Show simple item record

A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling

dc.contributor.authorZhu, Lingxin
dc.contributor.authorTang, Yi
dc.contributor.authorLi, Xiao-Yan
dc.contributor.authorKerk, Samuel A
dc.contributor.authorLyssiotis, Costas A
dc.contributor.authorFeng, Wenqing
dc.contributor.authorSun, Xiaoyue
dc.contributor.authorHespe, Geoffrey E
dc.contributor.authorWang, Zijun
dc.contributor.authorStemmler, Marc P
dc.contributor.authorBrabletz, Simone
dc.contributor.authorBrabletz, Thomas
dc.contributor.authorKeller, Evan T
dc.contributor.authorMa, Jun
dc.contributor.authorCho, Jung-Sun
dc.contributor.authorYang, Jingwen
dc.contributor.authorWeiss, Stephen J
dc.date.accessioned2023-04-04T17:40:38Z
dc.date.available2024-05-04 13:40:27en
dc.date.available2023-04-04T17:40:38Z
dc.date.issued2023-04-03
dc.identifier.citationZhu, Lingxin; Tang, Yi; Li, Xiao-Yan ; Kerk, Samuel A; Lyssiotis, Costas A; Feng, Wenqing; Sun, Xiaoyue; Hespe, Geoffrey E; Wang, Zijun; Stemmler, Marc P; Brabletz, Simone; Brabletz, Thomas; Keller, Evan T; Ma, Jun; Cho, Jung-Sun ; Yang, Jingwen; Weiss, Stephen J (2023). "A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling." The EMBO Journal (7): n/a-n/a.
dc.identifier.issn0261-4189
dc.identifier.issn1460-2075
dc.identifier.urihttps://hdl.handle.net/2027.42/176046
dc.description.abstractOsteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.SynopsisOsteoporosis and similar bone-wasting conditions can be caused by an increase in osteoclast-mediated bone resorption. Here, we learn that both murine and human osteoclasts are activated by a Zeb1-dependent regulation of mitochondrial energy metabolism.The transcription factor Zeb1 is a negative regulator of giant multinucleated osteoclast-mediated skeletal remodeling.Zeb1 regulates mitochondrial energy metabolism in myeloid lineage-derived osteoclasts.The mitochondrial creatine kinase MtCK1 is a transcriptional target of Zeb1 that enables bone resorption by buffering ATP availability.The transcription factor Zeb1 influences bone development by regulating mitochondrial ATP availability.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermitochondrial creatine kinase
dc.subject.otherskeletal remodeling
dc.subject.otherZeb1
dc.subject.otherbone resorption
dc.subject.otherosteoclast
dc.titleA Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/1/embj2022111148_1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/2/embj2022111148-sup-0002-EVFigs.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/3/embj2022111148.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/4/embj2022111148-sup-0001-Appendix.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/5/embj2022111148.reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176046/6/embj2022111148_am.pdf
dc.identifier.doi10.15252/embj.2022111148
dc.identifier.sourceThe EMBO Journal
dc.identifier.citedreferenceStemmler MP, Eccles RL, Brabletz S, Brabletz T ( 2019 ) Non-redundant functions of EMT transcription factors. Nat Cell Biol 21: 102 – 112
dc.identifier.citedreferenceSchlattner U, Tokarska-Schlattner M, Wallimann T ( 2006 ) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164 – 180
dc.identifier.citedreferenceSchroder K ( 2019 ) NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med 132: 67 – 72
dc.identifier.citedreferenceShang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W, Wortman M, Zheng Y ( 2013 ) Small-molecule inhibitors targeting G-protein-coupled rho guanine nucleotide exchange factors. Proc Natl Acad Sci U S A 110: 3155 – 3160
dc.identifier.citedreferenceSims NA, Martin TJ ( 2020 ) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82: 507 – 529
dc.identifier.citedreferenceSrivastava AK, Bhattacharyya S, Castillo G, Miyakoshi N, Mohan S, Baylink DJ ( 2000 ) Development and evaluation of C-telopeptide enzyme-linked immunoassay for measurement of bone resorption in mouse serum. Bone 27: 529 – 533
dc.identifier.citedreferenceTakagi T, Moribe H, Kondoh H, Higashi Y ( 1998 ) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125: 21 – 31
dc.identifier.citedreferenceTakayanagi H ( 2007 ) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7: 292 – 304
dc.identifier.citedreferenceTang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J et al ( 2009 ) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15: 757 – 765
dc.identifier.citedreferenceTang Y, Feinberg T, Keller ET, Li XY, Weiss SJ ( 2016 ) Snail/slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 18: 917 – 929
dc.identifier.citedreferenceTeitelbaum SL ( 2011 ) The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci 1240: 14 – 17
