2014; 2 ( 2 ): 156 - 160. https://doi.org/10.1016/j.jaip.2014.01.010
dc.identifier.citedreferenceVita D, Caminiti L, Ruggeri P, Pajno GB. Sublingual immunotherapy: adherence based on timing and monitoring control visits. Allergy. 2010; 65 ( 5 ): 668 - 669. https://doi.org/10.1111/j.1398-9995.2009.02223.x
dc.identifier.citedreferenceHura N, Song S, Kamil RJ, Pierre G, Lin SY. Predictors of completion of sublingual immunotherapy. Laryngoscope. 2021; 131 ( 7 ): E2111 - E2115. https://doi.org/10.1002/lary.29272
dc.identifier.citedreferenceChaaban MR, Mansi A, Tripple JW, Wise SK. SCIT versus SLIT: which one do you recommend, doc? Am J Med Sci. 2019; 357 ( 5 ): 442 - 447. https://doi.org/10.1016/j.amjms.2019.02.004
dc.identifier.citedreferenceLin CH, Alandijani S, Lockey RF. Subcutaneous versus sublingual immunotherapy. Expert Rev Clin Immunol. 2016; 12 ( 8 ): 801 - 803. https://doi.org/10.1080/1744666X.2016.1196137
dc.identifier.citedreferenceBorg M, Lokke A, Hilberg O. Compliance in subcutaneous and sublingual allergen immunotherapy: a nationwide study. Respir Med. 2020; 170: 106039. https://doi.org/10.1016/j.rmed.2020.106039
dc.identifier.citedreferenceGotoh M, Kaminuma O. Sublingual immunotherapy: how sublingual allergen administration heals allergic diseases; current perspective about the mode of action. Pathogens. 2021; 10 ( 2 ): 147. https://doi.org/10.3390/pathogens10020147
dc.identifier.citedreferenceCreticos PS. Sublingual immunotherapy for allergic rhinoconjunctivitis and asthma. Accessed October 26, 2021. https://www.uptodate.com/contents/sublingual-immunotherapy-for-allergic-rhinoconjunctivitis-and-asthma
dc.identifier.citedreferenceNolte H, Casale TB, Lockey RF, et al. Epinephrine use in clinical trials of sublingual immunotherapy tablets. J Allergy Clin Immunol Pract. 2017; 5 ( 1 ): 84 - 89.e3. https://doi.org/10.1016/j.jaip.2016.08.017
dc.identifier.citedreferenceClark S, Wei W, Rudders SA, Camargo Jr CA. Risk factors for severe anaphylaxis in patients receiving anaphylaxis treatment in US emergency departments and hospitals. J Allergy Clin Immunol. 2014; 134 ( 5 ): 1125 - 1130. https://doi.org/10.1016/j.jaci.2014.05.018
dc.identifier.citedreferenceDes Roches A, Paradis L, Knani J, et al. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. V. Duration of the efficacy of immunotherapy after its cessation. Allergy. 1996; 51 ( 6 ): 430 - 433. https://doi.org/10.1111/j.1398-9995.1996.tb04643.x
dc.identifier.citedreferenceBousquet J, Maasch H, Martinot B, Hejjaoui A, Wahl R, Michel FB. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. II. Comparison between parameters assessing the efficacy of immunotherapy. J Allergy Clin Immunol. 1988; 82 (3 pt 1): 439 - 446. https://doi.org/10.1016/0091-6749(88)90017-6
dc.identifier.citedreferencePajno GB, Vita D, Caminiti L, et al. Children’s compliance with allergen immunotherapy according to administration routes. J Allergy Clin Immunol. 2005; 116 ( 6 ): 1380 - 1381. https://doi.org/10.1016/j.jaci.2005.07.034
dc.identifier.citedreferenceKiel MA, Roder E, Gerth van Wijk R, Al MJ, Hop WC, Rutten-van Molken MP. Real-life compliance and persistence among users of subcutaneous and sublingual allergen immunotherapy. J Allergy Clin Immunol. 2013; 132 ( 2 ): 353 - 360.e2 https://doi.org/10.1016/j.jaci.2013.03.013
dc.identifier.citedreferenceSieber J, De Geest S, Shah-Hosseini K, Mosges R. Medication persistence with long-term, specific grass pollen immunotherapy measured by prescription renewal rates. Curr Med Res Opin. 2011; 27 ( 4 ): 855 - 861. https://doi.org/10.1185/03007995.2011.559538
dc.identifier.citedreferenceSenna G, Ridolo E, Calderon M, Lombardi C, Canonica GW, Passalacqua G. Evidence of adherence to allergen-specific immunotherapy. Curr Opin Allergy Clin Immunol. 2009; 9 ( 6 ): 544 - 548. https://doi.org/10.1097/ACI.0b013e328332b8df
dc.identifier.citedreferenceLeader BA, Rotella M, Stillman L, DelGaudio JM, Patel ZM, Wise SK. Immunotherapy compliance: comparison of subcutaneous versus sublingual immunotherapy. Int Forum Allergy Rhinol. 2016; 6 ( 5 ): 460 - 464. https://doi.org/10.1002/alr.21699
dc.identifier.citedreferenceCreticos PS. Subcutaneous immunotherapy (SCIT) for allergic disease: indications and efficacy. Accessed October 26, 2021. https://www.uptodate.com/contents/subcutaneous-immunotherapy-scit-for-allergic-disease-indications-and-efficacy
dc.identifier.citedreferenceNelson H. Preparation of allergen extracts fro therapeutic use. Accessed October 26, 2021. https://www.uptodate.com/contents/scit-preparation-of-allergen-extracts-for-therapeutic-use
dc.identifier.citedreferenceEgan M, Atkins D. What is the relationship between eosinophilic esophagitis (EoE) and aeroallergens? Implications for allergen immunotherapy. Curr Allergy Asthma Rep. 2018; 18 ( 8 ): 43. https://doi.org/10.1007/s11882-018-0798-2
dc.identifier.citedreferenceBos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000; 9 ( 3 ): 165 - 169. https://doi.org/10.1034/j.1600-0625.2000.009003165.x
dc.identifier.citedreferenceSenti G, Kundig TM. Novel delivery routes for allergy immunotherapy: intralymphatic, epicutaneous, and intradermal. Immunol Allergy Clin North Am. 2016; 36 ( 1 ): 25 - 37. https://doi.org/10.1016/j.iac.2015.08.006
dc.identifier.citedreferenceWang Y, Kong Y, Wu MX. Innovative systems to deliver allergen powder for epicutaneous immunotherapy. Front Immunol. 2021; 12: 647954. https://doi.org/10.3389/fimmu.2021.647954
dc.identifier.citedreferenceEsposito S, Isidori C, Pacitto A, et al. Epicutaneous immunotherapy in rhino-conjunctivitis and food allergies: a review of the literature. J Transl Med. 2018; 16 ( 1 ): 329. https://doi.org/10.1186/s12967-018-1701-6
dc.identifier.citedreferenceSenti G, Graf N, Haug S, et al. Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. J Allergy Clin Immunol. 2009; 124 ( 5 ): 997 - 1002. https://doi.org/10.1016/j.jaci.2009.07.019
dc.identifier.citedreferenceAgostinis F, Forti S, Di Berardino F. Grass transcutaneous immunotherapy in children with seasonal rhinoconjunctivitis. Allergy. 2010; 65 ( 3 ): 410 - 411. https://doi.org/10.1111/j.1398-9995.2009.02189.x
dc.identifier.citedreferenceSenti G, von Moos S, Tay F, et al. Epicutaneous allergen-specific immunotherapy ameliorates grass pollen-induced rhinoconjunctivitis: a double-blind, placebo-controlled dose escalation study. J Allergy Clin Immunol. 2012; 129 ( 1 ): 128 - 135. https://doi.org/10.1016/j.jaci.2011.08.036
dc.identifier.citedreferenceSenti G, von Moos S, Tay F, Graf N, Johansen P, Kundig TM. Determinants of efficacy and safety in epicutaneous allergen immunotherapy: summary of three clinical trials. Allergy. 2015; 70 ( 6 ): 707 - 710. https://doi.org/10.1111/all.12600
dc.identifier.citedreferenceXiong L, Lin J, Luo Y, Chen W, Dai J. The efficacy and safety of epicutaneous immunotherapy for allergic diseases: a systematic review and meta-analysis. Int Arch Allergy Immunol. 2020; 181 ( 3 ): 170 - 182. https://doi.org/10.1159/000504366
dc.identifier.citedreferenceSenti G, Freiburghaus AU, Larenas-Linnemann D, et al. Intralymphatic immunotherapy: update and unmet needs. Int Arch Allergy Immunol. 2019; 178 ( 2 ): 141 - 149. https://doi.org/10.1159/000493647
dc.identifier.citedreferenceHauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010; 6 ( 1 ): 1. https://doi.org/10.1186/1710-1492-6-1
dc.identifier.citedreferenceHoang MP, Seresirikachorn K, Chitsuthipakorn W, Snidvongs K. Intralymphatic immunotherapy for allergic rhinoconjunctivitis: a systematic review and meta-analysis. Rhinology. 2021; 59 ( 3 ): 236 - 244. https://doi.org/10.4193/Rhin20.572
dc.identifier.citedreferenceAini NR, Mohd Noor N, Md Daud MK, Wise SK, Abdullah B. Efficacy and safety of intralymphatic immunotherapy in allergic rhinitis: a systematic review and meta-analysis. Clin Transl Allergy. 2021; 11 ( 6 ): e12055. https://doi.org/10.1002/clt2.12055
dc.identifier.citedreferenceHylander T, Latif L, Petersson-Westin U, Cardell LO. Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis. J Allergy Clin Immunol. 2013; 131 ( 2 ): 412 - 420. https://doi.org/10.1016/j.jaci.2012.10.056
dc.identifier.citedreferenceSenti G, Prinz Vavricka BM, Erdmann I, et al. Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc Natl Acad Sci U S A. 2008; 105 ( 46 ): 17908 - 17912. https://doi.org/10.1073/pnas.0803725105
dc.identifier.citedreferenceSenti G, Crameri R, Kuster D, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol. 2012; 129 ( 5 ): 1290 - 1296. https://doi.org/10.1016/j.jaci.2012.02.026
dc.identifier.citedreferenceWitten M, Malling HJ, Blom L, Poulsen BC, Poulsen LK. Is intralymphatic immunotherapy ready for clinical use in patients with grass pollen allergy? J Allergy Clin Immunol. 2013; 132 ( 5 ): 1248 - 1252.e5. https://doi.org/10.1016/j.jaci.2013.07.033
dc.identifier.citedreferencePatterson AM, Bonny AE, Shiels 2nd WE, Erwin EA. Three-injection intralymphatic immunotherapy in adolescents and young adults with grass pollen rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2016; 116 ( 2 ): 168 - 170. https://doi.org/10.1016/j.anai.2015.11.010
dc.identifier.citedreferenceHylander T, Larsson O, Petersson-Westin U, et al. Intralymphatic immunotherapy of pollen-induced rhinoconjunctivitis: a double-blind placebo-controlled trial. Respir Res. 2016; 17: 10. https://doi.org/10.1186/s12931-016-0324-9
dc.identifier.citedreferenceHellkvist L, Hjalmarsson E, Kumlien Georen S, et al. Intralymphatic immunotherapy with 2 concomitant allergens, birch and grass: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2018; 142 ( 4 ): 1338 - 1341.e9. https://doi.org/10.1016/j.jaci.2018.05.030
dc.identifier.citedreferenceKonradsen JR, Grundstrom J, Hellkvist L, et al. Intralymphatic immunotherapy in pollen-allergic young adults with rhinoconjunctivitis and mild asthma: a randomized trial. J Allergy Clin Immunol. 2020; 145 ( 3 ): 1005 - 1007.e7. https://doi.org/10.1016/j.jaci.2019.11.017
dc.identifier.citedreferenceSkaarup SH, Schmid JM, Skjold T, Graumann O, Hoffmann HJ. Intralymphatic immunotherapy improves grass pollen allergic rhinoconjunctivitis: a 3-year randomized placebo-controlled trial. J Allergy Clin Immunol. 2021; 147 ( 3 ): 1011 - 1019. https://doi.org/10.1016/j.jaci.2020.07.002
dc.identifier.citedreferenceThompson CP, Silvers S, Shapiro MA. Intralymphatic immunotherapy for mountain cedar pollinosis: a randomized, double-blind, placebo-controlled trial. Ann Allergy Asthma Immunol. 2020; 125 ( 3 ): 311 - 318.e2. https://doi.org/10.1016/j.anai.2020.04.030
dc.identifier.citedreferenceTerada T, Omura S, Kikuoka Y, et al. Sustained effects of intralymphatic pollen-specific immunotherapy on Japanese cedar pollinosis. Rhinology. 2020; 58 ( 3 ): 241 - 247. https://doi.org/10.4193/Rhin19.301
dc.identifier.citedreferenceWang K, Zheng R, Chen Y, et al. Clinical efficacy and safety of cervical intralymphatic immunotherapy for house dust mite allergic rhinitis: a pilot study. Am J Otolaryngol. 2019; 40 ( 6 ): 102280. https://doi.org/10.1016/j.amjoto.2019.102280
dc.identifier.citedreferenceLee SP, Choi SJ, Joe E, et al. A pilot study of intralymphatic immunotherapy for house dust mite, cat, and dog allergies. Allergy Asthma Immunol Res. 2017; 9 ( 3 ): 272 - 277. https://doi.org/10.4168/aair.2017.9.3.272
dc.identifier.citedreferenceSchmid JM, Nezam H, Madsen HH, Schmitz A, Hoffmann HJ. Intralymphatic immunotherapy induces allergen specific plasmablasts and increases tolerance to skin prick testing in a pilot study. Clin Transl Allergy. 2016; 6: 19. https://doi.org/10.1186/s13601-016-0107-x
dc.identifier.citedreferenceTaudorf E, Laursen LC, Lanner A, et al. Oral immunotherapy in birch pollen hay fever. J Allergy Clin Immunol. 1987; 80 ( 2 ): 153 - 161. https://doi.org/10.1016/0091-6749(87)90124-2
dc.identifier.citedreferenceOppenheimer J, Areson JG, Nelson HS. Safety and efficacy of oral immunotherapy with standardized cat extract. J Allergy Clin Immunol. 1994; 93 (1 pt 1): 61 - 67. https://doi.org/10.1016/0091-6749(94)90233-x
dc.identifier.citedreferenceVan Deusen MA, Angelini BL, Cordoro KM, Seiler BA, Wood L, Skoner DP. Efficacy and safety of oral immunotherapy with short ragweed extract. Ann Allergy Asthma Immunol. 1997; 78 ( 6 ): 573 - 580. https://doi.org/10.1016/S1081-1206(10)63218-8
dc.identifier.citedreferenceVickery BP, Vereda A, Casale TB, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018; 379 ( 21 ): 1991 - 2001. https://doi.org/10.1056/NEJMoa1812856
dc.identifier.citedreferenceAllam JP, Stojanovski G, Friedrichs N, et al. Distribution of Langerhans cells and mast cells within the human oral mucosa: new application sites of allergens in sublingual immunotherapy? Allergy. 2008; 63 ( 6 ): 720 - 7. https://doi.org/10.1111/j.1398-9995.2007.01611.x
dc.identifier.citedreferenceCanonica GW, Cox L, Pawankar R, et al. Sublingual immunotherapy: World Allergy Organization position paper 2013 update. World Allergy Organ J. 2014; 7 ( 1 ): 6. https://doi.org/10.1186/1939-4551-7-6
dc.identifier.citedreferenceReisacher WR, Suurna MV, Rochlin K, Bremberg MG, Tropper G. Oral mucosal immunotherapy for allergic rhinitis: a pilot study. Allergy Rhinol (Providence). 2016; 7 ( 1 ): 21 - 28. https://doi.org/10.2500/ar.2016.7.0150
dc.identifier.citedreferencePassalacqua G, Albano M, Ruffoni S, et al. Nasal immunotherapy to Parietaria: evidence of reduction of local allergic inflammation. Am J Respir Crit Care Med. 1995; 152 ( 2 ): 461 - 466. https://doi.org/10.1164/ajrccm.152.2.7633693
dc.identifier.citedreferenceAndri L, Senna G, Betteli C, Givanni S, Andri G, Falagiani P. Local nasal immunotherapy for Dermatophagoides-induced rhinitis: efficacy of a powder extract. J Allergy Clin Immunol. 1993; 91 ( 5 ): 987 - 996. https://doi.org/10.1016/0091-6749(93)90211-w
dc.identifier.citedreferenceTari MG, Mancino M, Monti G. Immunotherapy by inhalation of allergen in powder in house dust allergic asthma – a double-blind study. J Investig Allergol Clin Immunol. 1992; 2 ( 2 ): 59 - 67.
dc.identifier.citedreferenceSaco T, Ugalde IC, Cardet JC, Casale TB. Strategies for choosing a biologic for your patient with allergy or asthma. Ann Allergy Asthma Immunol. 2021; 127 ( 6 ): 627 - 637. https://doi.org/10.1016/j.anai.2021.09.009
dc.identifier.citedreferenceKamin W, Kopp MV, Erdnuess F, Schauer U, Zielen S, Wahn U. Safety of anti-IgE treatment with omalizumab in children with seasonal allergic rhinitis undergoing specific immunotherapy simultaneously. Pediatr Allergy Immunol. 2010; 21 (1 pt 2): e160 - e165. https://doi.org/10.1111/j.1399-3038.2009.00900.x
dc.identifier.citedreferenceRolinck-Werninghaus C, Hamelmann E, Keil T, et al. The co-seasonal application of anti-IgE after preseasonal specific immunotherapy decreases ocular and nasal symptom scores and rescue medication use in grass pollen allergic children. Allergy. 2004; 59 ( 9 ): 973 - 979. https://doi.org/10.1111/j.1398-9995.2004.00552.x
dc.identifier.citedreferenceLin H, Boesel KM, Griffith DT, et al. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol. 2004; 113 ( 2 ): 297 - 302. https://doi.org/10.1016/j.jaci.2003.11.044
dc.identifier.citedreferencePrussin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB. Omalizumab treatment downregulates dendritic cell FcepsilonRI expression. J Allergy Clin Immunol. 2003; 112 ( 6 ): 1147 - 1154. https://doi.org/10.1016/j.jaci.2003.10.003
dc.identifier.citedreferenceKopp MV, Hamelmann E, Zielen S, et al. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy. 2009; 39 ( 2 ): 271 - 279. https://doi.org/10.1111/j.1365-2222.2008.03121.x
dc.identifier.citedreferenceKopp MV, Hamelmann E, Bendiks M, et al. Transient impact of omalizumab in pollen allergic patients undergoing specific immunotherapy. Pediatr Allergy Immunol. 2013; 24 ( 5 ): 427 - 433. https://doi.org/10.1111/pai.12098
dc.identifier.citedreferenceMassanari M, Nelson H, Casale T, et al. Effect of pretreatment with omalizumab on the tolerability of specific immunotherapy in allergic asthma. J Allergy Clin Immunol. 2010; 125 ( 2 ): 383 - 389. https://doi.org/10.1016/j.jaci.2009.11.022
dc.identifier.citedreferenceSlater JE. Preparation and standardization of allergen extracts. In: Adkinson NF, Burks AW, Busse WW, Holgate ST, Lemanske RFJ, eds. Allergy Principlses and Practice. 8 ed. Mosbe; 2014: 470 - 481.
dc.identifier.citedreferenceCalderon MA, Cox L, Casale TB, Moingeon P, Demoly P. Multiple-allergen and single-allergen immunotherapy strategies in polysensitized patients: looking at the published evidence. J Allergy Clin Immunol. 2012; 129 ( 4 ): 929 - 934. https://doi.org/10.1016/j.jaci.2011.11.019
dc.identifier.citedreferenceZuberbier T, Bachert C, Bousquet PJ, et al. GA(2) LEN/EAACI pocket guide for allergen-specific immunotherapy for allergic rhinitis and asthma. Allergy. 2010; 65 ( 12 ): 1525 - 1530. https://doi.org/10.1111/j.1398-9995.2010.02474.x
dc.identifier.citedreferenceDemoly P, Passalacqua G, Pfaar O, Sastre J, Wahn U. Management of the polyallergic patient with allergy immunotherapy: a practice-based approach. Allergy Asthma Clin Immunol. 2016; 12: 2. https://doi.org/10.1186/s13223-015-0109-6
dc.identifier.citedreferenceWahn U, Calderon MA, Demoly P. Real-life clinical practice and management of polysensitized patients with respiratory allergies: a large, global survey of clinicians prescribing allergen immunotherapy. Expert Rev Clin Immunol. 2017; 13 ( 3 ): 283 - 289. https://doi.org/10.1080/1744666X.2017.1277142
dc.identifier.citedreferenceFranklin W, Lowell FC. Comparison of two dosages of ragweed extract in the treatment of pollenosis. JAMA. 1967; 201 ( 12 ): 915 - 917.
dc.identifier.citedreferenceLowell FC, Franklin W. A double-blind study of the effectiveness and specificity of injecton therapy in ragweed hay fever. N Engl J Med. 1965; 273 ( 13 ): 675 - 679. https://doi.org/10.1056/NEJM196509232731302
dc.identifier.citedreferenceJohnstone DE, Dutton A. The value of hyposensitization therapy for bronchial asthma in children – a 14-year study. Pediatrics. 1968; 42 ( 5 ): 793 - 802.
