Show simple item record

Sweet and simple as syrup: A review and guidance for use of novel antihyperglycemic agents for post-transplant diabetes mellitus and type 2 diabetes mellitus after kidney transplantation

dc.contributor.authorLawrence, S. Elise
dc.contributor.authorChandran, Mary Moss
dc.contributor.authorPark, Jeong M.
dc.contributor.authorSweiss, Helen
dc.contributor.authorJensen, Thomas
dc.contributor.authorChoksi, Palak
dc.contributor.authorCrowther, Barrett
dc.date.accessioned2023-04-04T17:40:40Z
dc.date.available2024-04-04 13:40:39en
dc.date.available2023-04-04T17:40:40Z
dc.date.issued2023-03
dc.identifier.citationLawrence, S. Elise; Chandran, Mary Moss; Park, Jeong M.; Sweiss, Helen; Jensen, Thomas; Choksi, Palak; Crowther, Barrett (2023). "Sweet and simple as syrup: A review and guidance for use of novel antihyperglycemic agents for post-transplant diabetes mellitus and type 2 diabetes mellitus after kidney transplantation." Clinical Transplantation 37(3): n/a-n/a.
dc.identifier.issn0902-0063
dc.identifier.issn1399-0012
dc.identifier.urihttps://hdl.handle.net/2027.42/176047
dc.description.abstractUncontrolled type 2 diabetes mellitus (T2DM) and post-transplant diabetes mellitus (PTDM) increase morbidity and mortality after kidney transplantation. Conventional strategies for diabetes management in this population include metformin, sulfonylureas, meglitinides and insulin. Limitations with these agents, as well as promising new antihyperglycemic agents, create a need and opportunity to explore additional options for transplant diabetes pharmacotherapy. Novel agents including sodium glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP1RA), and dipeptidyl peptidase IV inhibitors (DPP4i) demonstrate great promise for T2DM management in the non-transplant population. Moreover, many of these agents possess renoprotective, cardiovascular, and/or weight loss benefits in addition to improved glucose control while having reduced risk of hypoglycemia compared with certain other conventional agents. This comprehensive review examines available literature evaluating the use of novel antihyperglycemic agents in kidney transplant recipients (KTR) with T2DM or PTDM. Formal grading of recommendations assessment, development, and evaluation (GRADE) system recommendations are provided to guide incorporation of these agents into post-transplant care. Available literature was evaluated to address the clinical questions of which agents provide greatest short- and long-term benefits, timing of novel antihyperglycemic therapy initiation after transplant, monitoring parameters for these antihyperglycemic agents, and concomitant antihyperglycemic agent and immunosuppression regimen management. Current experience with novel antihyperglycemic agents is primarily limited to single-center retrospective studies and case series. With ongoing use and increasing comfort, further and more robust research promises greater understanding of the role of these agents and place in therapy for kidney transplant recipients.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSGLT2 inhibitor
dc.subject.otherkidney transplantation
dc.subject.otherGLP1 receptor agonist
dc.subject.otherDPP4 inhibitor
dc.subject.otherdiabetes mellitus
dc.titleSweet and simple as syrup: A review and guidance for use of novel antihyperglycemic agents for post-transplant diabetes mellitus and type 2 diabetes mellitus after kidney transplantation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176047/1/ctr14922.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176047/2/ctr14922_am.pdf
dc.identifier.doi10.1111/ctr.14922
dc.identifier.sourceClinical Transplantation
dc.identifier.citedreferenceAttallah N, Yassine L. Use of empagliflozin in recipients of kidney transplant: a report of 8 cases. Transplant Proc. 2019; 51 ( 10 ): 3275 - 3280. doi: 10.1016/j.transproceed.2019.05.023
