Show simple item record

Engineering Functional Membrane–Membrane Interfaces by InterSpy

dc.contributor.authorMoghimianavval, Hossein
dc.contributor.authorPatel, Chintan
dc.contributor.authorMohapatra, Sonisilpa
dc.contributor.authorHwang, Sung-Won
dc.contributor.authorKayikcioglu, Tunc
dc.contributor.authorBashirzadeh, Yashar
dc.contributor.authorLiu, Allen P.
dc.contributor.authorHa, Taekjip
dc.date.accessioned2023-04-04T17:40:09Z
dc.date.available2024-04-04 13:40:07en
dc.date.available2023-04-04T17:40:09Z
dc.date.issued2023-03
dc.identifier.citationMoghimianavval, Hossein; Patel, Chintan; Mohapatra, Sonisilpa; Hwang, Sung-Won ; Kayikcioglu, Tunc; Bashirzadeh, Yashar; Liu, Allen P.; Ha, Taekjip (2023). "Engineering Functional Membrane- Membrane Interfaces by InterSpy." Small 19(13): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/176037
dc.description.abstractEngineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane–membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane–membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane–membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.InterSpy, a heterodimeric protein pair based on SpyTag-SpyCatcher is designed and tested in a cell-free environment. Using InterSpy, synthetic and cell membrane–membrane interfaces with localized split fluorescent protein activity are reconstituted.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercell-free expression
dc.subject.othermembrane protein reconstitution
dc.subject.othermembrane–membrane interfaces
dc.subject.othersplit-protein reconstitution
dc.subject.othersynthetic biology
dc.titleEngineering Functional Membrane–Membrane Interfaces by InterSpy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176037/1/smll202202104.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176037/2/smll202202104_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176037/3/smll202202104-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/smll.202202104
dc.identifier.sourceSmall
dc.identifier.citedreferenceS. Majumder, Y.-Y. Hsu, H. Moghimianavval, M. Andreas, T. W. Giessen, G. W. G. Luxton, A. P. Liu, bioRxiv 2022, https://doi.org/10.1101/2021.04.11.439350.
dc.identifier.citedreferenceE. M. Schmid, M. H. Bakalar, K. Choudhuri, J. Weichsel, H. S. Ann, P. L. Geissler, M. L. Dustin, D. A. Fletcher, Nat. Phys. 2016, 12, 704.
dc.identifier.citedreferenceR. D. Kirkton, N. Bursac, Nat. Commun. 2011, 2, 300.
dc.identifier.citedreferenceH. X. Nguyen, R. D. Kirkton, N. Bursac, Nat. Protoc. 2018, 13, 927.
dc.identifier.citedreferenceH. X. Nguyen, R. D. Kirkton, N. Bursac, Nat. Commun. 2016, 7, 13132.
dc.identifier.citedreferenceN. Giagtzoglou, C. v. Ly, H. J. Bellen, Cold Spring Harbor Perspect. Biol. 2009, 1, a003079.
dc.identifier.citedreferenceA. G. Tebo, A. Gautier, Nat. Commun. 2019, 10, 2822.
dc.identifier.citedreferenceE. N. Salgado, R. J. Radford, F. A. Tezcan, Acc. Chem. Res. 2010, 43, 661.
dc.identifier.citedreferenceI. N. A. Khairil Anuar, A. Banerjee, A. H. Keeble, A. Carella, G. I. Nikov, M. Howarth, Nat. Commun. 2019, 10, 1734.
dc.identifier.citedreferenceF. Sun, W. b. Zhang, A. Mahdavi, F. H. Arnold, D. A Tirrell, Proc. Natl. Acad. Sci. USA 2014, 111, 11269.
dc.identifier.citedreferenceK. Maciuba, F. Zhang, C. M. Kaiser, Biophys. J. 2021, 120, 2691.
dc.identifier.citedreferenceT. K. Tan, P. Rijal, R. Rahikainen, A. H. Keeble, L. Schimanski, S. Hussain, R. Harvey, J. W. P. Hayes, J. C. Edwards, R. K. McLean, V. Martini, M. Pedrera, N. Thakur, C. Conceicao, I. Dietrich, H. Shelton, A. Ludi, G. Wilsden, C. Browning, A. K. Zagrajek, D. Bialy, S. Bhat, P. Stevenson-Leggett, P. Hollinghurst, M. Tully, K. Moffat, C. Chiu, R. Waters, A. Gray, M. Azhar, et al., Nat. Commun. 2021, 12, 542.