dc.identifier.citedreferenceReid MJ, Moss RB, Hsu YP, Kwasnicki JM, Commerford TM, Nelson BL. Seasonal asthma in northern California: allergic causes and efficacy of immunotherapy. J Allergy Clin Immunol. 1986; 78 (4 pt 1): 590 - 600. https://doi.org/10.1016/0091-6749(86)90076-x
dc.identifier.citedreferenceEl-Qutob D, Raducan I, Mencia G. A preliminary study to investigate effectiveness of a mixed extract of Dermatophagoides sp. house dust mites and Alternaria sp. mold. Eur Ann Allergy Clin Immunol. 2021; 53 ( 5 ): 234 - 239. https://doi.org/10.23822/EurAnnACI.1764-1489.185
dc.identifier.citedreferenceNevot-Falco S, Mancebo EG, Martorell A, et al. Safety and effectiveness of a single multiallergen subcutaneous immunotherapy in polyallergic patients. Int Arch Allergy Immunol. 2021; 182 ( 12 ): 1226 - 1230. https://doi.org/10.1159/000517473
dc.identifier.citedreferenceNelson HS. Multiallergen immunotherapy for allergic rhinitis and asthma. J Allergy Clin Immunol. 2009; 123 ( 4 ): 763 - 769. https://doi.org/10.1016/j.jaci.2008.12.013
dc.identifier.citedreferenceBlume SW, Yeomans K, Allen-Ramey F, et al. Administration and burden of subcutaneous immunotherapy for allergic rhinitis in U.S. and Canadian Clinical Practice. J Manag Care Spec Pharm. 2015; 21 ( 11 ): 982 - 990. https://doi.org/10.18553/jmcp.2015.21.11.982
dc.identifier.citedreferenceKim JY, Han DH, Won TB, et al. Immunologic modification in mono- and poly-sensitized patients after sublingual immunotherapy. Laryngoscope. 2019; 129 ( 5 ): E170 - E177. https://doi.org/10.1002/lary.27721
dc.identifier.citedreferenceSong Y, Long J, Wang T, Xie J, Wang M, Tan G. Long-term efficacy of standardised specific subcutaneous immunotherapy in children with persistent allergic rhinitis due to multiple allergens including house dust mites. J Laryngol Otol. 2018; 132 ( 3 ): 230 - 235. https://doi.org/10.1017/S0022215117002547
dc.identifier.citedreferenceSearch of: allergy immunotherapy | Recruiting. Not yet recruiting, Active, not recruiting Studies | Allergic Rhinitis - List Results. Accessed November 8, 2021. https://clinicaltrials.gov/ct2/results?term=allergy+immunotherapy&cond=Allergic+Rhinitis&Search=Apply&recrs=b&recrs=a&recrs=d&age_v=&gndr=&type=&rslt=
dc.identifier.citedreferenceNelson HS. Subcutaneous injection immunotherapy for optimal effectiveness. Immunol Allergy Clin North Am. 2011; 31 ( 2 ): 211 - 226, viii. https://doi.org/10.1016/j.iac.2011.02.010
dc.identifier.citedreferenceEsch RE. Allergen immunotherapy: what can and cannot be mixed? J Allergy Clin Immunol. 2008; 122 ( 3 ): 659 - 660. https://doi.org/10.1016/j.jaci.2008.07.018
dc.identifier.citedreferenceGrier TJ, LeFevre DM, Duncan EA, Esch RE, Coyne TC. Allergen stabilities and compatibilities in mixtures of high-protease fungal and insect extracts. Ann Allergy Asthma Immunol. 2012; 108 ( 6 ): 439 - 447. https://doi.org/10.1016/j.anai.2012.04.012
dc.identifier.citedreferenceBozek A, Kolodziejczyk K, Warkocka-Szoltysek B, Jarzab J. Grass pollen sublingual immunotherapy: a double-blind, placebo-controlled study in elderly patients with seasonal allergic rhinitis. Am J Rhinol Allergy. 2014; 28 ( 5 ): 423 - 427. https://doi.org/10.2500/ajra.2014.28.4091
dc.identifier.citedreferenceRoberts G, Hurley C, Turcanu V, Lack G. Grass pollen immunotherapy as an effective therapy for childhood seasonal allergic asthma. J Allergy Clin Immunol. 2006; 117 ( 2 ): 263 - 268. https://doi.org/10.1016/j.jaci.2005.09.054
dc.identifier.citedreferenceCools M, Van Bever HP, Weyler JJ, Stevens WJ. Long-term effects of specific immunotherapy, administered during childhood, in asthmatic patients allergic to either house-dust mite or to both house-dust mite and grass pollen. Allergy. 2000; 55 ( 1 ): 69 - 73. https://doi.org/10.1034/j.1398-9995.2000.00191.x
dc.identifier.citedreferenceStelmach I, Sobocinska A, Majak P, Smejda K, Jerzynska J, Stelmach W. Comparison of the long-term efficacy of 3- and 5-year house dust mite allergen immunotherapy. Ann Allergy Asthma Immunol. 2012; 109 ( 4 ): 274 - 278. https://doi.org/10.1016/j.anai.2012.07.015
dc.identifier.citedreferencePfaar O, Sager A, Robinson DS. Safety and effect on reported symptoms of depigmented polymerized allergen immunotherapy: a retrospective study of 2927 paediatric patients. Pediatr Allergy Immunol. 2015; 26 ( 3 ): 280 - 286. https://doi.org/10.1111/pai.12347
dc.identifier.citedreferenceWahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefits of allergen immunotherapy for birch pollen-associated allergic rhinitis and asthma. Allergy. 2019; 74 ( 3 ): 594 - 604. https://doi.org/10.1111/all.13598
dc.identifier.citedreferenceZielen S, Kardos P, Madonini E. Steroid-sparing effects with allergen-specific immunotherapy in children with asthma: a randomized controlled trial. J Allergy Clin Immunol. 2010; 126 ( 5 ): 942 - 949. https://doi.org/10.1016/j.jaci.2010.06.002
dc.identifier.citedreferenceMoller C, Dreborg S, Ferdousi HA, et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J Allergy Clin Immunol. 2002; 109 ( 2 ): 251 - 256. https://doi.org/10.1067/mai.2002.121317
dc.identifier.citedreferenceNiggemann B, Jacobsen L, Dreborg S, et al. Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children. Allergy. 2006; 61 ( 7 ): 855 - 859. https://doi.org/10.1111/j.1398-9995.2006.01068.x
dc.identifier.citedreferenceDevillier P, Molimard M, Ansolabehere X, et al. Immunotherapy with grass pollen tablets reduces medication dispensing for allergic rhinitis and asthma: a retrospective database study in France. Allergy. 2019; 74 ( 7 ): 1317 - 1326. https://doi.org/10.1111/all.13705
dc.identifier.citedreferenceLim CE, Sison CP, Ponda P. Comparison of pediatric and adult systemic reactions to subcutaneous immunotherapy. J Allergy Clin Immunol Pract. 2017; 5 ( 5 ): 1241 - 1247.e2. https://doi.org/10.1016/j.jaip.2017.01.014
dc.identifier.citedreferenceLiu JL, Ning WX, Li SX, et al. The safety profile of subcutaneous allergen immunotherapy in children with asthma in Hangzhou, East China. Allergol Immunopathol (Madr). 2017; 45 ( 6 ): 541 - 548. https://doi.org/10.1016/j.aller.2017.04.002
dc.identifier.citedreferenceBousquet PJ, Castelli C, Daures JP, et al. Assessment of allergen sensitization in a general population-based survey (European Community Respiratory Health Survey I). Ann Epidemiol. 2010; 20 ( 11 ): 797 - 803. https://doi.org/10.1016/j.annepidem.2010.05.012
dc.identifier.citedreferenceArbes Jr SJ, Gergen PJ, Elliott L, Zeldin DC. Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J Allergy Clin Immunol. 2005; 116 ( 2 ): 377 - 383. https://doi.org/10.1016/j.jaci.2005.05.017
dc.identifier.citedreferenceBallardini N, Bergstrom A, Wahlgren CF, et al. IgE antibodies in relation to prevalence and multimorbidity of eczema, asthma, and rhinitis from birth to adolescence. Allergy. 2016; 71 ( 3 ): 342 - 349. https://doi.org/10.1111/all.12798
dc.identifier.citedreferenceAalberse RC, Aalberse JA. Molecular allergen-specific IgE assays as a complement to allergen extract-based sensitization assessment. J Allergy Clin Immunol Pract. 2015; 3 ( 6 ): 863 - 869; quiz 870. https://doi.org/10.1016/j.jaip.2015.09.013
dc.identifier.citedreferenceSenna G, Lombardi C, Canonica GW, Passalacqua G. How adherent to sublingual immunotherapy prescriptions are patients? The manufacturers’ viewpoint. J Allergy Clin Immunol. 2010; 126 ( 3 ): 668 - 669. https://doi.org/10.1016/j.jaci.2010.06.045
dc.identifier.citedreferenceKiotseridis H, Arvidsson P, Backer V, Braendholt V, Tunsater A. Adherence and quality of life in adults and children during 3-years of SLIT treatment with Grazax-a real life study. NPJ Prim Care Respir Med. 2018; 28 ( 1 ): 4. https://doi.org/10.1038/s41533-018-0072-z
dc.identifier.citedreferenceChen H, Chen Y, Lin B, et al. Efficacy and adherence of sublingual immunotherapy in patients aged 60 to 75 years old with house dust mite-induced allergic rhinitis. Am J Otolaryngol. 2020; 41 ( 4 ): 102538. https://doi.org/10.1016/j.amjoto.2020.102538
dc.identifier.citedreferenceVogelberg C, Bruggenjurgen B, Richter H, Jutel M. Real-world adherence and evidence of subcutaneous and sublingual immunotherapy in grass and tree pollen-induced allergic rhinitis and asthma. Patient Prefer Adherence. 2020; 14: 817 - 827. https://doi.org/10.2147/PPA.S242957
dc.identifier.citedreferenceLemberg ML, Berk T, Shah-Hosseini K, Kasche EM, Mosges R. Sublingual versus subcutaneous immunotherapy: patient adherence at a large German allergy center. Patient Prefer Adherence. 2017; 11: 63 - 70. https://doi.org/10.2147/PPA.S122948
dc.identifier.citedreferenceStone B, Rance K, Waddell D, Aagren M, Hammerby E, Tkacz JP. Real-world mapping of allergy immunotherapy in the United States: the argument for improving adherence. Allergy Asthma Proc. 2021; 42 ( 1 ): 55 - 64. https://doi.org/10.2500/aap.2021.42.200114
dc.identifier.citedreferenceLiu W, Zeng Q, He C, et al. Compliance, efficacy, and safety of subcutaneous and sublingual immunotherapy in children with allergic rhinitis. Pediatr Allergy Immunol. 2021; 32 ( 1 ): 86 - 91. https://doi.org/10.1111/pai.13332
dc.identifier.citedreferenceHsu NM, Reisacher WR. A comparison of attrition rates in patients undergoing sublingual immunotherapy vs subcutaneous immunotherapy. Int Forum Allergy Rhinol. 2012; 2 ( 4 ): 280 - 284. https://doi.org/10.1002/alr.21037
dc.identifier.citedreferenceAllam JP, Andreasen JN, Mette J, Serup-Hansen N, Wustenberg EG. Comparison of allergy immunotherapy medication persistence with a sublingual immunotherapy tablet versus subcutaneous immunotherapy in Germany. J Allergy Clin Immunol. 2018; 141 ( 5 ): 1898 - 1901.e5. https://doi.org/10.1016/j.jaci.2017.12.999
dc.identifier.citedreferenceSorri M, Hartikainen-Sorri AL, Karja J. Rhinitis during pregnancy. Rhinology. 1980; 18 ( 2 ): 83 - 86.
dc.identifier.citedreferenceIncuado GA. Diagnosis and treatment of allergic rhinitis and sinusitis during pregnancy and lactation. Clin Rev Allergy Immunol. 2004; 27 ( 2 ): 159 - 177.
dc.identifier.citedreferenceMurphy VE, Clifton VL, Gibson PG. Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax. 2006; 61 ( 2 ): 169 - 176. https://doi.org/10.1136/thx.2005.049718
dc.identifier.citedreferenceMetzger WJ, Turner E, Patterson R. The safety of immunotherapy during pregnancy. J Allergy Clin Immunol. 1978; 61 ( 4 ): 268 - 272. https://doi.org/10.1016/0091-6749(78)90202-6
dc.identifier.citedreferenceDowdee A, Ossege J. Assessment of childhood allergy for the primary care practitioner. J Am Acad Nurse Pract. 2007; 19 ( 2 ): 53 - 62. https://doi.org/10.1111/j.1745-7599.2006.00195.x
dc.identifier.citedreferenceBerger WE. Allergic rhinitis in children: diagnosis and management strategies. Paediatr Drugs. 2004; 6 ( 4 ): 233 - 250. https://doi.org/10.2165/00148581-200406040-00003
dc.identifier.citedreferenceDoulaptsi M, Aoi N, Kawauchi H, Milioni A, Karatzanis A, Prokopakis E. Differentiating rhinitis in the paediatric population by giving focus on medical history and clinical examination. Med Sci (Basel). 2019; 7 ( 3 ): 38. https://doi.org/10.3390/medsci7030038
dc.identifier.citedreferenceTharpe CA, Kemp SF. Pediatric allergic rhinitis. Immunol Allergy Clin North Am. 2015; 35 ( 1 ): 185 - 198. https://doi.org/10.1016/j.iac.2014.09.003
dc.identifier.citedreferenceSanford T. Allergic rhinitis in children. Mo Med. 2008; 105 ( 3 ): 230 - 234.
dc.identifier.citedreferenceRoberts G, Xatzipsalti M, Borrego LM, et al. Paediatric rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2013; 68 ( 9 ): 1102 - 1116. https://doi.org/10.1111/all.12235
dc.identifier.citedreferenceIzquierdo-Dominguez A, Valero AL, Mullol J. Comparative analysis of allergic rhinitis in children and adults. Curr Allergy Asthma Rep. 2013; 13 ( 2 ): 142 - 151. https://doi.org/10.1007/s11882-012-0331-y
dc.identifier.citedreferenceReshma A, Baranwal AK. Child with allergies or allergic reactions. Indian J Pediatr. 2018; 85 ( 1 ): 60 - 65. https://doi.org/10.1007/s12098-017-2436-8
dc.identifier.citedreferenceLee VS, Lin SY. Allergy and the pediatric otolaryngologist. Otolaryngol Clin North Am. 2019; 52 ( 5 ): 863 - 873. https://doi.org/10.1016/j.otc.2019.05.005
dc.identifier.citedreferenceMims JW, Veling MC. Inhalant allergies in children. Otolaryngol Clin North Am. 2011; 44 ( 3 ): 797 - 814, xi. https://doi.org/10.1016/j.otc.2011.03.013
dc.identifier.citedreferenceKwon C, Lee HY, Kim MG, Boo SH, Yeo SG. Allergic diseases in children with otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2013; 77 ( 2 ): 158 - 161. https://doi.org/10.1016/j.ijporl.2012.09.039
dc.identifier.citedreferenceRoditi RE, Veling M, Shin JJ. Age: an effect modifier of the association between allergic rhinitis and Otitis media with effusion. Laryngoscope. 2016; 126 ( 7 ): 1687 - 1692. https://doi.org/10.1002/lary.25682
dc.identifier.citedreferenceOlusesi AD, Undie NB, Amodu JE. Allergy history as a predictor of early onset adenoids/adenotonsillar hypertrophy among Nigerian children. Int J Pediatr Otorhinolaryngol. 2013; 77 ( 6 ): 1032 - 1035. https://doi.org/10.1016/j.ijporl.2013.04.004
dc.identifier.citedreferenceEvcimik MF, Dogru M, Cirik AA, Nepesov MI. Adenoid hypertrophy in children with allergic disease and influential factors. Int J Pediatr Otorhinolaryngol. 2015; 79 ( 5 ): 694 - 697. https://doi.org/10.1016/j.ijporl.2015.02.017
dc.identifier.citedreferenceHuang SW, Giannoni C. The risk of adenoid hypertrophy in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2001; 87 ( 4 ): 350 - 355. https://doi.org/10.1016/S1081-1206(10)62251-X
dc.identifier.citedreferenceLa Mantia I, Andaloro C. Demographics and clinical features predictive of allergic versus non-allergic rhinitis in children aged 6-18 years: a single-center experience of 1535 patients. Int J Pediatr Otorhinolaryngol. 2017; 98: 103 - 109. https://doi.org/10.1016/j.ijporl.2017.04.044
dc.identifier.citedreferenceBrown T. Diagnosis and management of allergic rhinitis in children. Pediatr Ann. 2019; 48 ( 12 ): e485 - e488. https://doi.org/10.3928/19382359-20191111-01
dc.identifier.citedreferenceEigenmann PA, Atanaskovic-Markovic M, O’B Hourihane J, et al. Testing children for allergies: why, how, who and when: an updated statement of the European Academy of Allergy and Clinical Immunology (EAACI) Section on Pediatrics and the EAACI-Clemens von Pirquet Foundation. Pediatr Allergy Immunol. 2013; 24 ( 2 ): 195 - 209. https://doi.org/10.1111/pai.12066
dc.identifier.citedreferenceHost A, Andrae S, Charkin S, et al. Allergy testing in children: why, who, when and how? Allergy. 2003; 58 ( 7 ): 559 - 569. https://doi.org/10.1034/j.1398-9995.2003.00238.x
dc.identifier.citedreferenceChawes BLK, Kreiner-Moller E, Bisgaard H. Objective assessments of allergic and nonallergic rhinitis in young children. Allergy. 2009; 64 ( 10 ): 1547 - 1553. https://doi.org/10.1111/j.1398-9995.2009.02085.x
dc.identifier.citedreferenceMiller RE, Paradise JL, Friday GA, Fireman P, Voith D. The nasal smear for eosinophils. Its value in children with seasonal allergic rhinitis. Am J Dis Child. 1982; 136 ( 11 ): 1009 - 1011. https://doi.org/10.1001/archpedi.1982.03970470053015
dc.identifier.citedreferenceMierzejewska A, Jung A, Kalicki B. Nasal cytology as a marker of atopy in children. Dis Markers. 2017; 2017: 4159251. https://doi.org/10.1155/2017/4159251
dc.identifier.citedreferenceJirapongsananuruk O, Vichyanond P. Nasal cytology in the diagnosis of allergic rhinitis in children. Ann Allergy Asthma Immunol. 1998; 80 ( 2 ): 165 - 170. https://doi.org/10.1016/S1081-1206(10)62950-X
dc.identifier.citedreferenceKaliner MA, Berger WE, Ratner PH, Siegel CJ. The efficacy of intranasal antihistamines in the treatment of allergic rhinitis. Ann Allergy Asthma Immunol. 2011; 106 (2 suppl): S6 - S11. https://doi.org/10.1016/j.anai.2010.08.010
dc.identifier.citedreferenceDibildox J. Safety and efficacy of mometasone furoate aqueous nasal spray in children with allergic rhinitis: results of recent clinical trials. J Allergy Clin Immunol. 2001; 108 (1 suppl): S54 - S58. https://doi.org/10.1067/mai.2001.115567
dc.identifier.citedreferenceRoberge RJ, Hirani KH, Rowland 3rd PL, Berkeley R, Krenzelok EP. Dextromethorphan- and pseudoephedrine-induced agitated psychosis and ataxia: case report. J Emerg Med. 1999; 17 ( 2 ): 285 - 288. https://doi.org/10.1016/s0736-4679(98)00193-0
dc.identifier.citedreferenceSauder KL, Brady Jr WJ, Hennes H. Visual hallucinations in a toddler: accidental ingestion of a sympathomimetic over-the-counter nasal decongestant. Am J Emerg Med. 1997; 15 ( 5 ): 521 - 526. https://doi.org/10.1016/s0735-6757(97)90200-x
dc.identifier.citedreferenceHalken S, Lau S, Valovirta E. New visions in specific immunotherapy in children: an iPAC summary and future trends. Pediatr Allergy Immunol. 2008; 19 (suppl 19): 60 - 70. https://doi.org/10.1111/j.1399-3038.2008.00768.x
dc.identifier.citedreferenceMarogna M, Tomassetti D, Bernasconi A, et al. Preventive effects of sublingual immunotherapy in childhood: an open randomized controlled study. Ann Allergy Asthma Immunol. 2008; 101 ( 2 ): 206 - 11. https://doi.org/10.1016/s1081-1206(10)60211-6
dc.identifier.citedreferenceBousquet J, Pfaar O, Agache I, et al. ARIA-EAACI care pathways for allergen immunotherapy in respiratory allergy. Clin Transl Allergy. 2021; 11 ( 4 ): e12014. https://doi.org/10.1002/clt2.12014
dc.identifier.citedreferencePitsios C, Demoly P, Bilo MB, et al. Clinical contraindications to allergen immunotherapy: an EAACI position paper. Allergy. 2015; 70 ( 8 ): 897 - 909. https://doi.org/10.1111/all.12638
dc.identifier.citedreferenceWenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012; 18 ( 5 ): 716 - 725. https://doi.org/10.1038/nm.2678
dc.identifier.citedreferencevon Mutius E, Drazen JM. A patient with asthma seeks medical advice in 1828, 1928, and 2012. N Engl J Med. 2012; 366 ( 9 ): 827 - 834. https://doi.org/10.1056/NEJMra1102783
dc.identifier.citedreferenceGlobal strategy for asthma management and prevention, 2021. Accessed November 6, 2021. www.ginasthma.org
dc.identifier.citedreferenceKavanagh J, Jackson DJ, Kent BD. Over- and under-diagnosis in asthma. Breathe (Sheff). 2019; 15 ( 1 ): e20 - e27. https://doi.org/10.1183/20734735.0362-2018
dc.identifier.citedreferencePavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. Lancet. 2018; 391 ( 10118 ): 350 - 400. https://doi.org/10.1016/S0140-6736(17)30879-6
dc.identifier.citedreferenceChung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014; 43 ( 2 ): 343 - 373. https://doi.org/10.1183/09031936.00202013
dc.identifier.citedreferencePedersen CJ, Uddin MJ, Saha SK, Darmstadt GL. Prevalence of atopic dermatitis, asthma and rhinitis from infancy through adulthood in rural Bangladesh: a population-based, cross-sectional survey. BMJ Open. 2020; 10 ( 11 ): e042380. https://doi.org/10.1136/bmjopen-2020-042380