dc.identifier.citedreferenceTeitelbaum SL, Ross FP ( 2003 ) Genetic regulation of osteoclast development and function. Nat Rev Genet 4: 638 – 649
dc.identifier.citedreferenceTouaitahuata H, Blangy A, Vives V ( 2014 ) Modulation of osteoclast differentiation and bone resorption by rho GTPases. Small GTPases 5: e28119
dc.identifier.citedreferenceTsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T et al ( 2020 ) Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 2: 1382 – 1390
dc.identifier.citedreferenceUehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, Murakami K, Nishita M, Nakamura T, Kato S et al ( 2017 ) Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal 10: eaan0023
dc.identifier.citedreferenceVandewalle C, Van Roy F, Berx G ( 2009 ) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66: 773 – 787
dc.identifier.citedreferenceWallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM ( 1992 ) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21 – 40
dc.identifier.citedreferenceWallimann T, Tokarska-Schlattner M, Schlattner U ( 2011 ) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40: 1271 – 1296
dc.identifier.citedreferenceWeivoda MM, Oursler MJ ( 2014 ) The roles of small GTPases in osteoclast biology. Orthop Muscular Syst 3: 1000161
dc.identifier.citedreferenceWu M, Chen W, Lu Y, Zhu G, Hao L, Li YP ( 2017 ) Galpha13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3beta-NFATc1 signalling pathway. Nat Commun 8: 13700
dc.identifier.citedreferenceWu D, Harrison DL, Szasz T, Yeh CF, Shentu TP, Meliton A, Huang RT, Zhou Z, Mutlu GM, Huang J et al ( 2021 ) Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat Metab 3: 714 – 727
dc.identifier.citedreferenceXu WY, Hu QS, Qin Y, Zhang B, Liu WS, Ni QX, Xu J, Yu XJ ( 2018 ) Zinc finger E-box-binding homeobox 1 mediates aerobic glycolysis via suppression of sirtuin 3 in pancreatic cancer. World J Gastroenterol 24: 4893 – 4905
dc.identifier.citedreferenceYahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y et al ( 2020a ) Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 22: 49 – 59
dc.identifier.citedreferenceYahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y et al ( 2020b ) Gene Expression Omnibus GSE125088 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125088 ). [DATASET]
dc.identifier.citedreferenceZaidi M ( 2007 ) Skeletal remodeling in health and disease. Nat Med 13: 791 – 801
dc.identifier.citedreferenceZeng R, Faccio R, Novack DV ( 2015 ) Alternative NF-kappaB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms. J Bone Miner Res 30: 2287 – 2299
dc.identifier.citedreferenceZhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ et al ( 2013 ) Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4: 2935
dc.identifier.citedreferenceZhang J, Wang J, Xing H, Li Q, Zhao Q, Li J ( 2016 ) Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells. Mol Cell Biochem 411: 331 – 340
dc.identifier.citedreferenceZhang Y, Rohatgi N, Veis DJ, Schilling J, Teitelbaum SL, Zou W ( 2018 ) PGC1beta organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation. J Bone Miner Res 33: 1114 – 1125
dc.identifier.citedreferenceZhang K, Zhao H, Sheng Y, Chen X, Xu P, Wang J, Ji Z, He Y, Gao WQ, Zhu HH ( 2022 ) Zeb1 sustains hematopoietic stem cell functions by suppressing mitofusin-2-mediated mitochondrial fusion. Cell Death Dis 13: 735
dc.identifier.citedreferenceZhao X, Lin S, Li H, Si S, Wang Z ( 2021 ) Myeloperoxidase controls bone turnover by suppressing osteoclast differentiation through modulating reactive oxygen species level. J Bone Miner Res 36: 591 – 603
dc.identifier.citedreferenceZhou B, Jin W ( 2020 ) Visualization of single cell RNA-seq data using t-SNE in R. Methods Mol Biol 2117: 159 – 167
dc.identifier.citedreferenceZhou Y, Lin F, Wan T, Chen A, Wang H, Jiang B, Zhao W, Liao S, Wang S, Li G et al ( 2021 ) ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM. Theranostics 11: 5926 – 5938
dc.identifier.citedreferenceZhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ ( 2020 ) Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 12: eaaw6143
dc.identifier.citedreferenceZhu X, Yan F, Liu L, Huang Q ( 2022 ) ZEB1 regulates bone metabolism in osteoporotic rats through inducing POLDIP2 transcription. J Orthop Surg Res 17: 423
dc.identifier.citedreferenceZou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL ( 2007 ) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176: 877 – 888
dc.identifier.citedreferenceZou W, Rohatgi N, Chen TH, Schilling J, Abu-Amer Y, Teitelbaum SL ( 2016 ) PPAR-gamma regulates pharmacological but not physiological or pathological osteoclast formation. Nat Med 22: 1203 – 1205