dc.identifier.citedreferenceX. Wei, J. Zhang, J. Cui, W. Xu, X. Zhou, J. Ma, J. Biol. Chem. 2021, 297, 101119.
dc.identifier.citedreferenceS. Feng, A. Varshney, D. C. Villa, C. Modavi, J. Kohler, F. Farah, S. Zhou, N. Ali, J. D. Müller, M. K. Van Hoven, B. Huang, Commun. Biol. 2019, 2, 344.
dc.identifier.citedreferenceS. Feng, S. Sekine, V. Pessino, H. Li, M. D. Leonetti, B. Huang, Nat. Commun. 2017, 8, 370.
dc.identifier.citedreferenceA. H. Keeble, P. Turkki, S. Stokes, I. N. A. K. Anuar, R. Rahikainen, V. P. Hytönen, M. Howarth, Proc. Natl. Acad. Sci. USA 2019, 116, 26523.
dc.identifier.citedreferenceS. Majumder, P. T. Willey, M. S. DeNies, A. P. Liu, G. Luxton, J. Cell Sci. 2019, 132, jcs234153.
dc.identifier.citedreferenceB. Belardi, S. Son, M. D. Vahey, J. Wang, J. Hou, D. A. Fletcher, J. Cell Sci. 2019, 132, jcs221556.
dc.identifier.citedreferenceT. J. Pucadyil, S. L. Schmid, Biophys. J. 2010, 99, 517.
dc.identifier.citedreferenceI. Carton, L. Malinina, R. P. Richter, Biophys. J. 2010, 99, 2947.
dc.identifier.citedreferenceX. Chen, J. L. Zaro, W. C. Shen, Adv. Drug Delivery Rev. 2013, 65, 1357.
dc.identifier.citedreferenceM. A. Nordmaj, M. E. Roberts, E. S. Sachse, R. Dagil, A. P. Andersen, N. Skeltved, K. V. Grunddal, S. M. Erdoğan, S. Choudhary, T. Gustsavsson, M. S. Ørum-Madsen, I. Moskalev, W. Tian, Z. Yang, T. M. Clausen, T. G. Theander, M. Daugaard, M. A. Nielsen, A. Salanti, Cell Death Dis. 2021, 12, 353.
dc.identifier.citedreferenceN. G. Minutolo, P. Sharma, M. Poussin, L. C. Shaw, D. P. Brown, E. E. Hollander, A. Smole, A. Rodriguez-Garcia, J. Z. Hui, F. Zappala, A. Tsourkas, D. J. Powell, J. Am. Chem. Soc. 2020, 142, 6554.
dc.identifier.citedreferenceC. N. Bedbrook, M. Kato, S. Ravindra kumar, A. Lakshmanan, R. D. Nath, F. Sun, P. W. Sternberg, F. H. Arnold, V. Gradinaru, Chem Biol 2015, 22, 1108.
dc.identifier.citedreferenceA. S. Dixon, M. K. Schwinn, M. P. Hall, K. Zimmerman, P. Otto, T. H. Lubben, B. L. Butler, B. F. Binkowski, T. MacHleidt, T. A. Kirkland, M. G. Wood, C. T. Eggers, L. P. Encell, K. V. Wood, ACS Chem. Biol. 2016, 11, 400.
dc.identifier.citedreferenceG. Guntas, R. A. Hallett, S. P. Zimmerman, T. Williams, H. Yumerefendi, J. E. Bear, B. Kuhlman, Proc. Natl. Acad. Sci. USA 2015, 112, 112.
dc.identifier.citedreferenceM. C. Wehr, R. Laage, U. Bolz, T. M. Fischer, S. Grünewald, S. Scheek, A. Bach, K. A. Nave, M. J. Rossner, Nat. Methods 2006, 3, 985.
dc.identifier.citedreferenceG. Veggiani, T. Nakamura, M. D. Brenner, R. v. Gayet, J. Yan, C. v. Robinson, M. Howarth, Proc. Natl. Acad. Sci. USA 2016, 113, 1202.
dc.identifier.citedreferenceL. L. Tan, S. S. Hoon, F. T. Wong, PLoS One 2016, 11, 0165074.
dc.identifier.citedreferenceE. J. Hartzell, J. Terr, W Chen, J. Am. Chem. Soc. 2021, 143, 8572.