dc.identifier.citedreferenceTohidinik HR, Mallah N, Takkouche B. History of allergic rhinitis and risk of asthma; a systematic review and meta-analysis. World Allergy Organ J. 2019; 12 ( 10 ): 100069. https://doi.org/10.1016/j.waojou.2019.100069
dc.identifier.citedreferenceMachluf Y, Farkash R, Rotkopf R, Fink D, Chaiter Y. Asthma phenotypes and associated comorbidities in a large cohort of adolescents in Israel. J Asthma. 2020; 57 ( 7 ): 722 - 735. https://doi.org/10.1080/02770903.2019.1604743
dc.identifier.citedreferenceHeck S, Al-Shobash S, Rapp D, et al. High probability of comorbidities in bronchial asthma in Germany. NPJ Prim Care Respir Med. 2017; 27 ( 1 ): 28. https://doi.org/10.1038/s41533-017-0026-x
dc.identifier.citedreferencePols DHJ, Bohnen AM, Nielen MMJ, Korevaar JC, Bindels PJE. Risks for comorbidity in children with atopic disorders: an observational study in Dutch general practices. BMJ Open. 2017; 7 ( 11 ): e018091. https://doi.org/10.1136/bmjopen-2017-018091
dc.identifier.citedreferenceMagnan A, Meunier JP, Saugnac C, Gasteau J, Neukirch F. Frequency and impact of allergic rhinitis in asthma patients in everyday general medical practice: a French observational cross-sectional study. Allergy. 2008; 63 ( 3 ): 292 - 298. https://doi.org/10.1111/j.1398-9995.2007.01584.x
dc.identifier.citedreferencede Groot EP, Nijkamp A, Duiverman EJ, Brand PL. Allergic rhinitis is associated with poor asthma control in children with asthma. Thorax. 2012; 67 ( 7 ): 582 - 587. https://doi.org/10.1136/thoraxjnl-2011-201168
dc.identifier.citedreferenceTay TR, Radhakrishna N, Hore-Lacy F, et al. Comorbidities in difficult asthma are independent risk factors for frequent exacerbations, poor control and diminished quality of life. Respirology. 2016; 21 ( 8 ): 1384 - 1390. https://doi.org/10.1111/resp.12838
dc.identifier.citedreferenceDeliu M, Belgrave D, Simpson A, Murray CS, Kerry G, Custovic A. Impact of rhinitis on asthma severity in school-age children. Allergy. 2014; 69 ( 11 ): 1515 - 1521. https://doi.org/10.1111/all.12467
dc.identifier.citedreferenceHolgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2015; 1: 15025. https://doi.org/10.1038/nrdp.2015.25
dc.identifier.citedreferenceTogias A, Gergen PJ, Hu JW, et al. Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol. 2019; 143 ( 3 ): 1003 - 1011.e10. https://doi.org/10.1016/j.jaci.2018.07.041
dc.identifier.citedreferenceShaaban R, Zureik M, Soussan D, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet. 2008; 372 ( 9643 ): 1049 - 1057. https://doi.org/10.1016/S0140-6736(08)61446-4
dc.identifier.citedreferenceFahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol. 2015; 15 ( 1 ): 57 - 65. https://doi.org/10.1038/nri3786
dc.identifier.citedreferenceKuruvilla ME, Lee FE, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019; 56 ( 2 ): 219 - 233. https://doi.org/10.1007/s12016-018-8712-1
dc.identifier.citedreferenceTodd S, Walsted ES, Grillo L, Livingston R, Menzies-Gow A, Hull JH. Novel assessment tool to detect breathing pattern disorder in patients with refractory asthma. Respirology. 2018; 23 ( 3 ): 284 - 290. https://doi.org/10.1111/resp.13173
dc.identifier.citedreferenceBarker N, Thevasagayam R, Ugonna K, Kirkby J. Pediatric dysfunctional breathing: proposed components, mechanisms, diagnosis, and management. Front Pediatr. 2020; 8: 379. https://doi.org/10.3389/fped.2020.00379
dc.identifier.citedreferenceSeumois G, Zapardiel-Gonzalo J, White B, et al. Transcriptional profiling of Th2 cells identifies pathogenic features associated with asthma. J Immunol. 2016; 197 ( 2 ): 655 - 664. https://doi.org/10.4049/jimmunol.1600397
dc.identifier.citedreferenceSamitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018; 73 ( 5 ): 993 - 1002. https://doi.org/10.1111/all.13373
dc.identifier.citedreferenceUllmann N, Mirra V, Di Marco A, et al. Asthma: differential diagnosis and comorbidities. Front Pediatr. 2018; 6: 276. https://doi.org/10.3389/fped.2018.00276
dc.identifier.citedreferenceShen Y, Zeng JH, Hong SL, Kang HY. Prevalence of allergic rhinitis comorbidity with asthma and asthma with allergic rhinitis in China: a meta-analysis. Asian Pac J Allergy Immunol. 2019; 37 ( 4 ): 220 - 225. https://doi.org/10.12932/AP-120417-0072
dc.identifier.citedreferenceKou W, Li X, Yao H, Wei P. Meta-analysis of the comorbidity rate of allergic rhinitis and asthma in Chinese children. Int J Pediatr Otorhinolaryngol. 2018; 107: 131 - 134. https://doi.org/10.1016/j.ijporl.2018.02.001
dc.identifier.citedreferenceCarr TF, Stern DA, Halonen M, Wright AL, Martinez FD. Non-atopic rhinitis at age 6 is associated with subsequent development of asthma. Clin Exp Allergy. 2019; 49 ( 1 ): 35 - 43. https://doi.org/10.1111/cea.13276
dc.identifier.citedreferenceTosca MA, Duse M, Marseglia G, Ciprandi G, “ControL’Asma” Study Group. The practical clinical relevance of rhinitis classification in children with asthma: outcomes of the "ControL’Asma" study. Ann Allergy Asthma Immunol. 2019; 123 ( 5 ): 516 - 519. https://doi.org/10.1016/j.anai.2019.08.003
dc.identifier.citedreferenceKisiel MA, Zhou X, Sundh J, et al. Data-driven questionnaire-based cluster analysis of asthma in Swedish adults. NPJ Prim Care Respir Med. 2020; 30 ( 1 ): 14. https://doi.org/10.1038/s41533-020-0168-0
dc.identifier.citedreferenceHeffler E, Blasi F, Latorre M, et al. The severe asthma network in italy: findings and perspectives. J Allergy Clin Immunol Pract. 2019; 7 ( 5 ): 1462 - 1468. https://doi.org/10.1016/j.jaip.2018.10.016
dc.identifier.citedreferenceHuang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet. 2019; 394 ( 10196 ): 407 - 418. https://doi.org/10.1016/S0140-6736(19)31147-X
dc.identifier.citedreferenceJi H, Hu Y, Zhang T, et al. Allergic comorbidity of asthma or wheezing, allergic rhinitis, and eczema: result from 333 029 allergic children in Shanghai, China. Am J Rhinol Allergy. 2020; 34 ( 2 ): 189 - 195. https://doi.org/10.1177/1945892419883238
dc.identifier.citedreferenceSonia T, Meriem M, Yacine O, et al. Prevalence of asthma and rhinitis in a Tunisian population. Clin Respir J. 2018; 12 ( 2 ): 608 - 615. https://doi.org/10.1111/crj.12570
dc.identifier.citedreferenceZiyab AH. Prevalence and risk factors of asthma, rhinitis, and eczema and their multimorbidity among young adults in Kuwait: a cross-sectional study. Biomed Res Int. 2017; 2017: 2184193. https://doi.org/10.1155/2017/2184193
dc.identifier.citedreferenceWright AL, Holberg CJ, Martinez FD, Halonen M, Morgan W, Taussig LM. Epidemiology of physician-diagnosed allergic rhinitis in childhood. Pediatrics. 1994; 94 (6 pt 1): 895 - 901.
dc.identifier.citedreferenceSettipane RJ, Settipane GA. IgE and the allergy-asthma connection in the 23-year follow-up of Brown University students. Allergy Asthma Proc. 2000; 21 ( 4 ): 221 - 225. https://doi.org/10.2500/108854100778248890
dc.identifier.citedreferenceGuerra S, Sherrill DL, Baldacci S, et al. Rhinitis is an independent risk factor for developing cough apart from colds among adults. Allergy. 2005; 60 ( 3 ): 343 - 349. https://doi.org/10.1111/j.1398-9995.2005.00717.x
dc.identifier.citedreferenceToren K, Olin AC, Hellgren J, Hermansson BA. Rhinitis increase the risk for adult-onset asthma–a Swedish population-based case-control study (MAP-study). Respir Med. 2002; 96 ( 8 ): 635 - 641. https://doi.org/10.1053/rmed.2002.1319
dc.identifier.citedreferenceShaaban R, Zureik M, Soussan D, et al. Allergic rhinitis and onset of bronchial hyperresponsiveness: a population-based study. Am J Respir Crit Care Med. 2007; 176 ( 7 ): 659 - 666. https://doi.org/10.1164/rccm.200703-427OC
dc.identifier.citedreferenceRochat MK, Illi S, Ege MJ, et al. Allergic rhinitis as a predictor for wheezing onset in school-aged children. J Allergy Clin Immunol. 2010; 126 ( 6 ): 1170 - 1175.e2. https://doi.org/10.1016/j.jaci.2010.09.008
dc.identifier.citedreferenceHamouda S, Karila C, Connault T, Scheinmann P, de Blic J. Allergic rhinitis in children with asthma: a questionnaire-based study. Clin Exp Allergy. 2008; 38 ( 5 ): 761 - 766. https://doi.org/10.1111/j.1365-2222.2008.02953.x
dc.identifier.citedreferenceAntonicelli L, Micucci C, Voltolini S, et al. Allergic rhinitis and asthma comorbidity: ARIA classification of rhinitis does not correlate with the prevalence of asthma. Clin Exp Allergy. 2007; 37 ( 6 ): 954 - 960. https://doi.org/10.1111/j.1365-2222.2007.02729.x
dc.identifier.citedreferenceJung S, Lee SY, Yoon J, et al. Risk factors and comorbidities associated with the allergic rhinitis phenotype in children according to the ARIA classification. Allergy Asthma Immunol Res. 2020; 12 ( 1 ): 72 - 85. https://doi.org/10.4168/aair.2020.12.1.72
dc.identifier.citedreferenceSio YY, Pang SL, Say YH, et al. Sensitization to airborne fungal allergens associates with asthma and allergic rhinitis presentation and severity in the Singaporean/Malaysian population. Mycopathologia. 2021; 186 ( 5 ): 583 - 588. https://doi.org/10.1007/s11046-021-00532-6
dc.identifier.citedreferenceArshad SH, Tariq SM, Matthews S, Hakim E. Sensitization to common allergens and its association with allergic disorders at age 4 years: a whole population birth cohort study. Pediatrics. 2001; 108 ( 2 ): E33. https://doi.org/10.1542/peds.108.2.e33
dc.identifier.citedreferenceBonay M, Neukirch C, Grandsaigne M, et al. Changes in airway inflammation following nasal allergic challenge in patients with seasonal rhinitis. Allergy. 2006; 61 ( 1 ): 111 - 118. https://doi.org/10.1111/j.1398-9995.2006.00967.x
dc.identifier.citedreferencePanganiban RP, Wang Y, Howrylak J, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016; 137 ( 5 ): 1423 - 1432. https://doi.org/10.1016/j.jaci.2016.01.029
dc.identifier.citedreferenceDeng Q, Lu C, Yu Y, Li Y, Sundell J, Norback D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir Med. 2016; 121: 67 - 73. https://doi.org/10.1016/j.rmed.2016.10.016
dc.identifier.citedreferenceWang J, Zhang Y, Li B, et al. Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci Total Environ. 2021; 751: 141734. https://doi.org/10.1016/j.scitotenv.2020.141734
dc.identifier.citedreferenceNordeide Kuiper I, Svanes C, Markevych I, et al. Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood. Environ Int. 2021; 146: 106219. https://doi.org/10.1016/j.envint.2020.106219
dc.identifier.citedreferencePolosa R, Knoke JD, Russo C, et al. Cigarette smoking is associated with a greater risk of incident asthma in allergic rhinitis. J Allergy Clin Immunol. 2008; 121 ( 6 ): 1428 - 1434. https://doi.org/10.1016/j.jaci.2008.02.041
dc.identifier.citedreferenceMa T, Chen Y, Pang Y, et al. Prevalence and risk factors of allergic rhinitis and asthma in the southern edge of the plateau grassland region of northern China: a cross-sectional study. World Allergy Organ J. 2021; 14 ( 7 ): 100537. https://doi.org/10.1016/j.waojou.2021.100537
dc.identifier.citedreferenceIbanez MD, Valero AL, Montoro J, et al. Analysis of comorbidities and therapeutic approach for allergic rhinitis in a pediatric population in Spain. Pediatr Allergy Immunol. 2013; 24 ( 7 ): 678 - 684. https://doi.org/10.1111/pai.12126
dc.identifier.citedreferenceBurgess JA, Walters EH, Byrnes GB, et al. Childhood allergic rhinitis predicts asthma incidence and persistence to middle age: a longitudinal study. J Allergy Clin Immunol. 2007; 120 ( 4 ): 863 - 869. https://doi.org/10.1016/j.jaci.2007.07.020
dc.identifier.citedreferenceBodtger U, Poulsen LK, Linneberg A. Rhinitis symptoms and IgE sensitization as risk factors for development of later allergic rhinitis in adults. Allergy. 2006; 61 ( 6 ): 712 - 716. https://doi.org/10.1111/j.1398-9995.2006.01140.x
dc.identifier.citedreferencePorsbjerg C, von Linstow ML, Ulrik CS, Nepper-Christensen S, Backer V. Risk factors for onset of asthma: a 12-year prospective follow-up study. Chest. 2006; 129 ( 2 ): 309 - 316. https://doi.org/10.1378/chest.129.2.309
dc.identifier.citedreferencePlaschke PP, Janson C, Norrman E, Bjornsson E, Ellbjar S, Jarvholm B. Onset and remission of allergic rhinitis and asthma and the relationship with atopic sensitization and smoking. Am J Respir Crit Care Med. 2000; 162 (3 pt 1): 920 - 924. https://doi.org/10.1164/ajrccm.162.3.9912030
dc.identifier.citedreferenceCorren J. Allergic rhinitis and asthma: how important is the link? J Allergy Clin Immunol. 1997; 99 ( 2 ): S781 - S786. https://doi.org/10.1016/s0091-6749(97)70127-1
dc.identifier.citedreferenceCorren J. The impact of allergic rhinitis on bronchial asthma. J Allergy Clin Immunol. 1998; 101 (2 pt 2): S352 - S356. https://doi.org/10.1016/s0091-6749(98)70218-0
dc.identifier.citedreferenceJeffery PK, Haahtela T. Allergic rhinitis and asthma: inflammation in a one-airway condition. BMC Pulm Med. 2006; 6 (suppl 1): S5. https://doi.org/10.1186/1471-2466-6-S1-S5
dc.identifier.citedreferenceBhimrao SK, Wilson SJ, Howarth PH. Airway inflammation in atopic patients: a comparison of the upper and lower airways. Otolaryngol Head Neck Surg. 2011; 145 ( 3 ): 396 - 400. https://doi.org/10.1177/0194599811410531
dc.identifier.citedreferenceEriksson J, Bjerg A, Lotvall J, et al. Rhinitis phenotypes correlate with different symptom presentation and risk factor patterns of asthma. Respir Med. 2011; 105 ( 11 ): 1611 - 1621. https://doi.org/10.1016/j.rmed.2011.06.004
dc.identifier.citedreferenceKersten ET, van Leeuwen JC, Brand PL, et al. Effect of an intranasal corticosteroid on exercise induced bronchoconstriction in asthmatic children. Pediatr Pulmonol. 2012; 47 ( 1 ): 27 - 35. https://doi.org/10.1002/ppul.21511
dc.identifier.citedreferenceReed CE, Marcoux JP, Welsh PW. Effects of topical nasal treatment on asthma symptoms. J Allergy Clin Immunol. 1988; 81 (5 pt 2): 1042 - 1047. https://doi.org/10.1016/0091-6749(88)90177-7
dc.identifier.citedreferenceCorren J, Adinoff AD, Buchmeier AD, Irvin CG. Nasal beclomethasone prevents the seasonal increase in bronchial responsiveness in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 1992; 90 ( 2 ): 250 - 256. https://doi.org/10.1016/0091-6749(92)90079-h
dc.identifier.citedreferenceDe Jong HJI, Voorham J, Scadding GK, et al. Evaluating the real-life effect of MP-AzeFlu on asthma outcomes in patients with allergic rhinitis and asthma in UK primary care. World Allergy Organ J. 2020; 13 ( 12 ): 100490. https://doi.org/10.1016/j.waojou.2020.100490
dc.identifier.citedreferenceChyrek-Borowska S, Siergiejko Z, Michalska I. The effects of a new generation of H1 antihistamines (cetirizine and loratadine) on histamine release and the bronchial response to histamine in atopic patients. J Investig Allergol Clin Immunol. 1995; 5 ( 2 ): 103 - 107.
dc.identifier.citedreferenceWasserfallen JB, Leuenberger P, Pecoud A. Effect of cetirizine, a new H1 antihistamine, on the early and late allergic reactions in a bronchial provocation test with allergen. J Allergy Clin Immunol. 1993; 91 ( 6 ): 1189 - 1197. https://doi.org/10.1016/0091-6749(93)90322-7
dc.identifier.citedreferenceNishimura M, Koga T, Kamimura T, et al. Comparison of leukotriene receptor antagonists and anti-histamines as an add-on therapy in patients with asthma complicated by allergic rhinitis. Kurume Med J. 2011; 58 ( 1 ): 9 - 14. https://doi.org/10.2739/kurumemedj.58.9
dc.identifier.citedreferenceGrembiale RD, Camporota L, Naty S, Tranfa CM, Djukanovic R, Marsico SA. Effects of specific immunotherapy in allergic rhinitic individuals with bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2000; 162 ( 6 ): 2048 - 2052. https://doi.org/10.1164/ajrccm.162.6.9909087
dc.identifier.citedreferenceRak S, Lowhagen O, Venge P. The effect of immunotherapy on bronchial hyperresponsiveness and eosinophil cationic protein in pollen-allergic patients. J Allergy Clin Immunol. 1988; 82 (3 pt 1): 470 - 480. https://doi.org/10.1016/0091-6749(88)90021-8
dc.identifier.citedreferenceNovembre E, Galli E, Landi F, et al. Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2004; 114 ( 4 ): 851 - 857. https://doi.org/10.1016/j.jaci.2004.07.012
dc.identifier.citedreferenceSuissa S, Ernst P. Bias in observational study of the effectiveness of nasal corticosteroids in asthma. J Allergy Clin Immunol. 2005; 115 ( 4 ): 714 - 719. https://doi.org/10.1016/j.jaci.2004.12.1118
dc.identifier.citedreferenceD’Amato G, Ortega OPM, Annesi-Maesano I, D’Amato M. Prevention of allergic asthma with allergen avoidance measures and the role of exposome. Curr Allergy Asthma Rep. 2020; 20 ( 3 ): 8. https://doi.org/10.1007/s11882-020-0901-3
dc.identifier.citedreferenceGotzsche PC, Johansen HK. House dust mite control measures for asthma. Cochrane Database Syst Rev. 2008;( 2 ): CD001187. https://doi.org/10.1002/14651858.CD001187.pub3
dc.identifier.citedreferenceTerreehorst I, Duivenvoorden HJ, Tempels-Pavlica Z, et al. The effect of encasings on quality of life in adult house dust mite allergic patients with rhinitis, asthma and/or atopic dermatitis. Allergy. 2005; 60 ( 7 ): 888 - 93. https://doi.org/10.1111/j.1398-9995.2004.00677.x
dc.identifier.citedreferencePasquali M, Baiardini I, Rogkakou A, et al. Levocetirizine in persistent allergic rhinitis and asthma: effects on symptoms, quality of life and inflammatory parameters. Clin Exp Allergy. 2006; 36 ( 9 ): 1161 - 1167. https://doi.org/10.1111/j.1365-2222.2006.02548.x
dc.identifier.citedreferenceBaena-Cagnani CE, Berger WE, DuBuske LM, et al. Comparative effects of desloratadine versus montelukast on asthma symptoms and use of beta 2-agonists in patients with seasonal allergic rhinitis and asthma. Int Arch Allergy Immunol. 2003; 130 ( 4 ): 307 - 313. https://doi.org/10.1159/000070218
dc.identifier.citedreferenceBerger WE, Schenkel EJ, Mansfield LE, Desloratadine Study Group. Safety and efficacy of desloratadine 5 mg in asthma patients with seasonal allergic rhinitis and nasal congestion. Ann Allergy Asthma Immunol. 2002; 89 ( 5 ): 485 - 491. https://doi.org/10.1016/S1081-1206(10)62086-8
dc.identifier.citedreferenceGrant JA, Nicodemus CF, Findlay SR, et al. Cetirizine in patients with seasonal rhinitis and concomitant asthma: prospective, randomized, placebo-controlled trial. J Allergy Clin Immunol. 1995; 95 (5 pt 1): 923 - 932. https://doi.org/10.1016/s0091-6749(95)70090-0
dc.identifier.citedreferenceAubier M, Neukirch C, Peiffer C, Melac M. Effect of cetirizine on bronchial hyperresponsiveness in patients with seasonal allergic rhinitis and asthma. Allergy. 2001; 56 ( 1 ): 35 - 42. https://doi.org/10.1034/j.1398-9995.2001.00629.x
dc.identifier.citedreferenceAaronson DW. Evaluation of cetirizine in patients with allergic rhinitis and perennial asthma. Ann Allergy Asthma Immunol. 1996; 76 ( 5 ): 440 - 446. https://doi.org/10.1016/S1081-1206(10)63461-8
dc.identifier.citedreferenceSimons FE. Is antihistamine (H1-receptor antagonist) therapy useful in clinical asthma? Clin Exp Allergy. 1999; 29 (suppl 3): 98 - 104. https://doi.org/10.1046/j.1365-2222.1999.0290s3098.x
dc.identifier.citedreferenceBousquet J, Emonot A, Germouty J, et al. Double-blind multicenter study of cetirizine in grass-pollen-induced asthma. Ann Allergy. 1990; 65 ( 6 ): 504 - 508.