dc.identifier.citedreferenceChang EJ, Ha J, Oerlemans F, Lee YJ, Lee SW, Ryu J, Kim HJ, Lee Y, Kim HM, Choi JY et al ( 2008 ) Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption. Nat Med 14: 966 – 972
dc.identifier.citedreferenceChen W, Gong P, Guo J, Li H, Li R, Xing W, Yang Z, Guan Y ( 2018 ) Glycolysis regulates pollen tube polarity via rho GTPase signaling. PLoS Genet 14: e1007373
dc.identifier.citedreferenceCompston JE, McClung MR, Leslie WD ( 2019 ) Osteoporosis. Lancet 393: 364 – 376
dc.identifier.citedreferenceAlmotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A et al ( 2021 ) Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 131: e129115
dc.identifier.citedreferenceArnett TR, Orriss IR ( 2018 ) Metabolic properties of the osteoclast. Bone 115: 25 – 30
dc.identifier.citedreferenceAucher A, Rudnicka D, Davis DM ( 2013 ) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191: 6250 – 6260
dc.identifier.citedreferenceBae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguere V, van der Meulen M, Park-Min KH ( 2017 ) MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRalpha. J Clin Invest 127: 2555 – 2568
dc.identifier.citedreferencede Barrios O, Sanchez-Moral L, Cortes M, Ninfali C, Profitos-Peleja N, Martinez-Campanario MC, Siles L, Del Campo R, Fernandez-Acenero MJ, Darling DS et al ( 2019 ) ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 68: 2129 – 2141
dc.identifier.citedreferenceBartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H et al ( 2014 ) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H 2 O 2 accumulation. Nat Commun 5: 3773
dc.identifier.citedreferenceBellido T, Delgado-Calle J ( 2020 ) Ex vivo organ cultures as models to study bone biology. JBMR Plus 4: 10
dc.identifier.citedreferenceBellon E, Luyten FP, Tylzanowski P ( 2009 ) Delta-EF1 is a negative regulator of Ihh in the developing growth plate. J Cell Biol 187: 685 – 699
dc.identifier.citedreferenceBian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, Nwosu ZC, Zhang L, Czerwonka A, Pawlowska A et al ( 2020 ) Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585: 277 – 282
dc.identifier.citedreferenceBlangy A, Bompard G, Guerit D, Marie P, Maurin J, Morel A, Vives V ( 2020 ) The osteoclast cytoskeleton – current understanding and therapeutic perspectives for osteoporosis. J Cell Sci 133: jcs244798
dc.identifier.citedreferenceBoyle WJ, Simonet WS, Lacey DL ( 2003 ) Osteoclast differentiation and activation. Nature 423: 337 – 342
dc.identifier.citedreferenceBrabletz S, Lasierra Losada M, Schmalhofer O, Mitschke J, Krebs A, Brabletz T, Stemmler MP ( 2017 ) Generation and characterization of mice for conditional inactivation of Zeb1. Genesis 55: e23024
dc.identifier.citedreferenceCackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD ( 2010 ) Osteoclasts are important for bone angiogenesis. Blood 115: 140 – 149
dc.identifier.citedreferenceCallaway DA, Jiang JX ( 2015 ) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33: 359 – 370
dc.identifier.citedreferenceDempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM ( 2013 ) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28: 2 – 17
dc.identifier.citedreferenceDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR ( 2013 ) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15 – 21
dc.identifier.citedreferenceEverts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W ( 2002 ) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17: 77 – 90
dc.identifier.citedreferenceFeldker N, Ferrazzi F, Schuhwerk H, Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D, Bonisch U et al ( 2020 ) Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J 39: e103209
dc.identifier.citedreferenceFeng X, Novack DV, Faccio R, Ory DS, Aya K, Boyer MI, McHugh KP, Ross FP, Teitelbaum SL ( 2001 ) A Glanzmann’s mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Invest 107: 1137 – 1144
dc.identifier.citedreferenceFenouille N, Bassil CF, Ben-Sahra I, Benajiba L, Alexe G, Ramos A, Pikman Y, Conway AS, Burgess MR, Li Q et al ( 2017 ) The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nat Med 23: 301 – 313
dc.identifier.citedreferenceFerron M, Settembre C, Shimazu J, Lacombe J, Kato S, Rawlings DJ, Ballabio A, Karsenty G ( 2013 ) A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev 27: 955 – 969
dc.identifier.citedreferenceFrancou A, Anderson KV ( 2020 ) The epithelial-to-mesenchymal transition (EMT) in development and cancer. Annu Rev Cancer Biol 4: 197 – 220
dc.identifier.citedreferenceFu R, Lv WC, Xu Y, Gong MY, Chen XJ, Jiang N, Xu Y, Yao QQ, Di L, Lu T et al ( 2020 ) Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun 11: 460
dc.identifier.citedreferenceFurter R, Furter-Graves EM, Wallimann T ( 1993 ) Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32: 7022 – 7029