dc.identifier.citedreferenceB. Sharma, H. Moghimianavval, S. W. Hwang, A. P. Liu, Membranes 2021, 11, 912.
dc.identifier.citedreferenceA. Groaz, H. Moghimianavval, F. Tavella, T. W. Giessen, A. G. Vecchiarelli, Q. Yang, A. P. Liu, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, 1685.
dc.identifier.citedreferenceY. Bashirzadeh, A. P. Liu, Soft Matter 2019, 15, 8425.
dc.identifier.citedreferenceE. Kowarz, D. Löscher, R. Marschalek, Biotechnol. J. 2015, 10, 647.
dc.identifier.citedreferenceH. Moghimianavval, Y. Y. Hsu, A. Groaz, A. P. Liu, Methods Mol. Biol. 2022, 2433, 105.
dc.identifier.citedreferenceS. Neumann, T. J. Pucadyil, S. L. Schmid, Nat. Protoc. 2013, 8, 213.
dc.identifier.citedreferenceL. Mátés, M. K. L. Chuah, E. Belay, B. Jerchow, N. Manoj, A. Acosta-Sanchez, D. P. Grzela, A. Schmitt, K. Becker, J. Matrai, L. Ma, E. Samara-Kuko, C. Gysemans, D. Pryputniewicz, C. Miskey, B. Fletcher, T. Vandendriessche, Z. Ivics, Z. Izsvák, Nat. Genet. 2009, 41, 753.
dc.identifier.citedreferenceJ. Salogiannis, M. J. Egan, S. L. Reck-Peterson, J. Cell Biol. 2016, 212, 289.
dc.identifier.citedreferenceY. Guo, D. Li, S. Zhang, Y. Yang, J. J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li, Cell 2018, 175, 1430.e17.
dc.identifier.citedreferenceS. Tsukita, H. Tanaka, A. Tamura, Trends Biochem. Sci. 2019, 44, 141.
dc.identifier.citedreferenceT. Otani, M. Furuse, Trends Cell Biol. 2020, 30, 805.
dc.identifier.citedreferenceW. Meng, M. Takeichi, Cold Spring Harbor Perspect. Biol. 2009, 1, a002899.
dc.identifier.citedreferenceA. Hartsock, W. J. Nelson, Biochim. Biophys. Acta 2008, 1778, 660.
dc.identifier.citedreferenceC. M. Niessen, J. Invest. Dermatol. 2007, 127, 2525.
dc.identifier.citedreferenceM. L. Dustin, J. Clin. Invest. 2012, 122, 1149.
dc.identifier.citedreferenceT. C. Südhof, R. C. Malenka, Neuron 2008, 60, 469.
dc.identifier.citedreferenceP. M. R. Cruz, J. Cossins, D. Beeson, A. Vincent, Front. Mol. Neurosci. 2020, 13, 226.
dc.identifier.citedreferenceW. A. Prinz, A. Toulmay, T. Balla, Nat. Rev. Mol. Cell Biol. 2020, 21, 7.
dc.identifier.citedreferenceL. Scorrano, M. A. de Matteis, S. Emr, F. Giordano, G. Hajnóczky, B. Kornmann, L. L. Lackner, T. P. Levine, L. Pellegrini, K. Reinisch, R. Rizzuto, T. Simmen, H. Stenmark, C. Ungermann, M. Schuldiner, Nat. Commun. 2019, 10, 1287.
dc.identifier.citedreferenceS. C. J. Helle, G. Kanfer, K. Kolar, A. Lang, A. H. Michel, B. Kornmann, Biochim. Biophys. Acta 2013, 1833, 2526.
dc.identifier.citedreferenceM. A. Garcia, W. J. Nelson, N. Chavez, Cold Spring Harbor Perspect. Biol. 2018, 10, a029181.
dc.identifier.citedreferenceA. A. Bhat, S. Uppada, I. W. Achkar, S. Hashem, S. K. Yadav, M. Shanmugakonar, H. A. Al-Naemi, M. Haris, S. Uddin, Front. Physiol. 2019, 9, 1942.
dc.identifier.citedreferenceL. Shen, C. R. Weber, J. R. Turner, J. Cell Biol. 2008, 181, 683.
dc.identifier.citedreferenceB. Baum, M. Georgiou, J. Cell Biol. 2011, 192, 907.