dc.identifier.citedreferenceVan Ganse E, Kaufman L, Derde MP, Yernault JC, Delaunois L, Vincken W. Effects of antihistamines in adult asthma: a meta-analysis of clinical trials. Eur Respir J. 1997; 10 ( 10 ): 2216 - 2224. https://doi.org/10.1183/09031936.97.10102216
dc.identifier.citedreferenceAllergic factors associated with the development of asthma and the influence of cetirizine in a double-blind, randomised, placebo-controlled trial: first results of ETAC. Early Treatment of the Atopic Child. Pediatr Allergy Immunol. 1998; 9 ( 3 ): 116 - 124.
dc.identifier.citedreferenceBhargava S, Prakash A, Rehan HS, Gupta LK. Effect of systemic corticosteroids on serum apoptotic markers and quality of life in patients with asthma. Allergy Asthma Proc. 2015; 36 ( 4 ): 275 - 282. https://doi.org/10.2500/aap.2015.36.3834
dc.identifier.citedreferenceSood V, Rogers L, Khurana S. Managing corticosteroid-related comorbidities in severe asthma. Chest. 2021; 160 ( 5 ): 1614 - 1623. https://doi.org/10.1016/j.chest.2021.05.021
dc.identifier.citedreferenceHenriksen JM, Wenzel A. Effect of an intranasally administered corticosteroid (budesonide) on nasal obstruction, mouth breathing, and asthma. Am Rev Respir Dis. 1984; 130 ( 6 ): 1014 - 1048. https://doi.org/10.1164/arrd.1984.130.6.1014
dc.identifier.citedreferenceDahl R, Nielsen LP, Kips J, et al. Intranasal and inhaled fluticasone propionate for pollen-induced rhinitis and asthma. Allergy. 2005; 60 ( 7 ): 875 - 881. https://doi.org/10.1111/j.1398-9995.2005.00819.x
dc.identifier.citedreferenceNathan RA, Yancey SW, Waitkus-Edwards K, et al. Fluticasone propionate nasal spray is superior to montelukast for allergic rhinitis while neither affects overall asthma control. Chest. 2005; 128 ( 4 ): 1910 - 1920. https://doi.org/10.1378/chest.128.4.1910
dc.identifier.citedreferenceStelmach R, do Patrocinio TNM, Ribeiro M, Cukier A. Effect of treating allergic rhinitis with corticosteroids in patients with mild-to-moderate persistent asthma. Chest. 2005; 128 ( 5 ): 3140 - 3147. https://doi.org/10.1378/chest.128.5.3140
dc.identifier.citedreferenceThio BJ, Slingerland GL, Fredriks AM, et al. Influence of intranasal steroids during the grass pollen season on bronchial responsiveness in children and young adults with asthma and hay fever. Thorax. 2000; 55 ( 10 ): 826 - 832. https://doi.org/10.1136/thorax.55.10.826
dc.identifier.citedreferenceBaiardini I, Villa E, Rogkakou A, et al. Effects of mometasone furoate on the quality of life: a randomized placebo-controlled trial in persistent allergic rhinitis and intermittent asthma using the Rhinasthma questionnaire. Clin Exp Allergy. 2011; 41 ( 3 ): 417 - 423. https://doi.org/10.1111/j.1365-2222.2010.03660.x
dc.identifier.citedreferenceNair A, Vaidyanathan S, Clearie K, Williamson P, Meldrum K, Lipworth BJ. Steroid sparing effects of intranasal corticosteroids in asthma and allergic rhinitis. Allergy. 2010; 65 ( 3 ): 359 - 367. https://doi.org/10.1111/j.1398-9995.2009.02187.x
dc.identifier.citedreferenceAgondi RC, Machado ML, Kalil J, Giavina-Bianchi P. Intranasal corticosteroid administration reduces nonspecific bronchial hyperresponsiveness and improves asthma symptoms. J Asthma. 2008; 45 ( 9 ): 754 - 757. https://doi.org/10.1080/02770900802249149
dc.identifier.citedreferencePedroletti C, Lundahl J, Alving K, Hedlin G. Effect of nasal steroid treatment on airway inflammation determined by exhaled nitric oxide in allergic schoolchildren with perennial rhinitis and asthma. Pediatr Allergy Immunol. 2008; 19 ( 3 ): 219 - 226. https://doi.org/10.1111/j.1399-3038.2007.00613.x
dc.identifier.citedreferenceWatson WT, Becker AB, Simons FE. Treatment of allergic rhinitis with intranasal corticosteroids in patients with mild asthma: effect on lower airway responsiveness. J Allergy Clin Immunol. 1993; 91 (1 pt 1): 97 - 101. https://doi.org/10.1016/0091-6749(93)90301-u
dc.identifier.citedreferenceGani F, Pozzi E, Crivellaro MA, et al. The role of patient training in the management of seasonal rhinitis and asthma: clinical implications. Allergy. 2001; 56 ( 1 ): 65 - 68. https://doi.org/10.1034/j.1398-9995.2001.00794.x
dc.identifier.citedreferenceMeltzer EO. Role for cysteinyl leukotriene receptor antagonist therapy in asthma and their potential role in allergic rhinitis based on the concept of "one linked airway disease". Ann Allergy Asthma Immunol. 2000; 84 ( 2 ): 176 - 185; quiz 185-7. https://doi.org/10.1016/S1081-1206(10)62750-0
dc.identifier.citedreferenceEgan M, Bunyavanich S. Allergic rhinitis: the "Ghost Diagnosis" in patients with asthma. Asthma Res Pract. 2015; 1: 8. https://doi.org/10.1186/s40733-015-0008-0
dc.identifier.citedreferenceNowak D. Management of asthma with anti-immunoglobulin E: a review of clinical trials of omalizumab. Respir Med. 2006; 100 ( 11 ): 1907 - 1917. https://doi.org/10.1016/j.rmed.2005.10.004
dc.identifier.citedreferenceBousquet J, Cabrera P, Berkman N, et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy. 2005; 60 ( 3 ): 302 - 308. https://doi.org/10.1111/j.1398-9995.2004.00770.x
dc.identifier.citedreferenceD’Amato G, Salzillo A, Piccolo A, D’Amato M, Liccardi G. A review of anti-IgE monoclonal antibody (omalizumab) as add on therapy for severe allergic (IgE-mediated) asthma. Ther Clin Risk Manag. 2007; 3 ( 4 ): 613 - 619.
dc.identifier.citedreferenceNormansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;( 1 ): CD003559. https://doi.org/10.1002/14651858.CD003559.pub4
dc.identifier.citedreferenceHumbert M, Boulet LP, Niven RM, Panahloo Z, Blogg M, Ayre G. Omalizumab therapy: patients who achieve greatest benefit for their asthma experience greatest benefit for rhinitis. Allergy. 2009; 64 ( 1 ): 81 - 84. https://doi.org/10.1111/j.1398-9995.2008.01846.x
dc.identifier.citedreferenceVignola AM, Humbert M, Bousquet J, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy. 2004; 59 ( 7 ): 709 - 717. https://doi.org/10.1111/j.1398-9995.2004.00550.x
dc.identifier.citedreferenceErekosima N, Suarez-Cuervo C, Ramanathan M, et al. Effectiveness of subcutaneous immunotherapy for allergic rhinoconjunctivitis and asthma: a systematic review. Laryngoscope. 2014; 124 ( 3 ): 616 - 627. https://doi.org/10.1002/lary.24295
dc.identifier.citedreferenceSidenius K, Arvidsson P, Indbryn R, Emanuelsson CA. A real-life one-year non-interventional study assessing safety, tolerability, and treatment outcome of the SQ HDM SLIT-Tablet (Acarizax((R))) in house dust mite allergic rhinitis with or without asthma. Pulm Ther. 2021; 7 ( 1 ): 221 - 236. https://doi.org/10.1007/s41030-021-00150-z
dc.identifier.citedreferenceInal A, Altintas DU, Yilmaz M, Karakoc GB, Kendirli SG, Sertdemir Y. Prevention of new sensitizations by specific immunotherapy in children with rhinitis and/or asthma monosensitized to house dust mite. J Investig Allergol Clin Immunol. 2007; 17 ( 2 ): 85 - 91.
dc.identifier.citedreferencePurello-D’Ambrosio F, Gangemi S, Merendino RA, et al. Prevention of new sensitizations in monosensitized subjects submitted to specific immunotherapy or not. A retrospective study. Clin Exp Allergy. 2001; 31 ( 8 ): 1295 - 1302. https://doi.org/10.1046/j.1365-2222.2001.01027.x
dc.identifier.citedreferenceDi Lorenzo G, Leto-Barone MS, La Piana S, Plaia A, Di Bona D. The effect of allergen immunotherapy in the onset of new sensitizations: a meta-analysis. Int Forum Allergy Rhinol. 2017; 7 ( 7 ): 660 - 669. https://doi.org/10.1002/alr.21946
dc.identifier.citedreferenceFortescue R, Kew KM, Leung MST. Sublingual immunotherapy for asthma. Cochrane Database Syst Rev. 2020; 9: CD011293. https://doi.org/10.1002/14651858.CD011293.pub3
dc.identifier.citedreferenceGlobal Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019. Accessed July 4, 2022. www.ginasthma.org
dc.identifier.citedreference2020 Focused Update to the Asthma Management Guidelines: Clinician’s Guide. Accessed July 4, 2022. https://www.nhlbi.nih.gov/sites/default/files/publications/AsthmaCliniciansGuideDesign-508.pdf
dc.identifier.citedreferenceKatial RK, Oppenheimer JJ, Ostrom NK, et al. Adding montelukast to fluticasone propionate/salmeterol for control of asthma and seasonal allergic rhinitis. Allergy Asthma Proc. 2010; 31 ( 1 ): 68 - 75. https://doi.org/10.2500/aap.2010.31.3306
dc.identifier.citedreferencePrice DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006; 61 ( 6 ): 737 - 742. https://doi.org/10.1111/j.1398-9995.2006.01007.x
dc.identifier.citedreferenceMarcus S, Roland LT, DelGaudio JM, Wise SK. The relationship between allergy and chronic rhinosinusitis. Laryngoscope Investig Otolaryngol. 2019; 4 ( 1 ): 13 - 17. https://doi.org/10.1002/lio2.236
dc.identifier.citedreferenceWilson KF, McMains KC, Orlandi RR. The association between allergy and chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2014; 4 ( 2 ): 93 - 103. https://doi.org/10.1002/alr.21258
dc.identifier.citedreferenceBaroody FM, Mucha SM, Detineo M, Naclerio RM. Nasal challenge with allergen leads to maxillary sinus inflammation. J Allergy Clin Immunol. 2008; 121 ( 5 ): 1126 - 1132.e7. https://doi.org/10.1016/j.jaci.2008.02.010
dc.identifier.citedreferenceTan BK, Zirkle W, Chandra RK, et al. Atopic profile of patients failing medical therapy for chronic rhinosinusitis. Int Forum Allergy Rhinol. 2011; 1 ( 2 ): 88 - 94. https://doi.org/10.1002/alr.20025
dc.identifier.citedreferencePearlman AN, Chandra RK, Chang D, et al. Relationships between severity of chronic rhinosinusitis and nasal polyposis, asthma, and atopy. Am J Rhinol Allergy. 2009; 23 ( 2 ): 145 - 148. https://doi.org/10.2500/ajra.2009.23.3284
dc.identifier.citedreferenceHutcheson PS, Schubert MS, Slavin RG. Distinctions between allergic fungal rhinosinusitis and chronic rhinosinusitis. Am J Rhinol Allergy. 2010; 24 ( 6 ): 405 - 408. https://doi.org/10.2500/ajra.2010.24.3533
dc.identifier.citedreferenceGelincik A, Buyukozturk S, Aslan I, et al. Allergic vs nonallergic rhinitis: which is more predisposing to chronic rhinosinusitis? Ann Allergy Asthma Immunol. 2008; 101 ( 1 ): 18 - 22. https://doi.org/10.1016/S1081-1206(10)60829-0
dc.identifier.citedreferenceKirtsreesakul V, Ruttanaphol S. The relationship between allergy and rhinosinusitis. Rhinology. 2008; 46 ( 3 ): 204 - 208.
dc.identifier.citedreferenceRobinson S, Douglas R, Wormald PJ. The relationship between atopy and chronic rhinosinusitis. Am J Rhinol. 2006; 20 ( 6 ): 625 - 628. https://doi.org/10.2500/ajr.2006.20.2907
dc.identifier.citedreferenceAlho OP, Karttunen R, Karttunen TJ. Nasal mucosa in natural colds: effects of allergic rhinitis and susceptibility to recurrent sinusitis. Clin Exp Immunol. 2004; 137 ( 2 ): 366 - 372. https://doi.org/10.1111/j.1365-2249.2004.02530.x
dc.identifier.citedreferenceVan Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004; 114 ( 4 ): 981 - 983. https://doi.org/10.1016/j.jaci.2004.07.013
dc.identifier.citedreferenceBerrettini S, Carabelli A, Sellari-Franceschini S, et al. Perennial allergic rhinitis and chronic sinusitis: correlation with rhinologic risk factors. Allergy. 1999; 54 ( 3 ): 242 - 248. https://doi.org/10.1034/j.1398-9995.1999.00813.x
dc.identifier.citedreferenceAl-Qudah M. Food sensitization in medically resistant chronic rhinosinusitis with or without nasal polyposis. Int Arch Allergy Immunol. 2016; 169 ( 1 ): 40 - 44. https://doi.org/10.1159/000443737
dc.identifier.citedreferenceLi QC, Cheng KJ, Wang F, Zhou SH. Role of atopy in chronic rhinosinusitis with nasal polyps: does an atopic condition affect the severity and recurrence of disease? J Laryngol Otol. 2016; 130 ( 7 ): 640 - 644. https://doi.org/10.1017/S0022215116008112
dc.identifier.citedreferenceHouser SM, Keen KJ. The role of allergy and smoking in chronic rhinosinusitis and polyposis. Laryngoscope. 2008; 118 ( 9 ): 1521 - 1527. https://doi.org/10.1097/MLG.0b013e31817d01b8
dc.identifier.citedreferenceKirtsreesakul V. Role of allergy in the therapeutic response of nasal polyps. Asian Pac J Allergy Immunol. 2002; 20 ( 3 ): 141 - 146.
dc.identifier.citedreferenceGorgulu O, Ozdemir S, Canbolat EP, Sayar C, Olgun MK, Akbas Y. Analysis of the roles of smoking and allergy in nasal polyposis. Ann Otol Rhinol Laryngol. 2012; 121 ( 9 ): 615 - 619. https://doi.org/10.1177/000348941212100909
dc.identifier.citedreferenceLill C, Loader B, Seemann R, et al. Milk allergy is frequent in patients with chronic sinusitis and nasal polyposis. Am J Rhinol Allergy. 2011; 25 ( 6 ): e221 - e224. https://doi.org/10.2500/ajra.2011.25.3686
dc.identifier.citedreferenceMunoz del Castillo F, Jurado-Ramos A, Fernandez-Conde BL, et al. Allergenic profile of nasal polyposis. J Investig Allergol Clin Immunol. 2009; 19 ( 2 ): 110 - 116.
dc.identifier.citedreferenceBonfils P, Malinvaud D. Influence of allergy in patients with nasal polyposis after endoscopic sinus surgery. Acta Otolaryngol. 2008; 128 ( 2 ): 186 - 192. https://doi.org/10.1080/00016480701387165
dc.identifier.citedreferenceErbek SS, Erbek S, Topal O, Cakmak O. The role of allergy in the severity of nasal polyposis. Am J Rhinol. 2007; 21 ( 6 ): 686 - 690. https://doi.org/10.2500/ajr.2007.21.3062
dc.identifier.citedreferenceBonfils P, Avan P, Malinvaud D. Influence of allergy on the symptoms and treatment of nasal polyposis. Acta Otolaryngol. 2006; 126 ( 8 ): 839 - 844. https://doi.org/10.1080/00016480500504226
dc.identifier.citedreferenceCollins MM, Loughran S, Davidson P, Wilson JA. Nasal polyposis: prevalence of positive food and inhalant skin tests. Otolaryngol Head Neck Surg. 2006; 135 ( 5 ): 680 - 683. https://doi.org/10.1016/j.otohns.2006.07.005
dc.identifier.citedreferenceAsero R, Bottazzi G. Nasal polyposis: a study of its association with airborne allergen hypersensitivity. Ann Allergy Asthma Immunol. 2001; 86 ( 3 ): 283 - 285. https://doi.org/10.1016/S1081-1206(10)63299-1
dc.identifier.citedreferenceVoegels RL, Santoro P, Butugan O, Formigoni LG. Nasal polyposis and allergy: is there a correlation? Am J Rhinol. 2001; 15 ( 1 ): 9 - 14. https://doi.org/10.2500/105065801781329365
dc.identifier.citedreferenceAsero R, Bottazzi G. Hypersensitivity to molds in patients with nasal polyposis: a clinical study. J Allergy Clin Immunol. 2000; 105 (1 pt 1): 186 - 188. https://doi.org/10.1016/s0091-6749(00)90198-2
dc.identifier.citedreferencePang YT, Eskici O, Wilson JA. Nasal polyposis: role of subclinical delayed food hypersensitivity. Otolaryngol Head Neck Surg. 2000; 122 ( 2 ): 298 - 301. https://doi.org/10.1016/S0194-5998(00)70259-2
dc.identifier.citedreferencePumhirun P, Limitlaohapanth C, Wasuwat P. Role of allergy in nasal polyps of Thai patients. Asian Pac J Allergy Immunol. 1999; 17 ( 1 ): 13 - 15.
dc.identifier.citedreferenceKeith PK, Conway M, Evans S, et al. Nasal polyps: effects of seasonal allergen exposure. J Allergy Clin Immunol. 1994; 93 ( 3 ): 567 - 574. https://doi.org/10.1016/s0091-6749(94)70068-0
dc.identifier.citedreferenceEnce BK, Gourley DS, Jorgensen NL, et al. Allergic fungal sinusitis. Am J Rhinol. 1990; 4: 169 - 178.
dc.identifier.citedreferenceSchubert MS. Allergic fungal sinusitis. Otolaryngol Clin North Am. 2004; 37 ( 2 ): 301 - 326. https://doi.org/10.1016/S0030-6665(03)00152-X
dc.identifier.citedreferenceBent 3rd JP, Kuhn FA. Diagnosis of allergic fungal sinusitis. Otolaryngol Head Neck Surg. 1994; 111 ( 5 ): 580 - 588. https://doi.org/10.1177/019459989411100508
dc.identifier.citedreferenceSaravanan K, Panda NK, Chakrabarti A, Das A, Bapuraj RJ. Allergic fungal rhinosinusitis: an attempt to resolve the diagnostic dilemma. Arch Otolaryngol Head Neck Surg. 2006; 132 ( 2 ): 173 - 178. https://doi.org/10.1001/archotol.132.2.173
dc.identifier.citedreferenceManning SC, Mabry RL, Schaefer SD, Close LG. Evidence of IgE-mediated hypersensitivity in allergic fungal sinusitis. Laryngoscope. 1993; 103 ( 7 ): 717 - 721. https://doi.org/10.1288/00005537-199307000-00002
dc.identifier.citedreferenceStewart AE, Hunsaker DH. Fungus-specific IgG and IgE in allergic fungal rhinosinusitis. Otolaryngol Head Neck Surg. 2002; 127 ( 4 ): 324 - 332. https://doi.org/10.1067/mhn.2002.126801
dc.identifier.citedreferenceRyan MW, Marple BF. Allergic fungal rhinosinusitis: diagnosis and management. Curr Opin Otolaryngol Head Neck Surg. 2007; 15 ( 1 ): 18 - 22. https://doi.org/10.1097/MOO.0b013e328013dbd9
dc.identifier.citedreferenceCollins M, Nair S, Smith W, Kette F, Gillis D, Wormald PJ. Role of local immunoglobulin E production in the pathophysiology of noninvasive fungal sinusitis. Laryngoscope. 2004; 114 ( 7 ): 1242 - 1246. https://doi.org/10.1097/00005537-200407000-00019
dc.identifier.citedreferenceWise SK, Ahn CN, Lathers DM, Mulligan RM, Schlosser RJ. Antigen-specific IgE in sinus mucosa of allergic fungal rhinosinusitis patients. Am J Rhinol. 2008; 22 ( 5 ): 451 - 456. https://doi.org/10.2500/ajr.2008.22.3227
dc.identifier.citedreferenceChang YT, Fang SY. Tissue-specific immunoglobulin E in maxillary sinus mucosa of allergic fungal sinusitis. Rhinology. 2008; 46 ( 3 ): 226 - 230.