dc.identifier.citedreferenceGarnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM ( 2003 ) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 18: 859 – 867
dc.identifier.citedreferenceGinhoux F, Jung S ( 2014 ) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14: 392 – 404
dc.identifier.citedreferenceGoettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M et al ( 2013 ) NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 123: 4731 – 4738
dc.identifier.citedreferenceGuo Y, Lu X, Chen Y, Rendon B, Mitchell RA, Cuatrecasas M, Cortes M, Postigo A, Liu Y, Dean DC ( 2021 ) Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. Sci Adv 7: eabd7455
dc.identifier.citedreferenceHan X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J, Wang Y ( 2021 ) ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat 188: 329 – 342
dc.identifier.citedreferenceHan X, Long Y, Duan X, Liu Z, Hu X, Zhou J, Li N, Wang Y, Qin J ( 2022 ) ZEB1 induces ROS generation through directly promoting MCT4 transcription to facilitate breast cancer. Exp Cell Res 412: 113044
dc.identifier.citedreferenceHolmes T, Brown AW, Suggitt M, Shaw LA, Simpson L, Harrity JPA, Tozer GM, Kanthou C ( 2020 ) The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Sci Rep 10: 9926
dc.identifier.citedreferenceInada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM ( 2004 ) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101: 17192 – 17197
dc.identifier.citedreferenceIndo Y, Takeshita S, Ishii KA, Hoshii T, Aburatani H, Hirao A, Ikeda K ( 2013 ) Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res 28: 2392 – 2399
dc.identifier.citedreferenceIzawa T, Rohatgi N, Fukunaga T, Wang QT, Silva MJ, Gardner MJ, McDaniel ML, Abumrad NA, Semenkovich CF, Teitelbaum SL et al ( 2015 ) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11: 1625 – 1637
dc.identifier.citedreferenceJacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, Rauner M, Yadav VK, Crozet L, Bohm M et al ( 2019 ) Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568: 541 – 545
dc.identifier.citedreferenceJiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W et al ( 2022 ) Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis 13: 206
dc.identifier.citedreferenceJiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, Lempicki RA ( 2012 ) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28: 1805 – 1806
dc.identifier.citedreferenceKalyanaraman B, Hardy M, Podsiadly R, Cheng G, Zielonka J ( 2017 ) Recent developments in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys 617: 38 – 47
dc.identifier.citedreferenceKang IS, Kim C ( 2016 ) NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 6: 38014
dc.identifier.citedreferenceKazak L, Cohen P ( 2020 ) Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat Rev Endocrinol 16: 421 – 436
dc.identifier.citedreferenceKazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al ( 2015 ) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163: 643 – 655
dc.identifier.citedreferenceKazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D et al ( 2017 ) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26: 660 – 671
dc.identifier.citedreferenceKhoury BM, Bigelow EM, Smith LM, Schlecht SH, Scheller EL, Andarawis-Puri N, Jepsen KJ ( 2015 ) The use of nano-computed tomography to enhance musculoskeletal research. Connect Tissue Res 56: 106 – 119
dc.identifier.citedreferenceKim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM ( 2010 ) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca 2+ oscillations essential for osteoclastogenesis. J Biol Chem 285: 6913 – 6921
dc.identifier.citedreferenceKrebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P et al ( 2017 ) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19: 518 – 529
dc.identifier.citedreferenceKurmi K, Hitosugi S, Yu J, Boakye-Agyeman F, Wiese EK, Larson TR, Dai Q, Machida YJ, Lou Z, Wang L et al ( 2018 ) Tyrosine phosphorylation of mitochondrial creatine kinase 1 enhances a druggable tumor energy shuttle pathway. Cell Metab 28: 833 – 847
dc.identifier.citedreferenceKurotaki D, Yoshida H, Tamura T ( 2020 ) Epigenetic and transcriptional regulation of osteoclast differentiation. Bone 138: 115471
dc.identifier.citedreferenceLarsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M et al ( 2016 ) ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126: 3219 – 3235
dc.identifier.citedreferenceLee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY ( 2005 ) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106: 852 – 859
dc.identifier.citedreferenceLemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, Baldini N, Avnet S ( 2016 ) Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 79: 168 – 180