dc.identifier.citedreferenceC. Schwayer, S. Shamipour, K. Pranjic-Ferscha, A. Schauer, M. Balda, M. Tada, K. Matter, C. P. Heisenberg, Cell 2019, 179, 937.
dc.identifier.citedreferenceE. McEvoy, Y. L. Han, M. Guo, V. B. Shenoy, Nat. Commun. 2020, 11, 6148.
dc.identifier.citedreferenceM. Rübsam, J. A. Broussard, S. A. Wickström, O. Nekrasova, K. J. Green, C. M. Niessen, Cold Spring Harbor Perspect. Biol. 2018, 10, a029207.
dc.identifier.citedreferenceA. C. Nascimbeni, F. Giordano, N. Dupont, D. Grasso, M. I. Vaccaro, P. Codogno, E. Morel, EMBO J. 2017, 36, 2018.
dc.identifier.citedreferenceV. Kohler, A. Aufschnaiter, S. Büttner, Cells 2020, 9, 1184.
dc.identifier.citedreferenceJ. E. Vance, Biol. Direct 2020, 15, 24.
dc.identifier.citedreferenceS. Muallem, W. Y. Chung, A. Jha, M. Ahuja, EMBO Rep. 2017, 18, 1893.
dc.identifier.citedreferenceD. Peretti, S. H. Kim, R. Tufi, S. Lev, Front. Cell Dev. Biol. 2020, 7, 371.
dc.identifier.citedreferenceM. Michaud, J. Jouhet, Frontiers in Plant Science 2019, 10, 2.
dc.identifier.citedreferenceA. Jain, J. C. M. Holthuis, Biochim. Biophys. Acta 2017, 1864, 1450.
dc.identifier.citedreferenceJ. R. Friedman, B. M. Webster, D. N. Mastronarde, K. J. Verhey, G. K. Voeltz, J. Cell Biol. 2010, 190, 363.
dc.identifier.citedreferenceN. L. Mora, A. L. Boyle, B. J. Kolck, A. van Rossen, Š. Pokorná, A. Koukalová, R. Šachl, M. Hof, A. Kros, Sci. Rep. 2020, 10, 3087.
dc.identifier.citedreferenceL. A. Banaszynski, C. W. Liu, T. J. Wandless, J. Am. Chem. Soc. 2005, 127, 4715.
dc.identifier.citedreferenceT. Komatsu, I. Kukelyansky, J. M. McCaffery, T. Ueno, L. C. Varela, T. Inoue, Nat. Methods 2010, 7, 206.
dc.identifier.citedreferenceI. M. C. van Amsterdam, M. Ubbink, O. Einsle, A. Messerschmidt, A. Merli, D. Cavazzini, G. L. Rossi, G. W. Canters, Nat. Struct. Biol. 2001, 9, 48.
dc.identifier.citedreferenceS. Eger, M. Scheffner, A. Marx, M. Rubini, J. Am. Chem. Soc. 2010, 132, 16337.
dc.identifier.citedreferenceC. H. Kim, J. Y. Axup, A. Dubrovska, S. A. Kazane, B. A. Hutchins, E. D. Wold, V. v. Smider, P. G. Schultz, J. Am. Chem. Soc. 2012, 134, 9918.
dc.identifier.citedreferenceB. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek, V. T. Moy, M. Howarth, Proc. Natl. Acad. Sci. USA 2012, 109, E690.
dc.identifier.citedreferenceX. Hu, H. Hu, J. A. Melvin, K. W. Clancy, D. G. McCafferty, W Yang, J. Am. Chem. Soc. 2011, 133, 478.
dc.identifier.citedreferenceH. Lei, Q. Ma, W. Li, J. Wen, H. Ma, M. Qin, W. Wang, Y. Cao, Nat. Commun. 2021, 12, 5082.
dc.identifier.citedreferenceM. Walden, J. M. Edwards, A. M. Dziewulska, R. Bergmann, G. Saalbach, S. Y. Kan, O. K. Miller, M. Weckener, R. J. Jackson, S. L. Shirran, C. H. Botting, G. J. Florence, M. Rohde, M. J. Banfield, U. Schwarz-Linek, eLife 2015, 4, 06638.
dc.identifier.citedreferenceH. B. van den Berg van Saparoea, D. Houben, M. I. de Jonge, W. S. P. Jong, J. Luirink, Appl. Environ. Microbiol. 2018, 84, 02567.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.