dc.identifier.citedreferenceLim JH, Kwon S, Jeon Y, et al. The efficacy and safety of SGLT2 inhibitor in diabetic kidney transplant recipients. Transplantation. 2022; 106 ( 9 ): e404 - e412. doi: 10.1097/TP.0000000000004228
dc.identifier.citedreferenceLemke A, Brokmeier HM, Leung SB, et al. Sodium-glucose cotransporter 2 inhibitors for treatment of diabetes mellitus after kidney transplantation. Clin Transplant. 2022; 36 ( 8 ): e14718. doi: 10.1111/ctr.14718
dc.identifier.citedreferenceRajasekeran H, Kim SJ, Cardella CJ, et al. Use of canagliflozin in kidney transplant recipients for the treatment of type 2 diabetes: a case series. Diabetes Care. 2017; 40 ( 7 ): e75 - e76. doi: 10.2337/dc17-0237
dc.identifier.citedreferenceHisadome Y, Mei T, Noguchi H, et al. Safety and efficacy of sodium-glucose cotransporter 2 inhibitors in kidney transplant recipients with pretransplant type 2 diabetes mellitus: a retrospective, single-center, inverse probability of treatment weighting analysis of 85 transplant patients. Transplant Direct. 2021; 7 ( 11 ): e772. doi: 10.1097/TXD.0000000000001228
dc.identifier.citedreferenceStorme O, Tirán Saucedo J, Garcia-Mora A, Dehesa-Dávila M, Naber KG. Risk factors and predisposing conditions for urinary tract infection. Ther Adv Urol. 2019; 11: 1756287218814382. doi: 10.1177/1756287218814382
dc.identifier.citedreferenceSarafidis PA, Ortiz A. The risk for urinary tract infections with sodium-glucose cotransporter 2 inhibitors: no longer a cause of concern? Clin Kidney J. 2019; 13 ( 1 ): 24 - 26. doi: 10.1093/ckj/sfz170
dc.identifier.citedreferenceScirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013; 369 ( 14 ): 1317 - 1326. doi: 10.1056/NEJMoa1307684
dc.identifier.citedreferenceDeVries JH, Rosenstock J. DPP-4 inhibitor-related pancreatitis: rare but real!. Diab Care. 2017; 40 ( 2 ): 161 - 163. doi: 10.2337/dci16-0035
dc.identifier.citedreferenceZannad F, Cannon CP, Cushman WC, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015; 385 ( 9982 ): 2067 - 2076. doi: 10.1016/S0140-6736(14)62225-X
dc.identifier.citedreferenceMannucci E, Nreu B, Montereggi C, et al. Cardiovascular events and all-cause mortality in patients with type 2 diabetes treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021; 31 ( 10 ): 2745 - 2755. doi: 10.1016/j.numecd.2021.06.002
dc.identifier.citedreferenceAttallah N, Yassine L. Linagliptin in the management of type 2 diabetes mellitus after kidney transplant. Transplant Proc. 2021; 53 ( 7 ): 2234 - 2237. doi: 10.1016/j.transproceed.2021.07.035
dc.identifier.citedreferenceSanyal D, Gupta S, Das P. A retrospective study evaluating efficacy and safety of linagliptin in treatment of NODAT (in renal transplant recipients) in a real world setting. Endocrinol Metab. 2013; 17 ( 1 ): S203 - 205. doi: 10.4103/2230-8210.119572
dc.identifier.citedreferenceStrøm Halden TA, Åsberg A, Vik K, Hartmann A, Jenssen T. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant. 2014; 29 ( 4 ): 926 - 933. doi: 10.1093/ndt/gft536
dc.identifier.citedreferenceBoerner BP, Miles CD, Shivaswamy V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation. Int J Endocrinol. 2014; 2014: 617638. doi: 10.1155/2014/617638
dc.identifier.citedreferenceSanyal D, Biswas M, Chaudhari N. Long-term efficacy and safety of anti-hyperglycaemic agents in new-onset diabetes after transplant: results from outpatient-based 1-year follow-up and a brief review of treatment options. Diabetes Metab Syndr. 2021; 15 ( 1 ): 13 - 19. doi: 10.1016/j.dsx.2020.11.019
dc.identifier.citedreferenceSoliman AR, Fathy A, Khashab S, Shaheen N, Soliman MA. Sitagliptin might be a favorable antiobesity drug for new onset diabetes after a renal transplant. Exp Clin Transplant. 2013; 11 ( 6 ): 494 - 498. doi: 10.6002/ect.2013.0018