dc.identifier.citedreferenceKuhn FA, Swain Jr R. Allergic fungal sinusitis: diagnosis and treatment. Curr Opin Otolaryngol Head Neck Surg. 2003; 11 ( 1 ): 1 - 5. https://doi.org/10.1097/00020840-200302000-00001
dc.identifier.citedreferenceMabry RL, Marple BF, Folker RJ, Mabry CS. Immunotherapy for allergic fungal sinusitis: three years’ experience. Otolaryngol Head Neck Surg. 1998; 119 ( 6 ): 648 - 651. https://doi.org/10.1016/S0194-5998(98)70027-0
dc.identifier.citedreferenceFolker RJ, Marple BF, Mabry RL, Mabry CS. Treatment of allergic fungal sinusitis: a comparison trial of postoperative immunotherapy with specific fungal antigens. Laryngoscope. 1998; 108 (11 pt 1): 1623 - 1627. https://doi.org/10.1097/00005537-199811000-00007
dc.identifier.citedreferenceGan EC, Thamboo A, Rudmik L, Hwang PH, Ferguson BJ, Javer AR. Medical management of allergic fungal rhinosinusitis following endoscopic sinus surgery: an evidence-based review and recommendations. Int Forum Allergy Rhinol. 2014; 4 ( 9 ): 702 - 715. https://doi.org/10.1002/alr.21352
dc.identifier.citedreferenceDoellman MS, Dion GR, Weitzel EK, Reyes EG. Immunotherapy in allergic fungal sinusitis: the controversy continues. A recent review of literature. Allergy Rhinol (Providence). 2013; 4 ( 1 ): e32 - e35. https://doi.org/10.2500/ar.2013.4.0045
dc.identifier.citedreferencePant H, Kette FE, Smith WB, Wormald PJ, Macardle PJ. Fungal-specific humoral response in eosinophilic mucus chronic rhinosinusitis. Laryngoscope. 2005; 115 ( 4 ): 601 - 606. https://doi.org/10.1097/01.mlg.0000161341.00258.54
dc.identifier.citedreferenceClark DW, Wenaas A, Luong A, Citardi MJ, Fakhri S. Staphylococcus aureus prevalence in allergic fungal rhinosinusitis vs other subsets of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2013; 3 ( 2 ): 89 - 93. https://doi.org/10.1002/alr.21090
dc.identifier.citedreferencePonikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc. 1999; 74 ( 9 ): 877 - 884. https://doi.org/10.4065/74.9.877
dc.identifier.citedreferenceCody 2nd DT, Neel 3rd HB, Ferreiro JA, Roberts GD. Allergic fungal sinusitis: the Mayo Clinic experience. Laryngoscope. 1994; 104 ( 9 ): 1074 - 1079. https://doi.org/10.1288/00005537-199409000-00005
dc.identifier.citedreferenceDykewicz MS, Rodrigues JM, Slavin RG. Allergic fungal rhinosinusitis. J Allergy Clin Immunol. 2018; 142 ( 2 ): 341 - 351. https://doi.org/10.1016/j.jaci.2018.06.023
dc.identifier.citedreferenceTyler MA, Luong AU. Current understanding of allergic fungal rhinosinusitis. World J Otorhinolaryngol Head Neck Surg. 2018; 4 ( 3 ): 179 - 185. https://doi.org/10.1016/j.wjorl.2018.08.003
dc.identifier.citedreferenceLin YT, Lin CF, Liao CK, Chiang BL, Yeh TH. Clinical characteristics and cytokine profiles of central-compartment-type chronic rhinosinusitis. Int Forum Allergy Rhinol. 2021; 11 ( 7 ): 1064 - 1073. https://doi.org/10.1002/alr.22759
dc.identifier.citedreferenceMakary CA, Falco J, Sussman S, et al. Disease involvement in the central compartment in eosinophilic chronic rhinosinusitis. Int Forum Allergy Rhinol. 2021; 11 ( 10 ): 1417 - 1423. https://doi.org/10.1002/alr.22803
dc.identifier.citedreferenceSchertzer JS, Levy JM, Wise SK, Magliocca KR, DelGaudio JM. Is respiratory epithelial adenomatoid hamartoma related to central compartment atopic disease? Am J Rhinol Allergy. 2020; 34 ( 5 ): 610 - 617. https://doi.org/10.1177/1945892420914212
dc.identifier.citedreferenceLaidlaw TM, Boyce JA. Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol Allergy Clin North Am. 2013; 33 ( 2 ): 195 - 210. https://doi.org/10.1016/j.iac.2012.11.006
dc.identifier.citedreferenceSamter M, Beers Jr RF. Intolerance to aspirin. Clinical studies and consideration of its pathogenesis. Ann Intern Med. 1968; 68 ( 5 ): 975 - 983. https://doi.org/10.7326/0003-4819-68-5-975
dc.identifier.citedreferenceBochenek G, Kuschill-Dziurda J, Szafraniec K, Plutecka H, Szczeklik A, Nizankowska-Mogilnicka E. Certain subphenotypes of aspirin-exacerbated respiratory disease distinguished by latent class analysis. J Allergy Clin Immunol. 2014; 133 ( 1 ):98-103.e1-6. https://doi.org/10.1016/j.jaci.2013.07.004
dc.identifier.citedreferenceBerges-Gimeno MP, Simon RA, Stevenson DD. The natural history and clinical characteristics of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2002; 89 ( 5 ): 474 - 478. https://doi.org/10.1016/S1081-1206(10)62084-4
dc.identifier.citedreferenceJakiela B, Soja J, Sladek K, et al. Heterogeneity of lower airway inflammation in patients with NSAID-exacerbated respiratory disease. J Allergy Clin Immunol. 2021; 147 ( 4 ): 1269 - 1280. https://doi.org/10.1016/j.jaci.2020.08.007
dc.identifier.citedreferenceDona I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs. Sci Rep. 2018; 8 ( 1 ): 16710. https://doi.org/10.1038/s41598-018-34668-1
dc.identifier.citedreferenceBochenek G, Nizankowska E, Szczeklik A. The atopy trait in hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 1996; 51 ( 1 ): 16 - 23. https://doi.org/10.1111/j.1398-9995.1996.tb04544.x
dc.identifier.citedreferenceStevens WW, Peters AT, Hirsch AG, et al. Clinical characteristics of patients with chronic rhinosinusitis with nasal polyps, asthma, and aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2017; 5 ( 4 ): 1061 - 1070.e3. https://doi.org/10.1016/j.jaip.2016.12.027
dc.identifier.citedreferenceBrown HJ, Tajudeen BA, Kuhar HN, Gattuso P, Batra PS, Mahdavinia M. Defining the allergic endotype of chronic rhinosinusitis by structured histopathology and clinical variables. J Allergy Clin Immunol Pract. 2021; 9 ( 10 ): 3797 - 3804. https://doi.org/10.1016/j.jaip.2021.06.013
dc.identifier.citedreferenceBuchheit KM, Dwyer DF, Ordovas-Montanes J, et al. IL-5 Ralpha marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2020; 145 ( 6 ): 1574 - 1584. https://doi.org/10.1016/j.jaci.2020.02.035
dc.identifier.citedreferenceTa V, White AA. Survey-defined patient experiences with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2015; 3 ( 5 ): 711 - 718. https://doi.org/10.1016/j.jaip.2015.03.001
dc.identifier.citedreferenceHaque R, White AA, Jackson DJ, Hopkins C. Clinical evaluation and diagnosis of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2021; 148 ( 2 ): 283 - 291. https://doi.org/10.1016/j.jaci.2021.06.018
dc.identifier.citedreferenceLeonardi A, Castegnaro A, Valerio AL, Lazzarini D. Epidemiology of allergic conjunctivitis: clinical appearance and treatment patterns in a population-based study. Curr Opin Allergy Clin Immunol. 2015; 15 ( 5 ): 482 - 488. https://doi.org/10.1097/ACI.0000000000000204
dc.identifier.citedreferenceMiyazaki D, Fukagawa K, Okamoto S, et al. Epidemiological aspects of allergic conjunctivitis. Allergol Int. 2020; 69 ( 4 ): 487 - 495. https://doi.org/10.1016/j.alit.2020.06.004
dc.identifier.citedreferenceSingh K, Axelrod S, Bielory L. The epidemiology of ocular and nasal allergy in the United States, 1988-1994. J Allergy Clin Immunol. 2010; 126 ( 4 ): 778 - 783.e6. https://doi.org/10.1016/j.jaci.2010.06.050
dc.identifier.citedreferenceNavarro A, Colas C, Anton E, et al. Epidemiology of allergic rhinitis in allergy consultations in Spain: Alergologica-2005. J Investig Allergol Clin Immunol. 2009;1 9 (suppl 2): 7 - 13.
dc.identifier.citedreferenceKosrirukvongs P, Visitsunthorn N, Vichyanond P, Bunnag C. Allergic conjunctivitis. Asian Pac J Allergy Immunol. 2001; 19 ( 4 ): 237 - 244.
dc.identifier.citedreferenceKim DH, Park YS, Jang HJ, Kim JH, Lim DH. Prevalence and allergen of allergic rhinitis in Korean children. Am J Rhinol Allergy. 2016; 30 ( 3 ): 72 - 78. https://doi.org/10.2500/ajra.2013.27.4317
dc.identifier.citedreferenceHan DH, Ahn JC, Mun SJ, Park SK, Oh SY, Rhee CS. Novel risk factors for allergic rhinitis in korean elementary school children: ARCO-kids Phase II in a Community. Allergy Asthma Immunol Res. 2015; 7 ( 3 ): 234 - 240. https://doi.org/10.4168/aair.2015.7.3.234
dc.identifier.citedreferenceCibella F, Ferrante G, Cuttitta G, et al. The burden of rhinitis and rhinoconjunctivitis in adolescents. Allergy Asthma Immunol Res. 2015; 7 ( 1 ): 44 - 50. https://doi.org/10.4168/aair.2015.7.1.44
dc.identifier.citedreferenceGradman J, Wolthers OD. Allergic conjunctivitis in children with asthma, rhinitis and eczema in a secondary outpatient clinic. Pediatr Allergy Immunol. 2006; 17 ( 7 ): 524 - 526. https://doi.org/10.1111/j.1399-3038.2006.00429.x
dc.identifier.citedreferenceWilliams DC, Edney G, Maiden B, Smith PK. Recognition of allergic conjunctivitis in patients with allergic rhinitis. World Allergy Organ J. 2013; 6 ( 1 ): 4. https://doi.org/10.1186/1939-4551-6-4
dc.identifier.citedreferenceWuthrich B, Brignoli R, Canevascini M, Gerber M. Epidemiological survey in hay fever patients: symptom prevalence and severity and influence on patient management. Schweiz Med Wochenschr. 1998; 128 ( 5 ): 139 - 143.
dc.identifier.citedreferenceSánchez-Hernández MC, Dordal MT, Navarro AM, et al., Severity and duration of allergic conjunctivitis: are they associated with severity and duration of allergic rhinitis and asthma? Eur Ann Allergy Clin Immunol. 2022; 54 ( 6 ): 277 - 283. doi: https://doi.org/10.23822/EurAnnACI.1764-1489.231
dc.identifier.citedreferenceZhang SY, Li J, Liu R, et al. Association of allergic conjunctivitis with health-related quality of life in children and their parents. JAMA Ophthalmol. 2021; 139 ( 8 ): 830 - 837. https://doi.org/10.1001/jamaophthalmol.2021.1708
dc.identifier.citedreferenceBielory L, Katelaris CH, Lightman S, Naclerio RM. Treating the ocular component of allergic rhinoconjunctivitis and related eye disorders. MedGenMed. 2007; 9 ( 3 ): 35.
dc.identifier.citedreferenceBielory L, Skoner DP, Blaiss MS, et al. Ocular and nasal allergy symptom burden in America: the Allergies, Immunotherapy, and RhinoconjunctivitiS (AIRS) surveys. Allergy Asthma Proc. 2014; 35 ( 3 ): 211 - 218. https://doi.org/10.2500/aap.2014.35.3750
dc.identifier.citedreferenceFrolund L, Durham SR, Calderon M, et al. Sustained effect of SQ-standardized grass allergy immunotherapy tablet on rhinoconjunctivitis quality of life. Allergy. 2010; 65 ( 6 ): 753 - 757. https://doi.org/10.1111/j.1398-9995.2009.02238.x
dc.identifier.citedreferenceSayed KM, Kamel AG, Ali AH. One-year evaluation of clinical and immunological efficacy and safety of sublingual versus subcutaneous allergen immunotherapy in allergic conjunctivitis. Graefes Arch Clin Exp Ophthalmol. 2019; 257 ( 9 ): 1989 - 1996. https://doi.org/10.1007/s00417-019-04389-w
dc.identifier.citedreferenceAlexandropoulos T, Haidich AB, Pilalas D, Dardavessis T, Daniilidis M, Arvanitidou M. Characteristics of patients with allergic rhinitis in an outpatient clinic: a retrospective study. Allergol Immunopathol (Madr). 2013; 41 ( 3 ): 194 - 200. https://doi.org/10.1016/j.aller.2011.12.008
dc.identifier.citedreferenceAlmaliotis D, Michailopoulos P, Gioulekas D, et al. Allergic conjunctivitis and the most common allergens in Northern Greece. World Allergy Organ J. 2013; 6 ( 1 ): 12. https://doi.org/10.1186/1939-4551-6-12
dc.identifier.citedreferenceLangan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020; 396 ( 10247 ): 345 - 360. https://doi.org/10.1016/S0140-6736(20)31286-1
dc.identifier.citedreferenceLaughter MR, Maymone MBC, Mashayekhi S, et al. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990-2017. Br J Dermatol. 2021; 184 ( 2 ): 304 - 309. https://doi.org/10.1111/bjd.19580
dc.identifier.citedreferenceGabryszewski SJ, Chang X, Dudley JW, et al. Unsupervised modeling and genome-wide association identify novel features of allergic march trajectories. J Allergy Clin Immunol. 2021; 147 ( 2 ): 677 - 685.e10. https://doi.org/10.1016/j.jaci.2020.06.026
dc.identifier.citedreferenceHill DA, Grundmeier RW, Ramos M, Spergel JM. Eosinophilic esophagitis is a late manifestation of the allergic march. J Allergy Clin Immunol Pract. 2018; 6 ( 5 ): 1528 - 1533. https://doi.org/10.1016/j.jaip.2018.05.010
dc.identifier.citedreferenceTan R, Cvetkovski B, Kritikos V, et al. Identifying the hidden burden of allergic rhinitis (AR) in community pharmacy: a global phenomenon. Asthma Res Pract. 2017; 3: 8. https://doi.org/10.1186/s40733-017-0036-z
dc.identifier.citedreferenceGonzález-Mendoza T, Bedolla-Barajas M, Bedolla-Pulido TR, et al., La prevalencia de rinitis alérgica y dermatitis atópica en adolescentes tardíos difiere de acuerdo con el sexo [The prevalence of allergic rhinitis and atopic dermatitis in late adolescents differs according to their gender]. Rev Alerg Mex. 2019; 66 ( 2 ): 147 - 153. doi: https://doi.org/10.29262/ram.v66i2.521
dc.identifier.citedreferenceBekic S, Martinek V, Talapko J, Majnaric L, Vasilj Mihaljevic M, Skrlec I. Atopic dermatitis and comorbidity. Healthcare (Basel). 2020; 8 ( 2 ): 70. https://doi.org/10.3390/healthcare8020070
dc.identifier.citedreferenceHuang YH, Huang LH, Kuo CF, Yu KH. Familial aggregation of atopic dermatitis and co-aggregation of allergic diseases in affected families in Taiwan. J Dermatol Sci. 2020; 100 ( 1 ): 15 - 22. https://doi.org/10.1016/j.jdermsci.2020.07.007
dc.identifier.citedreferenceSchoos AM, Chawes BL, Bønnelykke K, Stokholm J, Rasmussen MA, Bisgaard H. Increasing severity of early-onset atopic dermatitis, but not late-onset, associates with development of aeroallergen sensitization and allergic rhinitis in childhood. Allergy. 2022; 77 ( 4 ): 1254 - 62.