dc.identifier.citedreferenceLi B, Lee WC, Song C, Ye L, Abel ED, Long F ( 2020 ) Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J 34: 11058 – 11067
dc.identifier.citedreferenceLiao Y, Smyth GK, Shi W ( 2014 ) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923 – 930
dc.identifier.citedreferenceLing W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, Manolagas SC, Almeida M, Kim HN ( 2021 ) Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight 6: e146728
dc.identifier.citedreferenceLittle AC, Kovalenko I, Goo LE, Hong HS, Kerk SA, Yates JA, Purohit V, Lombard DB, Merajver SD, Lyssiotis CA ( 2020 ) High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol 3: 271
dc.identifier.citedreferenceLiu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC ( 2008 ) Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 135: 579 – 588
dc.identifier.citedreferenceLove MI, Huber W, Anders S ( 2014 ) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550
dc.identifier.citedreferenceMacosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al ( 2015 ) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161: 1202 – 1214
dc.identifier.citedreferenceMasin M, Vazquez J, Rossi S, Groeneveld S, Samson N, Schwalie PC, Deplancke B, Frawley LE, Gouttenoire J, Moradpour D et al ( 2014 ) GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer Metab 2: 11
dc.identifier.citedreferenceMathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R, Grone HJ, Feuerborn A ( 2015 ) Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 16: 321 – 331
dc.identifier.citedreferenceMorel AP, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, Devouassoux-Shisheboran M, Combaret V, Finetti P, Chassot C et al ( 2017 ) A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 23: 568 – 578
dc.identifier.citedreferenceMurata K, Fang C, Terao C, Giannopoulou EG, Lee YJ, Lee MJ, Mun SH, Bae S, Qiao Y, Yuan R et al ( 2017 ) Hypoxia-sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis. Immunity 47: 66 – 79
dc.identifier.citedreferenceMurphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y et al ( 2022 ) Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4: 651 – 662
dc.identifier.citedreferenceNagai Y, Osawa K, Fukushima H, Tamura Y, Aoki K, Ohya K, Yasuda H, Hikiji H, Takahashi M, Seta Y et al ( 2013 ) p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption. J Bone Miner Res 28: 2449 – 2462
dc.identifier.citedreferenceNakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al ( 2011 ) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12: 222 – 230
dc.identifier.citedreferenceNakano S, Inoue K, Xu C, Deng Z, Syrovatkina V, Vitone G, Zhao L, Huang XY, Zhao B ( 2019 ) G-protein Galpha13 functions as a cytoskeletal and mitochondrial regulator to restrain osteoclast function. Sci Rep 9: 4236
dc.identifier.citedreferenceNieto MA, Huang RY, Jackson RA, Thiery JP ( 2016 ) Emt: 2016. Cell 166: 21 – 45
dc.identifier.citedreferenceNishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H et al ( 2015 ) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21: 281 – 287
dc.identifier.citedreferencePostigo AA, Dean DC ( 1999 ) Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 19: 7961 – 7971
dc.identifier.citedreferencePostigo AA, Dean DC ( 2000 ) Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors. Proc Natl Acad Sci U S A 97: 6391 – 6396
dc.identifier.citedreferenceRahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, Jedrychowski MP, Vergnes L, Reue K, Spiegelman BM et al ( 2021 ) Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590: 480 – 485
dc.identifier.citedreferenceRaynaud-Messina B, Bracq L, Dupont M, Souriant S, Usmani SM, Proag A, Pingris K, Soldan V, Thibault C, Capilla F et al ( 2018 ) Bone degradation machinery of osteoclasts: an HIV-1 target that contributes to bone loss. Proc Natl Acad Sci U S A 115: E2556 – E2565
dc.identifier.citedreferenceRosmaninho P, Mukusch S, Piscopo V, Teixeira V, Raposo AA, Warta R, Bennewitz R, Tang Y, Herold-Mende C, Stifani S et al ( 2018 ) Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO J 37: e97115
dc.identifier.citedreferenceRuh M, Stemmler MP, Frisch I, Fuchs K, van Roey R, Kleemann J, Roas M, Schuhwerk H, Eccles RL, Agaimy A et al ( 2021 ) The EMT transcription factor ZEB1 blocks osteoblastic differentiation in bone development and osteosarcoma. J Pathol 254: 199 – 211
dc.identifier.citedreferenceSanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC et al ( 2001 ) Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152: 181 – 195
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.