dc.identifier.citedreferenceGuardado-Mendoza R, Cázares-Sánchez D, Evia-Viscarra ML, Jiménez-Ceja LM, Durán-Pérez EG, Aguilar-García A. Linagliptin plus insulin for hyperglycemia immediately after renal transplantation: a comparative study. Diabetes Res Clin Pract. 2019; 156: 107864. doi: 10.1016/j.diabres.2019.107864
dc.identifier.citedreferenceThiruvengadam S, Hutchison B, Lim W, et al. Intensive monitoring for post-transplant diabetes mellitus and treatment with dipeptidyl peptidase-4 inhibitor therapy. Diabetes Metab Syndr. 2019; 13 ( 3 ): 1857 - 1863. doi: 10.1016/j.dsx.2019.04.020
dc.identifier.citedreferenceMpratsiakou A, Papasotiriou M, Ntrinias T, Tsiotsios K, Papachristou E, Goumenos DS. Safety and efficacy of long-term administration of dipeptidyl peptidase IV inhibitors in patients with new onset diabetes after kidney transplant. Exp Clin Transplant. 2021; 19 ( 5 ): 411 - 419. doi: 10.6002/ect.2020.0519
dc.identifier.citedreferenceBae J, Kim Y, Cho Y, et al. Efficacy and safety of gemigliptin in post-transplant patients with type 2 diabetes mellitus. Transplant Proc. 2019; 51 ( 10 ): 3444 - 3448. doi: 10.1016/j.transproceed.2019.07.015
dc.identifier.citedreferenceBae J, Lee MJ, Choe EY, et al. Effects of dipeptidyl peptidase-4 inhibitors on hyperglycemia and blood cyclosporine levels in renal transplant patients with diabetes: a pilot study. Endocrinol Metab (Seoul). 2016; 31 ( 1 ): 161 - 167. doi: 10.3803/EnM.2016.31.1.161
dc.identifier.citedreferenceHaidinger M, Antlanger M, Kopecky C, Kovarik JJ, Säemann MD, Werzowa J. Post-transplantation diabetes mellitus: evaluation of treatment strategies. Clin Transplant. 2015; 29 ( 5 ): 415 - 424. doi: 10.1111/ctr.12541
dc.identifier.citedreferenceHaidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation–a randomized, double-blind, placebo-controlled trial. Am J Transplant. 2014; 14 ( 1 ): 115 - 123. doi: 10.1111/ajt.12518
dc.identifier.citedreferenceWerzowa J, Hecking M, Haidinger M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation. 2013; 95 ( 3 ): 456 - 462. doi: 10.1097/TP.0b013e318276a20e
dc.identifier.citedreferenceLane JT, Odegaard DE, Haire CE, Collier DS, Wrenshall LE, Stevens RB. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation. 2011; 92 ( 10 ): e56 - 57. doi: 10.1097/TP.0b013e3182347ea4
dc.identifier.citedreferenceOutkast. “SpottieOttieDopaliscious.” Aquemini, LaFace Records, 1998.
dc.identifier.citedreferenceStarzl TE, Experience in renal transplantation. WB Saunders Company. 1964. Accessed November 3, 2022. https://d-scholarship.pitt.edu/3471/
dc.identifier.citedreferenceSharif A, Hecking M, de Vries APJ, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant. 2014; 14 ( 9 ): 1992 - 2000. doi: 10.1111/ajt.12850
dc.identifier.citedreferenceRamirez SC, Maaske J, Kim Y, et al. The association between glycemic control and clinical outcomes after kidney transplantation. Endocr Pract. 2014; 20 ( 9 ): 894 - 900. doi: 10.4158/EP13463.OR
dc.identifier.citedreferenceAmerican Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care. 2021; 45 (Supplement_ 1 ): S17 - S38. doi: 10.2337/dc22-S002
dc.identifier.citedreferencePark JY, Kim MH, Bae EJ, et al. Comorbidities can predict mortality of kidney transplant recipients: comparison with the Charlson comorbidity index. Transplant Proc. 2018; 50 ( 4 ): 1068 - 1073. doi: 10.1016/j.transproceed.2018.01.044
dc.identifier.citedreferenceMizrahi N, Braun M, Ben Gal T, Rosengarten D, Kramer MR, Grossman A. Post-transplant diabetes mellitus: incidence, predicting factors and outcomes. Endocrine. 2020; 69 ( 2 ): 303 - 309. doi: 10.1007/s12020-020-02339-9
dc.identifier.citedreferenceLentine KL, Smith JM, Hart A, et al. OPTN/SRTR 2020 annual data report: kidney. Am J Transplant. 2022; 22 ( 2 ): 21 - 136. doi: 10.1111/ajt.16982