dc.identifier.citedreferenceWang LC, Chiang BL. Early-onset-early-resolving atopic dermatitis does not increase the risk of development of allergic diseases at 3 years old. J Formos Med Assoc. 2020; 119 ( 12 ): 1854 - 1861. https://doi.org/10.1016/j.jfma.2020.02.014
dc.identifier.citedreferenceDharma C, Lefebvre DL, Tran MM, et al. Patterns of allergic sensitization and atopic dermatitis from 1 to 3 years: effects on allergic diseases. Clin Exp Allergy. 2018; 48 ( 1 ): 48 - 59. https://doi.org/10.1111/cea.13063
dc.identifier.citedreferenceHuang Y, Zhang Y, Zhang L. Prevalence of allergic and nonallergic rhinitis in a rural area of northern China based on sensitization to specific aeroallergens. Allergy Asthma Clin Immunol. 2018; 14: 77. https://doi.org/10.1186/s13223-018-0299-9
dc.identifier.citedreferenceBiagini JM, Kroner JW, Baatyrbek Kyzy A, et al., Longitudinal atopic dermatitis endotypes: an atopic march paradigm that includes Black children. J Allergy Clin Immunol. 2022; 149 ( 5 ): 1702 - 1710.e4. https://doi.org/10.1016/j.jaci.2021.09.036
dc.identifier.citedreferenceJeong JW, Lim KH, Lee WH, Won JY, Kwon JW. Heterogeneity of adult rhinitis for multimorbidity and age at onset among non-sensitized rhinitis and mono-/poly-sensitized rhinitis: a retrospective cross-sectional study. Int Arch Allergy Immunol. 2020; 181 ( 7 ): 512 - 521. https://doi.org/10.1159/000507444
dc.identifier.citedreferenceRaciborski F, Bousquet J, Bousqet J, et al. Dissociating polysensitization and multimorbidity in children and adults from a Polish general population cohort. Clin Transl Allergy. 2019; 9: 4. https://doi.org/10.1186/s13601-019-0246-y
dc.identifier.citedreferenceMoreno-Lopez S, Perez-Herrera LC, Penaranda D, Hernandez DC, Garcia E, Penaranda A. Prevalence and associated factors of allergic diseases in school children and adolescents aged 6-7 and 13-14 years from two rural areas in Colombia. Allergol Immunopathol (Madr). 2021; 49 ( 3 ): 153 - 161. https://doi.org/10.15586/aei.v49i3.183
dc.identifier.citedreferenceWilliams H, Robertson C, Stewart A, et al. Worldwide variations in the prevalence of symptoms of atopic eczema in the International Study of Asthma and Allergies in Childhood. J Allergy Clin Immunol. 1999; 103 (1 pt 1): 125 - 138. https://doi.org/10.1016/s0091-6749(99)70536-1
dc.identifier.citedreferenceKim JP, Chao LX, Simpson EL, Silverberg JI. Persistence of atopic dermatitis (AD): a systematic review and meta-analysis. J Am Acad Dermatol. 2016; 75 ( 4 ): 681 - 687.e11. https://doi.org/10.1016/j.jaad.2016.05.028
dc.identifier.citedreferenceRhodes HL, Thomas P, Sporik R, Holgate ST, Cogswell JJ. A birth cohort study of subjects at risk of atopy: twenty-two-year follow-up of wheeze and atopic status. Am J Respir Crit Care Med. 2002; 165 ( 2 ): 176 - 180. https://doi.org/10.1164/ajrccm.165.2.2104032
dc.identifier.citedreferenceGustafsson D, Sjoberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis – a prospective follow-up to 7 years of age. Allergy. 2000; 55 ( 3 ): 240 - 245. https://doi.org/10.1034/j.1398-9995.2000.00391.x
dc.identifier.citedreferenceSchneider L, Hanifin J, Boguniewicz M, et al. Study of the atopic march: development of atopic comorbidities. Pediatr Dermatol. 2016; 33 ( 4 ): 388 - 398. https://doi.org/10.1111/pde.12867
dc.identifier.citedreferenceMortz CG, Andersen KE, Dellgren C, Barington T, Bindslev-Jensen C. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities. Allergy. 2015; 70 ( 7 ): 836 - 845. https://doi.org/10.1111/all.12619
dc.identifier.citedreferenceSybilski AJ, Raciborski F, Lipiec A, et al. Atopic dermatitis is a serious health problem in Poland. Epidemiology studies based on the ECAP study. Postepy Dermatol Alergol. 2015; 32 ( 1 ): 1 - 10. https://doi.org/10.5114/pdia.2014.40935
dc.identifier.citedreferenceBozek A, Jarzab J. Epidemiology of IgE-dependent allergic diseases in elderly patients in Poland. Am J Rhinol Allergy. 2013; 27 ( 5 ): e140 - e145. https://doi.org/10.2500/ajra.2013.27.3920
dc.identifier.citedreferenceLowe AJ, Hosking CS, Bennett CM, et al. Skin prick test can identify eczematous infants at risk of asthma and allergic rhinitis. Clin Exp Allergy. 2007; 37 ( 11 ): 1624 - 1631. https://doi.org/10.1111/j.1365-2222.2007.02822.x
dc.identifier.citedreferenceKaraman O, Turgut CS, Uzuner N, et al. The determination of asthma, rhinitis, eczema, and atopy prevalence in 9- to 11-year-old children in the city of Izmir. Allergy Asthma Proc. 2006; 27 ( 4 ): 319 - 324. https://doi.org/10.2500/aap.2006.27.2877
dc.identifier.citedreferenceYemaneberhan H, Flohr C, Lewis SA, et al. Prevalence and associated factors of atopic dermatitis symptoms in rural and urban Ethiopia. Clin Exp Allergy. 2004; 34 ( 5 ): 779 - 785. https://doi.org/10.1111/j.1365-2222.2004.1946.x
dc.identifier.citedreferenceMin YG, Choi BY, Kwon SK, et al. Multicenter study on the prevalence of perennial allergic rhinitis and allergy-associated disorders. J Korean Med Sci. 2001; 16 ( 6 ): 697 - 701. https://doi.org/10.3346/jkms.2001.16.6.697
dc.identifier.citedreferenceLeung R, Ho P. Asthma, allergy, and atopy in three south-east Asian populations. Thorax. 1994; 49 ( 12 ): 1205 - 1210. https://doi.org/10.1136/thx.49.12.1205
dc.identifier.citedreferenceBatlles Garrido J, Torres-Borrego J, Bonillo Perales A, et al. Prevalence and factors linked to atopic eczema in 10- and 11-year-old schoolchildren. Isaac 2 in Almeria, Spain. Allergol Immunopathol (Madr). 2010; 38 ( 4 ): 174 - 180. https://doi.org/10.1016/j.aller.2009.10.008
dc.identifier.citedreferencePeroni DG, Piacentini GL, Bodini A, Rigotti E, Pigozzi R, Boner AL. Prevalence and risk factors for atopic dermatitis in preschool children. Br J Dermatol. 2008; 158 ( 3 ): 539 - 543. https://doi.org/10.1111/j.1365-2133.2007.08344.x
dc.identifier.citedreferenceKidon MI, Chiang WC, Liew WK, et al. Sensitization to dust mites in children with allergic rhinitis in Singapore: does it matter if you scratch while you sneeze? Clin Exp Allergy. 2005; 35 ( 4 ): 434 - 440. https://doi.org/10.1111/j.1365-2222.2005.02208.x
dc.identifier.citedreferenceKusel MM, Holt PG, de Klerk N, Sly PD. Support for 2 variants of eczema. J Allergy Clin Immunol. 2005; 116 ( 5 ): 1067 - 1072. https://doi.org/10.1016/j.jaci.2005.06.038
dc.identifier.citedreferencePeroni DG, Piacentini GL, Alfonsi L, et al. Rhinitis in pre-school children: prevalence, association with allergic diseases and risk factors. Clin Exp Allergy. 2003; 33 ( 10 ): 1349 - 1354. https://doi.org/10.1046/j.1365-2222.2003.01766.x
dc.identifier.citedreferenceOzdemir N, Ucgun I, Metintas S, Kolsuz M, Metintas M. The prevalence of asthma and allergy among university freshmen in Eskisehir, Turkey. Respir Med. 2000; 94 ( 6 ): 536 - 541. https://doi.org/10.1053/rmed.1999.0728
dc.identifier.citedreferenceGarcia-Gonzalez JJ, Vega-Chicote JM, Rico P, et al. Prevalence of atopy in students from Malaga, Spain. Ann Allergy Asthma Immunol. 1998; 80 ( 3 ): 237 - 244. https://doi.org/10.1016/s1081-1206(10)62964-x
dc.identifier.citedreferenceCosme-Blanco W, Arroyo-Flores E, Ale H. Food allergies. Pediatr Rev. 2020; 41 ( 8 ): 403 - 415. https://doi.org/10.1542/pir.2019-0037
dc.identifier.citedreferenceKatelaris CH. Food allergy and oral allergy or pollen-food syndrome. Curr Opin Allergy Clin Immunol. 2010; 10 ( 3 ): 246 - 251. https://doi.org/10.1097/ACI.0b013e32833973fb
dc.identifier.citedreferenceEbner C, Birkner T, Valenta R, et al. Common epitopes of birch pollen and apples–studies by western and northern blot. J Allergy Clin Immunol. 1991; 88 ( 4 ): 588 - 594. https://doi.org/10.1016/0091-6749(91)90152-e
dc.identifier.citedreferenceAmerican Academy of Asthma Allergy & Immunology: Oral allergy syndrome – pollens and cross-reacting foods. Accessed March 19, 2022. https://www.aaaai.org/Aaaai/media/Media-Library-PDFs/Tools%20for%20the%20Public/Conditions%20Library/Library%20-%20Allergies/OAS-table_revised.pdf
dc.identifier.citedreferenceCarlson G, Coop C. Pollen food allergy syndrome (PFAS): a review of current available literature. Ann Allergy Asthma Immunol. 2019; 123 ( 4 ): 359 - 365. https://doi.org/10.1016/j.anai.2019.07.022
dc.identifier.citedreferenceDondi A, Tripodi S, Panetta V, et al. Pollen-induced allergic rhinitis in 1360 Italian children: comorbidities and determinants of severity. Pediatr Allergy Immunol. 2013; 24 ( 8 ): 742 - 751. https://doi.org/10.1111/pai.12136
dc.identifier.citedreferenceSicherer SH, Warren CM, Dant C, Gupta RS, Nadeau KC. Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract. 2020; 8 ( 6 ): 1854 - 1864. https://doi.org/10.1016/j.jaip.2020.02.010
dc.identifier.citedreferenceOrtolani C, Pastorello EA, Farioli L, et al. IgE-mediated allergy from vegetable allergens. Ann Allergy. 1993; 71 ( 5 ): 470 - 476.
dc.identifier.citedreferenceLieberman P, Nicklas RA, Randolph C, et al. Anaphylaxis – a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015; 115 ( 5 ): 341 - 384. https://doi.org/10.1016/j.anai.2015.07.019
dc.identifier.citedreferenceSkamstrup Hansen K, Vestergaard H, Stahl Skov P, et al. Double-blind, placebo-controlled food challenge with apple. Allergy. 2001; 56 ( 2 ): 109 - 117. https://doi.org/10.1034/j.1398-9995.2001.056002109.x
dc.identifier.citedreferenceRosen JP, Selcow JE, Mendelson LM, Grodofsky MP, Factor JM, Sampson HA. Skin testing with natural foods in patients suspected of having food allergies: is it a necessity? J Allergy Clin Immunol. 1994; 93 ( 6 ): 1068 - 1070. https://doi.org/10.1016/s0091-6749(94)70056-7
dc.identifier.citedreferencede Jong NW, Terlouw S, van Boven FE, et al. Birch pollen related pear allergy: a single-blind oral challenge TRIAL with 2 pear cultivars. Nutrients. 2021; 13 ( 4 ): 1355. https://doi.org/10.3390/nu13041355
dc.identifier.citedreferenceLee SC, Kim SR, Park KH, Lee JH, Park JW. Clinical features and culprit food allergens of Korean adult food allergy patients: a cross-sectional single-institute study. Allergy Asthma Immunol Res. 2019; 11 ( 5 ): 723 - 735. https://doi.org/10.4168/aair.2019.11.5.723
dc.identifier.citedreferenceFuhrmann V, Huang HJ, Akarsu A, et al. From allergen molecules to molecular immunotherapy of nut allergy: a hard nut to crack. Front Immunol. 2021; 12: 742732. https://doi.org/10.3389/fimmu.2021.742732
dc.identifier.citedreferenceThompson JC, Kroker GF. The role of component-resolved testing in food allergy and oral allergy syndrome. Ann Allergy Asthma Immunol. 2010; 104 ( 6 ): 543; author reply 543-4. https://doi.org/10.1016/j.anai.2010.03.011
dc.identifier.citedreferenceNicolaou N, Poorafshar M, Murray C, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol. 2010; 125 ( 1 ):191-197.e1-13. https://doi.org/10.1016/j.jaci.2009.10.008
dc.identifier.citedreferenceBolhaar ST, Tiemessen MM, Zuidmeer L, et al. Efficacy of birch-pollen immunotherapy on cross-reactive food allergy confirmed by skin tests and double-blind food challenges. Clin Exp Allergy. 2004; 34 ( 5 ): 761 - 769. https://doi.org/10.1111/j.1365-2222.2004.1939.x
dc.identifier.citedreferenceInuo C, Kondo Y, Tanaka K, et al. Japanese cedar pollen-based subcutaneous immunotherapy decreases tomato fruit-specific basophil activation. Int Arch Allergy Immunol. 2015; 167 ( 2 ): 137 - 145. https://doi.org/10.1159/000437325
dc.identifier.citedreferenceAsero R. Effects of birch pollen-specific immunotherapy on apple allergy in birch pollen-hypersensitive patients. Clin Exp Allergy. 1998; 28 ( 11 ): 1368 - 1373. https://doi.org/10.1046/j.1365-2222.1998.00399.x
dc.identifier.citedreferenceMauro M, Russello M, Incorvaia C, et al. Birch-apple syndrome treated with birch pollen immunotherapy. Int Arch Allergy Immunol. 2011; 156 ( 4 ): 416 - 422. https://doi.org/10.1159/000323909
dc.identifier.citedreferenceKrouse JH, Chadwick SJ, Gordon BR, Derebery J. Allergy and Immunology: An Otolaryngic Approach. Lippincott Williams & Wilkins; 2002.
dc.identifier.citedreferenceCudowska B, Pawlowicz M, Lebensztejn DM. Pollen-related food allergy in children with seasonal allergic rhinitis. Postepy Dermatol Alergol. 2021; 38 ( 2 ): 96 - 101. https://doi.org/10.5114/ada.2021.104284
dc.identifier.citedreferenceThong BY, Arulanandam S, Tan SC, et al. Shellfish/crustacean oral allergy syndrome among national service pre-enlistees in Singapore. Asia Pac Allergy. 2018; 8 ( 2 ): e18. https://doi.org/10.5415/apallergy.2018.8.e18
dc.identifier.citedreferenceDiaz-Cabrera NM, Sanchez-Borges MA, Ledford DK. Atopy: a collection of comorbid conditions. J Allergy Clin Immunol Pract. 2021; 9 ( 11 ): 3862 - 3866. https://doi.org/10.1016/j.jaip.2021.09.002
dc.identifier.citedreferenceMatsumoto M, Takenaka M, Aoyagi K, et al. Factors associated with the development of oral allergy syndrome: a retrospective questionnaire survey of Japanese university students. Allergol Int. 2021; 70 ( 4 ): 458 - 462. https://doi.org/10.1016/j.alit.2021.02.003
dc.identifier.citedreferenceOta M, Nishida Y, Yagi H, et al. Regional differences in the prevalence of oral allergy syndrome among Japanese children: a questionnaire-based survey. Asian Pacific Journal of Allergy and Immunology. 2020. doi: https://doi.org/10.12932/ap-130120-0739
dc.identifier.citedreferenceAnvari S, Miller J, Yeh CY, Davis CM. IgE-mediated food allergy. Clin Rev Allergy Immunol. 2019; 57 ( 2 ): 244 - 260. https://doi.org/10.1007/s12016-018-8710-3
dc.identifier.citedreferenceTong X, Tong H, Gao L, et al. A multicenter study of prevalence and risk factors for allergic rhinitis in primary school children in 5 cities of Hubei Province, China. Int Arch Allergy Immunol. 2022; 183 ( 1 ): 34 - 44. https://doi.org/10.1159/000517948
dc.identifier.citedreferenceCelakovska J, Bukac J. Analysis of food allergy in atopic dermatitis patients – association with concomitant allergic diseases. Indian J Dermatol. 2014; 59 ( 5 ): 445 - 450. https://doi.org/10.4103/0019-5154.139867
dc.identifier.citedreferenceBilaver LA, Kanaley MK, Fierstein JL, Gupta RS. Prevalence and correlates of food allergy among medicaid-enrolled United States children. Acad Pediatr. 2021; 21 ( 1 ): 84 - 92. https://doi.org/10.1016/j.acap.2020.03.005
dc.identifier.citedreferenceWang HT, Warren CM, Gupta RS, Davis CM. Prevalence and characteristics of shellfish allergy in the pediatric population of the United States. J Allergy Clin Immunol Pract. 2020; 8 ( 4 ): 1359 - 1370.e2. https://doi.org/10.1016/j.jaip.2019.12.027
dc.identifier.citedreferenceRuffner MA, Wang KY, Dudley JW, et al. Elevated atopic comorbidity in patients with food protein-induced enterocolitis. J Allergy Clin Immunol Pract. 2020; 8 ( 3 ): 1039 - 1046. https://doi.org/10.1016/j.jaip.2019.10.047
dc.identifier.citedreferenceBedolla-Pulido TR, Bedolla-Barajas M, Morales-Romero J, et al. Self-reported hypersensitivity and allergy to foods amongst Mexican adolescents: prevalence and associated factors. Allergol Immunopathol (Madr). 2019; 47 ( 3 ): 246 - 253. https://doi.org/10.1016/j.aller.2018.09.004
dc.identifier.citedreferenceHill DA, Grundmeier RW, Ram G, Spergel JM. The epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma, allergic rhinitis, and food allergy in children: a retrospective cohort study. BMC Pediatr. 2016; 16: 133. https://doi.org/10.1186/s12887-016-0673-z
dc.identifier.citedreferenceHuang Y, Wang C, Zhang Y, Zhang L. Developing nomograms for identifying allergic rhinitis among chronic rhinitis: a real-world study. World Allergy Organ J. 2021; 14 ( 4 ): 100534. https://doi.org/10.1016/j.waojou.2021.100534
dc.identifier.citedreferenceWalter G, Kalicinsky C. Adult-onset IgE-mediated food allergy at a Winnipeg allergy clinic: a case series. Allergy Asthma Clin Immunol. 2020; 16: 85. https://doi.org/10.1186/s13223-020-00483-5
dc.identifier.citedreferenceLyons SA, Knulst AC, Burney PGJ, et al. Predicting food allergy: the value of patient history reinforced. Allergy. 2021; 76 ( 5 ): 1454 - 1462. https://doi.org/10.1111/all.14583
dc.identifier.citedreferenceBlaiss MS, Meadows JA, Yu S, et al. Economic burden of peanut allergy in pediatric patients with evidence of reactions to peanuts in the United States. J Manag Care Spec Pharm. 2021; 27 ( 4 ): 516 - 527. https://doi.org/10.18553/jmcp.2021.20389
dc.identifier.citedreferenceBlumchen K, DunnGalvin A, Timmermans F, et al. APPEAL-1: a pan-European survey of patient/caregiver perceptions of peanut allergy management. Allergy. 2020; 75 ( 11 ): 2920 - 2935. https://doi.org/10.1111/all.14414
dc.identifier.citedreferenceScott LA, Jones BI, Berni TR, Berni ER, De Vries J, Currie CJ. Evaluation of the epidemiology of peanut allergy in the United Kingdom. Expert Rev Clin Immunol. 2019; 15 ( 12 ): 1333 - 1339. https://doi.org/10.1080/1744666X.2020.1693264
dc.identifier.citedreferenceBedolla-Barajas M, Bedolla-Pulido TR, Macriz-Romero N, Morales-Romero J, Robles-Figueroa M. Prevalence of peanut, tree nut, sesame, and seafood allergy in Mexican adults. Rev Invest Clin. 2015; 67 ( 6 ): 379 - 386.
dc.identifier.citedreferenceTaylor-Black S, Wang J. The prevalence and characteristics of food allergy in urban minority children. Ann Allergy Asthma Immunol. 2012; 109 ( 6 ): 431 - 437. https://doi.org/10.1016/j.anai.2012.09.012
dc.identifier.citedreferenceDiez S, Puerta L, Martinez D, Munoz M, Hernandez K, Sanchez J. Clinical relevance of shrimp sensitization in patients with allergic rhinitis: anti-Der p 10 IgE as predictor. Int Arch Allergy Immunol. 2021; 182 ( 10 ): 971 - 979. https://doi.org/10.1159/000516005
dc.identifier.citedreferenceDu Toit G, Roberts G, Sayre PH, et al. Identifying infants at high risk of peanut allergy: the Learning Early About Peanut Allergy (LEAP) screening study. J Allergy Clin Immunol. 2013; 131 ( 1 ):135-143.e1-12. https://doi.org/10.1016/j.jaci.2012.09.015
dc.identifier.citedreferenceFleischer DM, Sicherer S, Greenhawt M, et al. Consensus communication on early peanut introduction and the prevention of peanut allergy in high-risk infants. Pediatrics. 2015; 136 ( 3 ): 600 - 604. https://doi.org/10.1542/peds.2015-2394
dc.identifier.citedreferenceLogan K, Du Toit G, Giovannini M, Turcanu V, Lack G. Pediatric allergic diseases, food allergy, and oral tolerance. Annu Rev Cell Dev Biol. 2020; 36: 511 - 528. https://doi.org/10.1146/annurev-cellbio-100818-125346
dc.identifier.citedreferenceWebber CM, England RW. Oral allergy syndrome: a clinical, diagnostic, and therapeutic challenge. Ann Allergy Asthma Immunol. 2010; 104 ( 2 ): 101 - 108; quiz 109-10, 117. https://doi.org/10.1016/j.anai.2009.11.007
dc.identifier.citedreferenceAmerican College of Allergy, Asthma, & Immunology. Food allergy: a practice parameter. Ann Allergy Asthma Immunol. 2006; 96 (3 suppl 2): S1 - S68.
dc.identifier.citedreferenceLam HY, Tergaonkar V, Ahn KS. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep. 2020; 40 ( 4 ): BSR20200256. https://doi.org/10.1042/BSR20200256
dc.identifier.citedreferenceSchoos AM, Bullens D, Chawes BL, et al. Immunological outcomes of allergen-specific immunotherapy in food allergy. Front Immunol. 2020; 11: 568598. https://doi.org/10.3389/fimmu.2020.568598
dc.identifier.citedreferenceTordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity. 2017; 47 ( 1 ): 32 - 50. https://doi.org/10.1016/j.immuni.2017.07.004
dc.identifier.citedreferenceMarseglia GL, Poddighe D, Caimmi D, et al. Role of adenoids and adenoiditis in children with allergy and otitis media. Curr Allergy Asthma Rep. 2009; 9 ( 6 ): 460 - 464. https://doi.org/10.1007/s11882-009-0068-4
dc.identifier.citedreferenceCassano P, Gelardi M, Cassano M, Fiorella ML, Fiorella R. Adenoid tissue rhinopharyngeal obstruction grading based on fiberendoscopic findings: a novel approach to therapeutic management. Int J Pediatr Otorhinolaryngol. 2003; 67 ( 12 ): 1303 - 1309. https://doi.org/10.1016/j.ijporl.2003.07.018
dc.identifier.citedreferenceDogru M, Evcimik MF, Calim OF. Does adenoid hypertrophy affect disease severity in children with allergic rhinitis? Eur Arch Otorhinolaryngol. 2017; 274 ( 1 ): 209 - 213. https://doi.org/10.1007/s00405-016-4196-x
dc.identifier.citedreferenceModrzynski M, Zawisza E. The influence of birch pollination on the adenoid size in children with intermittent allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2007; 71 ( 7 ): 1017 - 1023. https://doi.org/10.1016/j.ijporl.2007.02.018
dc.identifier.citedreferenceAtan Sahin O, Kececioglu N, Serdar M, Ozpinar A. The association of residential mold exposure and adenotonsillar hypertrophy in children living in damp environments. Int J Pediatr Otorhinolaryngol. 2016; 88: 233 - 238. https://doi.org/10.1016/j.ijporl.2016.07.018
dc.identifier.citedreferenceKaraca CT, Toros SZ, Noseri H, et al. Role of allergy in children with adenotonsillar hypertrophy. J Craniofac Surg. 2012; 23 ( 6 ): e611 - e613. https://doi.org/10.1097/SCS.0b013e31826cf562
dc.identifier.citedreferenceAmeli F, Brocchetti F, Tosca MA, Signori A, Ciprandi G. Adenoidal hypertrophy and allergic rhinitis: is there an inverse relationship? Am J Rhinol Allergy. 2013; 27 ( 1 ): e5 - e10. https://doi.org/10.2500/ajra.2013.27.3854
dc.identifier.citedreferenceO’Connor RD, Ort H, Leong AB, Cook DA, Street D, Hamburger RN. Tympanometric changes following nasal antigen challenge in children with allergic rhinitis. Ann Allergy. 1984; 53 ( 6 ): 468 - 471.