dc.identifier.citedreferenceRodríguez-Rodríguez AE, Porrini E, Hornum M, et al. Post-transplant diabetes mellitus and prediabetes in renal transplant recipients: an update. NEF. 2021; 145 ( 4 ): 317 - 329. doi: 10.1159/000514288
dc.identifier.citedreferenceKasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003; 3 ( 2 ): 178 - 185. doi: 10.1034/j.1600-6143.2003.00010.x
dc.identifier.citedreferenceRevanur VK, Jardine AG, Kingsmore DB, Jaques BC, Hamilton DH, Jindal RM. Influence of diabetes mellitus on patient and graft survival in recipients of kidney transplantation. Clin Transplant. 2001; 15 ( 2 ): 89 - 94. doi: 10.1034/j.1399-0012.2001.150202.x
dc.identifier.citedreferenceKuo HT, Sampaio MS, Vincenti F, Bunnapradist S. Associations of pretransplant diabetes mellitus, new-onset diabetes after transplant, and acute rejection with transplant outcomes: an analysis of the Organ Procurement and Transplant Network/United Network for Organ Sharing (OPTN/UNOS) database. Am J Kidney Dis. 2010; 56 ( 6 ): 1127 - 1139. doi: 10.1053/j.ajkd.2010.06.027
dc.identifier.citedreferenceCosio FG, Pesavento TE, Osei K, Henry ML, Ferguson RM. Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int. 2001; 59 ( 2 ): 732 - 737. doi: 10.1046/j.1523-1755.2001.059002732.x
dc.identifier.citedreferenceCole EH, Johnston O, Rose CL, Gill JS. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival. Clin J Am Soc Nephrol. 2008; 3 ( 3 ): 814 - 821. doi: 10.2215/CJN.04681107
dc.identifier.citedreferenceLin H, Yan J, Yuan L, et al. Impact of diabetes mellitus developing after kidney transplantation on patient mortality and graft survival: a meta-analysis of adjusted data. Diabetol Metab Syndr. 2021; 13 ( 1 ): 126. doi: 10.1186/s13098-021-00742-4
dc.identifier.citedreferenceWong G, Howard K, Chapman JR, et al. Comparative survival and economic benefits of deceased donor kidney transplantation and dialysis in people with varying ages and co-morbidities. PLoS ONE. 2012; 7 ( 1 ): e29591. doi: 10.1371/journal.pone.0029591
dc.identifier.citedreferenceCosio FG, Hickson LJ, Griffin MD, Stegall MD, Kudva Y. Patient survival and cardiovascular risk after kidney transplantation: the challenge of diabetes. Am J Transplant. 2008; 8 ( 3 ): 593 - 599. doi: 10.1111/j.1600-6143.2007.02101.x
dc.identifier.citedreferenceAmerican Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, et al, American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diab Care. 2022; 45 ( 1 ): S125 - S143. doi: 10.2337/dc22-S009
dc.identifier.citedreferenceBaigent C, JonathanR Emberson, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022; 400 ( 10365 ): 1788 - 1801. doi: 10.1016/S0140-6736(22)02074-8
dc.identifier.citedreferenceHecking M, Haidinger M, Döller D, et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J Am Soc Nephrol. 2012; 23 ( 4 ): 739 - 749. doi: 10.1681/ASN.2011080835
dc.identifier.citedreferenceShivaswamy V, Bennett RG, Clure CC, Larsen JL, Hamel FG. Metformin improves immunosuppressant induced hyperglycemia and exocrine apoptosis in rats. Transplantation. 2013; 95 ( 2 ): 280 - 284. doi: 10.1097/TP.0b013e318275a322
dc.identifier.citedreferenceWeiss R, Fernandez E, Liu Y, Strong R, Salmon AB. Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging (Albany NY). 2018; 10 ( 3 ): 386 - 401. 10.18632/aging.101401
dc.identifier.citedreferenceTürk T, Pietruck F, Dolff S, et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am J Transplant. 2006; 6 ( 4 ): 842 - 846. doi: 10.1111/j.1600-6143.2006.01250.x
dc.identifier.citedreferenceVoytovich MH, Haukereid C, Hjelmesaeth J, Hartmann A, Løvik A, Jenssen T. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin Transplant. 2007; 21 ( 2 ): 246 - 251. doi: 10.1111/j.1399-0012.2006.00634.x
dc.identifier.citedreferenceKidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020; 98 ( 4S ): S1 - S115. doi: 10.1016/j.kint.2020.06.019
dc.identifier.citedreferencede Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease Improving Global Outcomes (KDIGO). Kidney Int. 2022; 102 ( 5 ): 974 - 989. doi: 10.1016/j.kint.2022.08.012
dc.identifier.citedreferenceMarathe PH, Gao HX, Close KL, American diabetes association standards of medical care in diabetes 2017. J Diab. 2017; 9 ( 4 ): 320 - 324. doi: 10.1111/1753-0407.12524
dc.identifier.citedreferenceGuyatt GH, Oxman AD, Kunz R, et al. Going from evidence to recommendations. BMJ. 2008; 336 ( 7652 ): 1049 - 1051. doi: 10.1136/bmj.39493.646875.AE
dc.identifier.citedreferenceGuyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336 ( 7650 ): 924 - 926. doi: 10.1136/bmj.39489.470347.AD
dc.identifier.citedreferenceJaeschke R, Guyatt GH, Dellinger P, et al. Use of GRADE grid to reach decisions on clinical practice guidelines when consensus is elusive. BMJ. 2008; 337: a744. doi: 10.1136/bmj.a744
dc.identifier.citedreferenceGh G, Ad O, R K, et al. Incorporating considerations of resources use into grading recommendations. BMJ. 2008; 336 ( 7654 ): 1170 - 1173. doi: 10.1136/bmj.39504.506319.80
dc.identifier.citedreferenceSchünemann HJ, Schünemann AHJ, Oxman AD, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008; 336 ( 7653 ): 1106 - 1110. doi: 10.1136/bmj.39500.677199.AE
dc.identifier.citedreferenceKish MA. Guide to development of practice guidelines. Clin Infect Dis. 2001; 32 ( 6 ): 851 - 854. doi: 10.1086/319366
dc.identifier.citedreferenceDulaglutide. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceSemaglutide. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceExenatide. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceLiraglutide. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceLixisenatide. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceDapagliflozin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceEmpagliflozin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceCanagliflozin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceErtugliflozin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceSitagliptin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceSaxagliptin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceLinagliptin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceAlogliptin. Micromedex (electronic version). IBM Watson Health; 2022. Accessed October 19, 2022. https://www.micromedexsolutions.com
dc.identifier.citedreferenceMadsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res. 2022; cvac112. doi: 10.1093/cvr/cvac112. Epub ahead of print. PMID: 35925683.
dc.identifier.citedreferenceDas SR, Everett BM, Birtcher KK, et al. 2020 expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020; 76 ( 9 ): 1117 - 1145. doi: 10.1016/j.jacc.2020.05.037
dc.identifier.citedreferenceBuse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020; 63 ( 2 ): 221 - 228. doi: 10.1007/s00125-019-05039-w
dc.identifier.citedreferenceCosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41 ( 2 ): 255 - 323. doi: 10.1093/eurheartj/ehz486
dc.identifier.citedreferenceSingh P, Pesavento TE, Washburn K, Walsh D, Meng S. Largest single-centre experience of dulaglutide for management of diabetes mellitus in solid organ transplant recipients. Diab Obes Metab. 2019; 21 ( 4 ): 1061 - 1065. doi: 10.1111/dom.13619
dc.identifier.citedreferenceSingh P, Taufeeq M, Pesavento TE, Washburn K, Walsh D, Meng S. Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: a retrospective study. Diab Obes Metab. 2020; 22 ( 5 ): 879 - 884. doi: 10.1111/dom.13964
dc.identifier.citedreferenceSweiss H, Hall R, Zeilmann D, et al. Single-center evaluation of safety & efficacy of glucagon-like peptide-1 receptor agonists in solid organ transplantation. Prog Transplant. 2022; 29: 15269248221122868. doi: 10.1177/15269248221122867. Published online August.