dc.identifier.citedreferenceSadeghi-Shabestari M, Jabbari Moghaddam Y, Ghaharri H. Is there any correlation between allergy and adenotonsillar tissue hypertrophy? Int J Pediatr Otorhinolaryngol. 2011; 75 ( 4 ): 589 - 591. https://doi.org/10.1016/j.ijporl.2011.01.026
dc.identifier.citedreferenceEren E, Arslanoglu S, Erdem SB, et al. Chicken or the egg: the dilemma of allergic rhinitis versus adenoid hypertrophy. Rhinology. 2015; 53 ( 2 ): 154 - 159. https://doi.org/10.4193/Rhino14.013
dc.identifier.citedreferenceKarabulut B, Sahin-Onder S, Erkmen B, Cetemen A, Gergin O. Predictive fiberoptic endoscopic findings of upper airway in children with allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2019; 124: 143 - 146. https://doi.org/10.1016/j.ijporl.2019.06.004
dc.identifier.citedreferenceNi K, Zhao L, Wu J, Chen W, HongyaYang, Li X. Th17/Treg balance in children with obstructive sleep apnea syndrome and the relationship with allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2015; 79 ( 9 ): 1448 - 1454. https://doi.org/10.1016/j.ijporl.2015.06.026
dc.identifier.citedreferenceMasieri S, Trabattoni D, Incorvaia C, et al. A role for Waldeyer’s ring in immunological response to allergens. Curr Med Res Opin. 2014; 30 ( 2 ): 203 - 205. https://doi.org/10.1185/03007995.2013.855185
dc.identifier.citedreferenceZhu F, Sun K, Yu L, Sun S, Wan Y, Shi L. Tissue cytokine adenoid experssion in hypertrophic adenoid gland in children with allergic rhinitis. J Coll Physicians Surg Pak. 2021; 31 ( 8 ): 903 - 909. https://doi.org/10.29271/jcpsp.2021.08.903
dc.identifier.citedreferenceCho KS, Kim SH, Hong SL, et al. Local atopy in childhood adenotonsillar hypertrophy. Am J Rhinol Allergy. 2018; 32 ( 3 ): 160 - 166. https://doi.org/10.1177/1945892418765003
dc.identifier.citedreferenceShin SY, Choi SJ, Hur GY, et al. Local production of total IgE and specific antibodies to the house dust mite in adenoid tissue. Pediatr Allergy Immunol. 2009; 20 ( 2 ): 134 - 141. https://doi.org/10.1111/j.1399-3038.2008.00756.x
dc.identifier.citedreferenceShin SY, Ye YM, Eun YG, Kim SW, Cho JS, Park HS. Local IgE-mediated hypersensitivity to Alternaria in pediatric adenoid tissue. Int J Pediatr Otorhinolaryngol. 2012; 76 ( 10 ): 1423 - 1428. https://doi.org/10.1016/j.ijporl.2012.06.015
dc.identifier.citedreferenceScadding G. Non-surgical treatment of adenoidal hypertrophy: the role of treating IgE-mediated inflammation. Pediatr Allergy Immunol. 2010; 21 ( 8 ): 1095 - 1106. https://doi.org/10.1111/j.1399-3038.2010.01012.x
dc.identifier.citedreferenceZhang L, Mendoza-Sassi RA, Cesar JA, Chadha NK. Intranasal corticosteroids for nasal airway obstruction in children with moderate to severe adenoidal hypertrophy. Cochrane Database Syst Rev. 2008;( 3 ): CD006286. https://doi.org/10.1002/14651858.CD006286.pub2
dc.identifier.citedreferenceChohan A, Lal A, Chohan K, Chakravarti A, Gomber S. Systematic review and meta-analysis of randomized controlled trials on the role of mometasone in adenoid hypertrophy in children. Int J Pediatr Otorhinolaryngol. 2015; 79 ( 10 ): 1599 - 1608. https://doi.org/10.1016/j.ijporl.2015.07.009
dc.identifier.citedreferenceWarman M, Granot E, Halperin D. Improvement in allergic and nonallergic rhinitis: a secondary benefit of adenoidectomy in children. Ear Nose Throat J. 2015; 94 ( 6 ):220; 222;, 224-7. https://doi.org/10.1177/014556131509400607
dc.identifier.citedreferencePatel A, Brook CD, Levi JR. Factors associated with refractory nasal congestion following adenoidectomy. Ann Otol Rhinol Laryngol. 2021; 130 ( 2 ): 148 - 152. https://doi.org/10.1177/0003489420940349
dc.identifier.citedreferenceDe Corso E, Galli J, Di Cesare T, et al. A systematic review of the clinical evidence and biomarkers linking allergy to adeno-tonsillar disease. Int J Pediatr Otorhinolaryngol. 2021; 147: 110799. https://doi.org/10.1016/j.ijporl.2021.110799
dc.identifier.citedreferencePagella F, De Amici M, Pusateri A, et al. Adenoids and clinical symptoms: epidemiology of a cohort of 795 pediatric patients. Int J Pediatr Otorhinolaryngol. 2015; 79 ( 12 ): 2137 - 2141. https://doi.org/10.1016/j.ijporl.2015.09.035
dc.identifier.citedreferenceSchilder AG, Bhutta MF, Butler CC, et al. Eustachian tube dysfunction: consensus statement on definition, types, clinical presentation and diagnosis. Clin Otolaryngol. 2015; 40 ( 5 ): 407 - 411. https://doi.org/10.1111/coa.12475
dc.identifier.citedreferenceYang B, Brook CD. The role of allergy in otologic disease. Otolaryngol Clin North Am. 2017; 50 ( 6 ): 1091 - 1101. https://doi.org/10.1016/j.otc.2017.08.005
dc.identifier.citedreferenceFireman P. Otitis media and eustachian tube dysfunction: connection to allergic rhinitis. J Allergy Clin Immunol. 1997; 99 ( 2 ): S787 - S797. https://doi.org/10.1016/s0091-6749(97)70130-1
dc.identifier.citedreferenceDoyle WJ, Boehm S, Skoner DP. Physiologic responses to intranasal dose-response challenges with histamine, methacholine, bradykinin, and prostaglandin in adult volunteers with and without nasal allergy. J Allergy Clin Immunol. 1990; 86 (6 pt 1): 924 - 935. https://doi.org/10.1016/s0091-6749(05)80156-3
dc.identifier.citedreferenceSkoner DP, Doyle WJ, Boehm S, Fireman P. Priming of the nose and eustachian tube during nasal pollen exposure. Am J Rhinol Allergy. 1989; 3 ( 2 ): 53 - 57.
dc.identifier.citedreferenceFriedman RA, Doyle WJ, Casselbrant ML, Bluestone C, Fireman P. Immunologic-mediated eustachian tube obstruction: a double-blind crossover study. J Allergy Clin Immunol. 1983; 71 ( 5 ): 442 - 447. https://doi.org/10.1016/0091-6749(83)90459-1
dc.identifier.citedreferenceSkoner DP, Doyle WJ, Chamovitz AH, Fireman P. Eustachian tube obstruction after intranasal challenge with house dust mite. Arch Otolaryngol Head Neck Surg. 1986; 112 ( 8 ): 840 - 842. https://doi.org/10.1001/archotol.1986.03780080040008
dc.identifier.citedreferenceSkoner DP, Doyle WJ, Fireman P. Eustachian tube obstruction (ETO) after histamine nasal provocation – a double-blind dose-response study. J Allergy Clin Immunol. 1987; 79 ( 1 ): 27 - 31. https://doi.org/10.1016/s0091-6749(87)80012-x
dc.identifier.citedreferenceDowns BW, Butehorn 3rd HF, Prazma J, Rose AS, Stamat JC, Pillsbury 3rd HC. Action of histamine on eustachian tube function. Otolaryngol Head Neck Surg. 2001; 124 ( 4 ): 414 - 420. https://doi.org/10.1067/mhn.2001.113943
dc.identifier.citedreferenceEbert Jr CS, Pollock HW, Dubin MG, et al. Effect of intranasal histamine challenge on Eustachian tube function. Int J Pediatr Otorhinolaryngol. 2002; 63 ( 3 ): 189 - 198. https://doi.org/10.1016/s0165-5876(02)00007-1
dc.identifier.citedreferenceHardy SM, Heavner SB, White DR, McQueen CT, Prazma J, Pillsbury HC. Late-phase allergy and eustachian tube dysfunction. Otolaryngol Head Neck Surg. 2001; 125 ( 4 ): 339 - 345. https://doi.org/10.1067/mhn.2001.119140
dc.identifier.citedreferenceOsur SL, Volovitz B, Dickson S, Enck DC, Bernstein JM. Eustachian tube dysfunction in children with ragweed hayfever during natural pollen exposure. Allergy Proc. 1989; 10 ( 2 ): 133 - 139. https://doi.org/10.2500/108854189778961071
dc.identifier.citedreferenceKnight LC, Eccles R, Morris S. Seasonal allergic rhinitis and its effects on eustachian tube function and middle ear pressure. Clin Otolaryngol Allied Sci. 1992; 17 ( 4 ): 308 - 312. https://doi.org/10.1111/j.1365-2273.1992.tb01002.x
dc.identifier.citedreferenceJuszczak H, Aubin-Pouliot A, Sharon JD, Loftus PA. Sinonasal risk factors for eustachian tube dysfunction: cross-sectional findings from NHANES 2011-2012. Int Forum Allergy Rhinol. 2019; 9 ( 5 ): 466 - 472. https://doi.org/10.1002/alr.22275
dc.identifier.citedreferenceLazo-Saenz JG, Galvan-Aguilera AA, Martinez-Ordaz VA, Velasco-Rodriguez VM, Nieves-Renteria A, Rincon-Castaneda C. Eustachian tube dysfunction in allergic rhinitis. Otolaryngol Head Neck Surg. 2005; 132 ( 4 ): 626 - 629. https://doi.org/10.1016/j.otohns.2005.01.029
dc.identifier.citedreferenceGluth MB, McDonald DR, Weaver AL, Bauch CD, Beatty CW, Orvidas LJ. Management of eustachian tube dysfunction with nasal steroid spray: a prospective, randomized, placebo-controlled trial. Arch Otolaryngol Head Neck Surg. 2011; 137 ( 5 ): 449 - 455. https://doi.org/10.1001/archoto.2011.56
dc.identifier.citedreferenceTucci DL, McCoul ED, Rosenfeld RM, et al. Clinical consensus statement: balloon dilation of the eustachian tube. Otolaryngol Head Neck Surg. 2019; 161 ( 1 ): 6 - 17. https://doi.org/10.1177/0194599819848423
dc.identifier.citedreferencePollock HW, Ebert CS, Dubin MG, White DR, Prazma J, Pillsbury 3rd HC. The role of soluble interleukin-4 receptor and interleukin-5 antibody in preventing late-phase allergy-induced eustachian tube dysfunction. Otolaryngol Head Neck Surg. 2002; 127 ( 3 ): 169 - 176. https://doi.org/10.1067/mhn.2002.126901
dc.identifier.citedreferenceDerebery MJ, Berliner KI. Allergic eustachian tube dysfunction: diagnosis and treatment. Am J Otol. 1997; 18 ( 2 ): 160 - 165.
dc.identifier.citedreferencePalmu A, Puhakka H, Rahko T, Takala AK. Diagnostic value of tympanometry in infants in clinical practice. Int J Pediatr Otorhinolaryngol. 1999; 49 ( 3 ): 207 - 213. https://doi.org/10.1016/s0165-5876(99)00207-4
dc.identifier.citedreferenceRosenfeld RM, Shin JJ, Schwartz SR, et al. Clinical practice guideline: otitis media with effusion (update). Otolaryngol Head Neck Surg. 2016; 154 (1 suppl): S1 - S41. https://doi.org/10.1177/0194599815623467
dc.identifier.citedreferenceCaffarelli C, Savini E, Giordano S, Gianlupi G, Cavagni G. Atopy in children with otitis media with effusion. Clin Exp Allergy. 1998; 28 ( 5 ): 591 - 596. https://doi.org/10.1046/j.1365-2222.1998.00284.x
dc.identifier.citedreferenceYeo SG, Park DC, Eun YG, Cha CI. The role of allergic rhinitis in the development of otitis media with effusion: effect on eustachian tube function. Am J Otolaryngol. 2007; 28 ( 3 ): 148 - 152. https://doi.org/10.1016/j.amjoto.2006.07.011
dc.identifier.citedreferenceBorge P. Atopy and secretory otitis media. Immunological studies and responses to topical corticosteroid therapy. J Laryngol Otol. 1983; 97 ( 2 ): 117 - 129. https://doi.org/10.1017/s0022215100093890
dc.identifier.citedreferenceTomonaga K, Kurono Y, Mogi G. The role of nasal allergy in otitis media with effusion. A clinical study. Acta Otolaryngol Suppl. 1988; 458: 41 - 47. https://doi.org/10.3109/00016488809125100
dc.identifier.citedreferenceCorey JP, Adham RE, Abbass AH, Seligman I. The role of IgE-mediated hypersensitivity in otitis media with effusion. Am J Otolaryngol. 1994; 15 ( 2 ): 138 - 144. https://doi.org/10.1016/0196-0709(94)90063-9
dc.identifier.citedreferenceChantzi FM, Kafetzis DA, Bairamis T, et al. IgE sensitization, respiratory allergy symptoms, and heritability independently increase the risk of otitis media with effusion. Allergy. 2006; 61 ( 3 ): 332 - 336. https://doi.org/10.1111/j.1398-9995.2006.00971.x
dc.identifier.citedreferenceGultekin E, Develioglu ON, Yener M, Ozdemir I, Kulekci M. Prevalence and risk factors for persistent otitis media with effusion in primary school children in Istanbul, Turkey. Auris Nasus Larynx. 2010; 37 ( 2 ): 145 - 149. https://doi.org/10.1016/j.anl.2009.05.002
dc.identifier.citedreferenceSharifian MR, Mahmoudi M, Pourmomenarabi B, Keramati MR. Correlation between allergic rhinitis and otitis media with effusion. Iran J Otorhinolaryngol. 2019; 31 ( 105 ): 209 - 215.
dc.identifier.citedreferenceSongu M, Islek A, Imre A, et al. Risk factors for otitis media with effusion in children with adenoid hypertrophy. Acta Otorhinolaryngol Ital. 2020; 40 ( 2 ): 133 - 137. https://doi.org/10.14639/0392-100X-2456
dc.identifier.citedreferenceMcMahan JT, Calenoff E, Croft DJ, Barenholtz L, Weber LD. Chronic otitis media with effusion and allergy: modified RAST analysis of 119 cases. Otolaryngol Head Neck Surg. 1981; 89 (3 pt 1): 427 - 431. https://doi.org/10.1177/019459988108900315
dc.identifier.citedreferenceHurst DS. Allergy management of refractory serous otitis media. Otolaryngol Head Neck Surg. 1990; 102 ( 6 ): 664 - 669. https://doi.org/10.1177/019459989010200607
dc.identifier.citedreferenceHurst DS. Association of otitis media with effusion and allergy as demonstrated by intradermal skin testing and eosinophil cationic protein levels in both middle ear effusions and mucosal biopsies. Laryngoscope. 1996; 106 (9 pt 1): 1128 - 1137. https://doi.org/10.1097/00005537-199609000-00017
dc.identifier.citedreferenceAlles R, Parikh A, Hawk L, Darby Y, Romero JN, Scadding G. The prevalence of atopic disorders in children with chronic otitis media with effusion. Pediatr Allergy Immunol. 2001; 12 ( 2 ): 102 - 106. https://doi.org/10.1046/j.0905-6157.2000.00008.x
dc.identifier.citedreferenceHurst DS. Efficacy of allergy immunotherapy as a treatment for patients with chronic otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2008; 72 ( 8 ): 1215 - 1223. https://doi.org/10.1016/j.ijporl.2008.04.013
dc.identifier.citedreferenceNorhafizah S, Salina H, Goh BS. Prevalence of allergic rhinitis in children with otitis media with effusion. Eur Ann Allergy Clin Immunol. 2020; 52 ( 3 ): 121 - 130. https://doi.org/10.23822/EurAnnACI.1764-1489.119
dc.identifier.citedreferenceKreiner-Moller E, Chawes BL, Caye-Thomasen P, Bonnelykke K, Bisgaard H. Allergic rhinitis is associated with otitis media with effusion: a birth cohort study. Clin Exp Allergy. 2012; 42 ( 11 ): 1615 - 1620. https://doi.org/10.1111/j.1365-2222.2012.04038.x
dc.identifier.citedreferenceCheng X, Sheng H, Ma R, et al. Allergic rhinitis and allergy are risk factors for otitis media with effusion: a meta-analysis. Allergol Immunopathol (Madr). 2017; 45 ( 1 ): 25 - 32. https://doi.org/10.1016/j.aller.2016.03.004
dc.identifier.citedreferenceByeon H. The association between allergic rhinitis and otitis media: a national representative sample of in South Korean children. Sci Rep. 2019; 9 ( 1 ): 1610. https://doi.org/10.1038/s41598-018-38369-7
dc.identifier.citedreferenceTorretta S, Pignataro L, Carioli D, et al. Phenotype profiling and allergy in otitis-prone children. Front Pediatr. 2018; 6: 383. https://doi.org/10.3389/fped.2018.00383
dc.identifier.citedreferenceBluestone CD. Current concepts in eustachian tube function as related to otitis media. Auris Nasus Larynx. 1985; 12 (suppl 1): S1 - S4. https://doi.org/10.1016/s0385-8146(85)80083-3
dc.identifier.citedreferenceBluestone CD. Eustachian tube function: physiology, pathophysiology, and role of allergy in pathogenesis of otitis media. J Allergy Clin Immunol. 1983; 72 ( 3 ): 242 - 251. https://doi.org/10.1016/0091-6749(83)90027-1
dc.identifier.citedreferenceBernstein JM, Ellis E, Li P. The role of IgE-mediated hypersensitivity in otitis media with effusion. Otolaryngol Head Neck Surg. 1981; 89 ( 5 ): 874 - 878. https://doi.org/10.1177/019459988108900534
dc.identifier.citedreferenceBernstein JM, Lee J, Conboy K, Ellis E, Li P. The role of IgE-mediated hypersensitivity in recurrent otitis media with effusion. Am J Otol. 1983; 5 ( 1 ): 66 - 69.
dc.identifier.citedreferenceBernstein JM, Lee J, Conboy K, Ellis E, Li P. Further observations on the role of IgE-mediated hypersensitivity in recurrent otitis media with effusion. Otolaryngol Head Neck Surg. 1985; 93 ( 5 ): 611 - 615. https://doi.org/10.1177/019459988509300508
dc.identifier.citedreferenceHurst DS, Weekley M, Ramanarayanan MP. Evidence of possible localized specific immunoglobulin E production in middle ear fluid as demonstrated by ELISA testing. Otolaryngol Head Neck Surg. 1999; 121 ( 3 ): 224 - 230. https://doi.org/10.1016/S0194-5998(99)70176-2
dc.identifier.citedreferenceHurst DS, Venge P. Evidence of eosinophil, neutrophil, and mast-cell mediators in the effusion of OME patients with and without atopy. Allergy. 2000; 55 ( 5 ): 435 - 441. https://doi.org/10.1034/j.1398-9995.2000.00289.x
dc.identifier.citedreferenceSobol SE, Taha R, Schloss MD, et al. T(H)2 cytokine expression in atopic children with otitis media with effusion. J Allergy Clin Immunol. 2002; 110 ( 1 ): 125 - 130. https://doi.org/10.1067/mai.2002.125697
dc.identifier.citedreferenceTewfik TL, Mazer B. The links between allergy and otitis media with effusion. Curr Opin Otolaryngol Head Neck Surg. 2006; 14 ( 3 ): 187 - 190. https://doi.org/10.1097/01.moo.0000193190.24849.f0
dc.identifier.citedreferenceWright ED, Hurst D, Miotto D, Giguere C, Hamid Q. Increased expression of major basic protein (MBP) and interleukin-5(IL-5) in middle ear biopsy specimens from atopic patients with persistent otitis media with effusion. Otolaryngol Head Neck Surg. 2000; 123 ( 5 ): 533 - 538. https://doi.org/10.1067/mhn.2000.109472
dc.identifier.citedreferenceJang CH, Kim YH. Characterization of cytokines present in pediatric otitis media with effusion: comparison of allergy positive and negative. Int J Pediatr Otorhinolaryngol. 2002; 66 ( 1 ): 37 - 40. https://doi.org/10.1016/s0165-5876(02)00185-4
dc.identifier.citedreferenceJang CH, Kim YH. Demonstration of RANTES and eosinophilic cataionic protein in otitis media with effusion with allergy. Int J Pediatr Otorhinolaryngol. 2003; 67 ( 5 ): 531 - 533. https://doi.org/10.1016/s0165-5876(03)00015-6
dc.identifier.citedreferenceNguyen LH, Manoukian JJ, Tewfik TL, et al. Evidence of allergic inflammation in the middle ear and nasopharynx in atopic children with otitis media with effusion. J Otolaryngol. 2004; 33 ( 6 ): 345 - 351. https://doi.org/10.2310/7070.2004.03073
dc.identifier.citedreferenceLildholdt T, Kortholm B. Beclomethasone nasal spray in the treatment of middle-ear effusion – a double-blind study. Int J Pediatr Otorhinolaryngol. 1982; 4 ( 2 ): 133 - 137. https://doi.org/10.1016/0165-5876(82)90088-x
dc.identifier.citedreferenceWilliamson I, Benge S, Barton S, et al. Topical intranasal corticosteroids in 4-11 year old children with persistent bilateral otitis media with effusion in primary care: double blind randomised placebo controlled trial. BMJ. 2009; 339: b4984. https://doi.org/10.1136/bmj.b4984
dc.identifier.citedreferenceGriffin G, Flynn CA. Antihistamines and/or decongestants for otitis media with effusion (OME) in children. Cochrane Database Syst Rev. 2011;( 9 ): CD003423. https://doi.org/10.1002/14651858.CD003423.pub3
dc.identifier.citedreferenceSimpson SA, Lewis R, van der Voort J, Butler CC. Oral or topical nasal steroids for hearing loss associated with otitis media with effusion in children. Cochrane Database Syst Rev. 2011;( 5 ): CD001935. https://doi.org/10.1002/14651858.CD001935.pub3
dc.identifier.citedreferenceSchoem SR, Willard A, Combs JT. A prospective, randomized, placebo-controlled, double-blind study of montelukast’s effect on persistent middle ear effusion. Ear Nose Throat J. 2010; 89 ( 9 ): 434 - 437.
dc.identifier.citedreferenceErtugay CK, Cingi C, Yaz A, et al. Effect of combination of montelukast and levocetirizine on otitis media with effusion: a prospective, placebo-controlled trial. Acta Otolaryngol. 2013; 133 ( 12 ): 1266 - 1272. https://doi.org/10.3109/00016489.2013.824113
dc.identifier.citedreferenceSajjadi H, Paparella MM. Meniere’s disease. Lancet. 2008; 372 ( 9636 ): 406 - 414. https://doi.org/10.1016/S0140-6736(08)61161-7
dc.identifier.citedreferenceDerebery MJ. Allergic and immunologic aspects of Meniere’s disease. Otolaryngol Head Neck Surg. 1996; 114 ( 3 ): 360 - 365. https://doi.org/10.1016/s0194-5998(96)70204-8
dc.identifier.citedreferenceDerebery MJ, Berliner KI. Prevalence of allergy in Meniere’s disease. Otolaryngol Head Neck Surg. 2000; 123 (1 pt 1): 69 - 75. https://doi.org/10.1067/mhn.2000.105715
dc.identifier.citedreferenceTyrrell JS, Whinney DJ, Ukoumunne OC, Fleming LE, Osborne NJ. Prevalence, associated factors, and comorbid conditions for Meniere’s disease. Ear Hear. 2014; 35 ( 4 ): e162 - e169. https://doi.org/10.1097/AUD.0000000000000041
dc.identifier.citedreferenceSen P, Georgalas C, Papesch M. Co-morbidity of migraine and Meniere’s disease – is allergy the link? J Laryngol Otol. 2005; 119 ( 6 ): 455 - 460. https://doi.org/10.1258/0022215054273133
dc.identifier.citedreferenceKeles E, Godekmerdan A, Kalidag T, et al. Meniere’s disease and allergy: allergens and cytokines. J Laryngol Otol. 2004; 118 ( 9 ): 688 - 693. https://doi.org/10.1258/0022215042244822
dc.identifier.citedreferenceRoomiani M, Dehghani Firouzabadi F, Delbandi AA, et al. Evaluation of serum immunoreactivity to common indigenous iranian inhalation and food allergens in patients with Meniere’s disease. Immunol Invest. 2021: 1 - 10. https://doi.org/10.1080/08820139.2020.1869252
dc.identifier.citedreferenceMa Y, Sun Q, Zhang K, Bai L, Du L. High level of IgE in acute low-tone sensorineural hearing loss: a predictor for recurrence and Meniere disease transformation. Am J Otolaryngol. 2021; 42 ( 2 ): 102856. https://doi.org/10.1016/j.amjoto.2020.102856
dc.identifier.citedreferenceHsu L, Zhu XN, Zhao YS. Immunoglobulin E and circulating immune complexes in endolymphatic hydrops. Ann Otol Rhinol Laryngol. 1990; 99 (7 pt 1): 535 - 538. https://doi.org/10.1177/000348949009900707
dc.identifier.citedreferenceViscomi GJ, Bojrab DI. Use of electrocochleography to monitor antigenic challenge in Meniere’s disease. Otolaryngol Head Neck Surg. 1992; 107 (6 pt 1): 733 - 737. https://doi.org/10.1177/019459988910700604.1
dc.identifier.citedreferenceGibbs SR, Mabry RL, Roland PS, Shoup AG, Mabry CS. Electrocochleographic changes after intranasal allergen challenge: a possible diagnostic tool in patients with Meniere’s disease. Otolaryngol Head Neck Surg. 1999; 121 ( 3 ): 283 - 284. https://doi.org/10.1016/S0194-5998(99)70186-5
dc.identifier.citedreferenceDerebery MJ, Valenzuela S. Meniere’s syndrome and allergy. Otolaryngol Clin North Am. 1992; 25 ( 1 ): 213 - 224.
dc.identifier.citedreferenceDerebery MJ. Allergic management of Meniere’s disease: an outcome study. Otolaryngol Head Neck Surg. 2000; 122 ( 2 ): 174 - 182. https://doi.org/10.1016/S0194-5998(00)70235-X
dc.identifier.citedreferenceNCT04815187 – Repurposed use of allergic rhinitis and allergic asthma drug to reduce vertigo and hearing loss in Meniere’s disease. Accessed March 6, 2021. https://clinicaltrials.gov/show/NCT04815187
dc.identifier.citedreferenceSingh S, Nagarkar AN, Bansal S, Vir D, Gupta AK. Audiological manifestations of allergic rhinitis. J Laryngol Otol. 2011; 125 ( 9 ): 906 - 910. https://doi.org/10.1017/S0022215111001137
dc.identifier.citedreferenceIrwin RS, Baumann MH, Bolser DC, et al. Diagnosis and management of cough executive summary: ACCP evidence-based clinical practice guidelines. Chest. 2006; 129 (1 suppl): 1S - 23S. https://doi.org/10.1378/chest.129.1_suppl.1S
dc.identifier.citedreferencePassali D, de Benedetto F, de Benedetto M, et al. Rhino-bronchial syndrome. The SIO-AIMAR (Italian Society of Otorhinolaryngology, Head Neck Surgery-Interdisciplinary Scientific Association for the Study of the Respiratory Diseases) survey. Acta Otorhinolaryngol Ital. 2011; 31 ( 1 ): 27 - 34.
dc.identifier.citedreferenceKrzych-Falta E, Piekarska B, Sybilski A, Wojas O, Samolinski B. The safety of nasal allergen challenge test assessed in lower airways. Iran J Allergy Asthma Immunol. 2015; 14 ( 6 ): 581 - 588.
dc.identifier.citedreferenceChakir J, Laviolette M, Turcotte H, Boutet M, Boulet LP. Cytokine expression in the lower airways of nonasthmatic subjects with allergic rhinitis: influence of natural allergen exposure. J Allergy Clin Immunol. 2000; 106 ( 5 ): 904 - 910. https://doi.org/10.1067/mai.2000.110100
dc.identifier.citedreferenceChakir J, Laviolette M, Boutet M, Laliberte R, Dube J, Boulet LP. Lower airways remodeling in nonasthmatic subjects with allergic rhinitis. Lab Invest. 1996; 75 ( 5 ): 735 - 44.
dc.identifier.citedreferenceBuday T, Gavliakova S, Mokry J, Medvedova I, Kavalcikova-Bogdanova N, Plevkova J. The guinea pig sensitized by house dust mite: a model of experimental cough studies. Adv Exp Med Biol. 2016; 905: 87 - 95. https://doi.org/10.1007/5584_2016_217
dc.identifier.citedreferenceLin HC, Cho SH, Ghoshal AG, et al. Respiratory diseases and the impact of cough in Taiwan: results from the APBORD observational study. Medicine (Baltimore). 2016; 95 ( 27 ): e3854. https://doi.org/10.1097/MD.0000000000003854
dc.identifier.citedreferenceCho SH, Lin HC, Ghoshal AG, et al. Respiratory disease in the Asia-Pacific region: cough as a key symptom. Allergy Asthma Proc. 2016; 37 ( 2 ): 131 - 140. https://doi.org/10.2500/aap.2016.37.3925
dc.identifier.citedreferenceHe S, Li YJ, Chen J. Clinical features of allergic rhinitis in children of Shanghai, China. Genet Mol Res. 2016; 15 ( 2 ). https://doi.org/10.4238/gmr.15028118
dc.identifier.citedreferenceDicpinigiatis P, Birring S, McGarvey L, Schelfhout J, Tzontcheva A, Muccino D. Comorbid conditions and medical history among patients with refractory or unexplained chronic cough in two phase 3 clinical trials (COUGH-1 and COUGH-2). J Allergy Clin Immunol. 2021; 147 ( 2 ): AB61.
dc.identifier.citedreferenceKim JH, Kim SA, Ku JY, Cho WK, Shin CH. Comparison of allergens and symptoms in patients with allergic rhinitis between 1990s and 2010s. Allergy Asthma Clin Immunol. 2020; 16: 58. https://doi.org/10.1186/s13223-020-00455-9
dc.identifier.citedreferenceTang W, Zhou J, Miao L, Shi G. Clinical features in patients of cough variant asthma with normal and high level of exhaled fractional nitric oxide. Clin Respir J. 2018; 12 ( 2 ): 595 - 600. https://doi.org/10.1111/crj.12568
dc.identifier.citedreferenceNakajima T, Nagano T, Nishimura Y. Retrospective study of the effects of post-nasal drip symptoms on cough duration. In Vivo. 2021; 35 ( 3 ): 1799 - 1803. https://doi.org/10.21873/invivo.12440
dc.identifier.citedreferenceChen LC, Zeng GS, Wu LL, et al. Diagnostic value of FeNO and MMEF for predicting cough variant asthma in chronic cough patients with or without allergic rhinitis. J Asthma. 2021; 58 ( 3 ): 326 - 333. https://doi.org/10.1080/02770903.2019.1694035
dc.identifier.citedreferenceLiu X, Wang X, Yao X, Wang Y, Sun Y, Zhang L. Value of exhaled nitric oxide and FEF25-75 in identifying factors associated with chronic cough in allergic rhinitis. Allergy Asthma Immunol Res. 2019; 11 ( 6 ): 830 - 845. https://doi.org/10.4168/aair.2019.11.6.830
dc.identifier.citedreferenceDeot N, Barr J, Mankowski N, Brunner J, McCoul ED. Effect of intranasal corticosteroids on secondary sinonasal symptoms: a systematic review of randomized trials. Am J Rhinol Allergy. 2019; 33 ( 5 ): 601 - 607. https://doi.org/10.1177/1945892419844397
dc.identifier.citedreferenceReidy PM, Dworkin JP, Krouse JH. Laryngeal effects of antigen stimulation challenge with perennial allergen Dermatophagoides pteronyssinus. Otolaryngol Head Neck Surg. 2003; 128 ( 4 ): 455 - 462. https://doi.org/10.1016/s0194-5998(03)00003-2
dc.identifier.citedreferenceLee K, Young Kang C, Lee H, Choi IH, Lee SH, Kim TH. Association of sinonasal factors with chronic laryngitis in Korean adults. JAMA Otolaryngol Head Neck Surg. 2019; 145 ( 10 ): 919 - 925. https://doi.org/10.1001/jamaoto.2019.2134
dc.identifier.citedreferenceWang YT, Chang GH, Yang YH, et al. Allergic rhinitis and laryngeal pathology: real-world evidence. Healthcare (Basel). 2021; 9 ( 1 ): 36. https://doi.org/10.3390/healthcare9010036
dc.identifier.citedreferenceMillqvist E, Bende M, Brynnel M, Johansson I, Kappel S, Ohlsson AC. Voice change in seasonal allergic rhinitis. J Voice. 2008; 22 ( 4 ): 512 - 515. https://doi.org/10.1016/j.jvoice.2006.12.003
dc.identifier.citedreferenceKoc EA, Koc B, Erbek S. Comparison of acoustic and stroboscopic findings and voice handicap index between allergic rhinitis patients and controls. Balkan Med J. 2014; 31 ( 4 ): 340 - 344. https://doi.org/10.5152/balkanmedj.2014.14511
dc.identifier.citedreferenceKrouse JH, Dworkin JP, Carron MA, Stachler RJ. Baseline laryngeal effects among individuals with dust mite allergy. Otolaryngol Head Neck Surg. 2008; 139 ( 1 ): 149 - 151. https://doi.org/10.1016/j.otohns.2008.04.001
dc.identifier.citedreferenceRandhawa PS, Nouraei S, Mansuri S, Rubin JS. Allergic laryngitis as a cause of dysphonia: a preliminary report. Logoped Phoniatr Vocol. 2010; 35 ( 4 ): 169 - 174. https://doi.org/10.3109/14015431003599012
dc.identifier.citedreferenceOhlsson AC, Drevsater A, Brynnel M, Johansson I. Allergic rhinitis and voice change. Logoped Phoniatr Vocol. 2016; 41 ( 4 ): 143 - 148. https://doi.org/10.3109/14015439.2015.1049288
dc.identifier.citedreferenceVelickovic V, Simovic S, Zovanovic S, Stojanovic J, Koravovic M, Mihailovic N. The factors asociated with allergic rhinitis in dysphonic professional voice users. Mediconski Casopis. 2017; 51 ( 3 ): 73 - 78.
dc.identifier.citedreferenceHamdan AL, Sibai A, Youssef M, Deeb R, Zaitoun F. The use of a screening questionnaire to determine the incidence of allergic rhinitis in singers with dysphonia. Arch Otolaryngol Head Neck Surg. 2006; 132 ( 5 ): 547 - 549. https://doi.org/10.1001/archotol.132.5.547
dc.identifier.citedreferenceTurley R, Cohen SM, Becker A, Ebert Jr CS. Role of rhinitis in laryngitis: another dimension of the unified airway. Ann Otol Rhinol Laryngol. 2011; 120 ( 8 ): 505 - 510. https://doi.org/10.1177/000348941112000803
dc.identifier.citedreferenceSimberg S, Sala E, Tuomainen J, Ronnemaa AM. Vocal symptoms and allergy – a pilot study. J Voice. 2009; 23 ( 1 ): 136 - 139. https://doi.org/10.1016/j.jvoice.2007.03.010
dc.identifier.citedreferenceRandhawa PS, Mansuri S, Rubin JS. Is dysphonia due to allergic laryngitis being misdiagnosed as laryngopharyngeal reflux? Logoped Phoniatr Vocol. 2010; 35 ( 1 ): 1 - 5. https://doi.org/10.1080/14015430903002262
dc.identifier.citedreferenceAlharethy S, Baqays A, Mesallam TA, et al. Correlation between allergic rhinitis and laryngopharyngeal reflux. Biomed Res Int. 2018; 2018: 2951928. https://doi.org/10.1155/2018/2951928
dc.identifier.citedreferenceRoth DF, Ferguson BJ. Vocal allergy: recent advances in understanding the role of allergy in dysphonia. Curr Opin Otolaryngol Head Neck Surg. 2010; 18 ( 3 ): 176 - 181. https://doi.org/10.1097/MOO.0b013e32833952af
dc.identifier.citedreferenceStaevska MT, Mandajieva MA, Dimitrov VD. Rhinitis and sleep apnea. Curr Allergy Asthma Rep. 2004; 4 ( 3 ): 193 - 199. https://doi.org/10.1007/s11882-004-0026-0
dc.identifier.citedreferenceEren E, Arslanoglu S, Aktas A, et al. Factors confusing the diagnosis of laryngopharyngeal reflux: the role of allergic rhinitis and inter-rater variability of laryngeal findings. Eur Arch Otorhinolaryngol. 2014; 271 ( 4 ): 743 - 747. https://doi.org/10.1007/s00405-013-2682-y
dc.identifier.citedreferenceJackson-Menaldi CA, Dzul AI, Holland RW. Allergies and vocal fold edema: a preliminary report. J Voice. 1999; 13 ( 1 ): 113 - 122. https://doi.org/10.1016/s0892-1997(99)80065-4
dc.identifier.citedreferenceBelafsky PC, Peake J, Smiley-Jewell SM, Verma SP, Dworkin-Valenti J, Pinkerton KE. Soot and house dust mite allergen cause eosinophilic laryngitis in an animal model. Laryngoscope. 2016; 126 ( 1 ): 108 - 112. https://doi.org/10.1002/lary.25467
dc.identifier.citedreferenceMouadeb DA, Belafsky PC, Birchall M, Hood C, Konia T, Pinkerton KE. The effects of allergens and tobacco smoke on the laryngeal mucosa of guinea pigs. Otolaryngol Head Neck Surg. 2009; 140 ( 4 ): 493 - 497. https://doi.org/10.1016/j.otohns.2008.12.034
dc.identifier.citedreferenceDworkin JP, Reidy PM, Stachler RJ, Krouse JH. Effects of sequential Dermatophagoides pteronyssinus antigen stimulation on anatomy and physiology of the larynx. Ear Nose Throat J. 2009; 88 ( 2 ): 793 - 799.
dc.identifier.citedreferenceRoth DF, Abbott KV, Carroll TL, Ferguson BJ. Evidence for primary laryngeal inhalant allergy: a randomized, double-blinded crossover study. Int Forum Allergy Rhinol. 2013; 3 ( 1 ): 10 - 18. https://doi.org/10.1002/alr.21051
dc.identifier.citedreferenceSuzuki T, Okamoto Y, Yonekura S, Okuma Y, Sakurai T, Sakurai D. Characteristics of laryngeal symptoms induced in patients with allergic rhinitis in an environmental challenge chamber. Ann Allergy Asthma Immunol. 2016; 116 ( 6 ): 491 - 496. https://doi.org/10.1016/j.anai.2016.03.011
dc.identifier.citedreferenceBrook CD, Platt MP, Reese S, Noordzij JP. Utility of allergy testing in patients with chronic laryngopharyngeal symptoms: is it allergic laryngitis? Otolaryngol Head Neck Surg. 2016; 154 ( 1 ): 41 - 45. https://doi.org/10.1177/0194599815607850
dc.identifier.citedreferenceBrook C, Noordzij JP, Russell K, Aliphas A, Platt M. Predictive findings of allergic disease in fiberoptic nasolaryngoscopy. Laryngoscope. 2015; 125 ( 2 ): 286 - 290. https://doi.org/10.1002/lary.24880
dc.identifier.citedreferenceLeigh LY, Spergel JM. An in-depth characterization of a large cohort of adult patients with eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2019; 122 ( 1 ): 65 - 72.e1. https://doi.org/10.1016/j.anai.2018.09.452
dc.identifier.citedreferenceFuruta GT, Liacouras CA, Collins MH, et al. Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology. 2007; 133 ( 4 ): 1342 - 1363. https://doi.org/10.1053/j.gastro.2007.08.017
dc.identifier.citedreferenceBenninger MS, Strohl M, Holy CE, Hanick AL, Bryson PC. Prevalence of atopic disease in patients with eosinophilic esophagitis. Int Forum Allergy Rhinol. 2017; 7 ( 8 ): 757 - 762. https://doi.org/10.1002/alr.21968
dc.identifier.citedreferenceAzzano P, Villard Truc F, Collardeau-Frachon S, Lachaux A. Children with eosinophilic esophagitis in real life: 10 years’ experience with a focus on allergic management. Allergol Immunopathol (Madr). 2020; 48 ( 3 ): 244 - 250. https://doi.org/10.1016/j.aller.2019.07.013
dc.identifier.citedreferenceAncellin M, Ricolfi-Waligova L, Clerc-Urmes I, et al. Management of eosinophilic esophagitis in children according to atopic status: a retrospective cohort in northeast of France. Arch Pediatr. 2020; 27 ( 3 ): 122 - 127. https://doi.org/10.1016/j.arcped.2020.02.001
dc.identifier.citedreferenceMohammad AA, Wu SZ, Ibrahim O, et al. Prevalence of atopic comorbidities in eosinophilic esophagitis: a case-control study of 449 patients. J Am Acad Dermatol. 2017; 76 ( 3 ): 559 - 560. https://doi.org/10.1016/j.jaad.2016.08.068
dc.identifier.citedreferenceAlves Marcelino JL, Cardoso de Aguiar R, Cabral Duarte F, Celia Costa A, Pereira-Barbosa MA. Pediatric eosinophilic esophagitis in Portugal. Eur Ann Allergy Clin Immunol. 2017; 49 ( 2 ): 66 - 74.
dc.identifier.citedreferenceOlson AA, Evans MD, Johansson MW, et al. Role of food and aeroallergen sensitization in eosinophilic esophagitis in adults. Ann Allergy Asthma Immunol. 2016; 117 ( 4 ): 387 - 393.e2. https://doi.org/10.1016/j.anai.2016.08.008
dc.identifier.citedreferenceVernon N, Shah S, Lehman E, Ghaffari G. Comparison of atopic features between children and adults with eosinophilic esophagitis. Allergy Asthma Proc. 2014; 35 ( 5 ): 409 - 414. https://doi.org/10.2500/aap.2014.35.3768
dc.identifier.citedreferenceChadha SN, Wang L, Correa H, Moulton D, Hummell DS. Pediatric eosinophilic esophagitis: the Vanderbilt experience. Ann Allergy Asthma Immunol. 2014; 113 ( 4 ): 445 - 451. https://doi.org/10.1016/j.anai.2014.07.020
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.