dc.identifier.citedreferenceVigara LA, Villanego F, Orellana C, et al. Effectiveness and safety of glucagon-like peptide-1 receptor agonist in a cohort of kidney transplant recipients. Clin Transplant. 2022; 36 ( 5 ): e14633. doi: 10.1111/ctr.14633
dc.identifier.citedreferenceKim HS, Lee J, Jung CH, Park JY, Lee WJ. Dulaglutide as an effective replacement for prandial insulin in kidney transplant recipients with type 2 diabetes mellitus: a retrospective review. Diab Metab J. 2021; 45 ( 6 ): 948 - 953. doi: 10.4093/dmj.2020.0180
dc.identifier.citedreferenceKukla A, Hill J, Merzkani M, et al. The use of GLP1R agonists for the treatment of type 2 diabetes in kidney transplant recipients. Transplant Direct. 2020; 6 ( 2 ): e524. doi: 10.1097/TXD.0000000000000971
dc.identifier.citedreferenceThangavelu T, Lyden E, Shivaswamy V. A retrospective study of glucagon-like peptide 1 receptor agonists for the management of diabetes after transplantation. Diab Ther. 2020; 11 ( 4 ): 987 - 994. doi: 10.1007/s13300-020-00786-1
dc.identifier.citedreferenceLiou JH, Liu YM, Chen CH. Management of diabetes mellitus with glucagonlike peptide-1 agonist liraglutide in renal transplant recipients: a retrospective study. Transplant Proc. 2018; 50 ( 8 ): 2502 - 2505. doi: 10.1016/j.transproceed.2018.03.087
dc.identifier.citedreferenceYugueros González A, Kanter J, Sancho A, et al. Institutional experience with new antidiabetic drugs in kidney transplant. Transplant Proc. 2021; 53 ( 9 ): 2678 - 2680. doi: 10.1016/j.transproceed.2021.08.042
dc.identifier.citedreferencePinelli NR, Patel A, Salinitri FD. Coadministration of liraglutide with tacrolimus in kidney transplant recipients: a case series. Diab Care. 2013; 36 ( 10 ): e171 - 172. doi: 10.2337/dc13-1066
dc.identifier.citedreferenceCherney DZ, Kanbay M, Lovshin JA. Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant. 2020; 35 ( 1 ): i3 - i12. doi: 10.1093/ndt/gfz230
dc.identifier.citedreferenceVasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013; 159 ( 4 ): 262 - 274. doi: 10.7326/0003-4819-159-4-201308200-00007
dc.identifier.citedreferenceZinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373 ( 22 ): 2117 - 2128. doi: 10.1056/NEJMoa1504720
dc.identifier.citedreferenceFitchett D, Butler J, van de Borne P, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J. 2018; 39 ( 5 ): 363 - 370. doi: 10.1093/eurheartj/ehx511
dc.identifier.citedreferencePerkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380 ( 24 ): 2295 - 2306. doi: 10.1056/NEJMoa1811744
dc.identifier.citedreferenceMcMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381 ( 21 ): 1995 - 2008. doi: 10.1056/NEJMoa1911303
dc.identifier.citedreferenceHeerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383 ( 15 ): 1436 - 1446. doi: 10.1056/NEJMoa2024816
dc.identifier.citedreferencePacker M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383 ( 15 ): 1413 - 1424. doi: 10.1056/NEJMoa2022190
dc.identifier.citedreferenceEmpagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine. 2022;0(0):null. doi: 10.1056/NEJMoa2204233
dc.identifier.citedreferenceZhang J, Huan Y, Leibensperger M, Seo B, Song Y. Comparative effects of sodium-glucose cotransporter 2 inhibitors on serum electrolyte levels in patients with type 2 diabetes: a pairwise and network meta-analysis of randomized controlled trials. Kidney360. 2022; 3 ( 3 ): 477 - 487. 10.34067/KID.0006672021
dc.identifier.citedreferencePanthofer AM, Lyu B, Astor BC, et al. Post-kidney transplant serum magnesium exhibits a U-shaped association with subsequent mortality: an observational cohort study. Transpl Int. 2021; 34 ( 10 ): 1853 - 1861. doi: 10.1111/tri.13932
dc.identifier.citedreferenceShah M, Virani Z, Rajput P, Shah B. Efficacy and safety of canagliflozin in kidney transplant patients. Indian J Nephrol. 2019; 29 ( 4 ): 278 - 281. doi: 10.4103/ijn.IJN_2_18
dc.identifier.citedreferenceHalden TAS, Kvitne KE, Midtvedt K, et al. Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diab Care. 2019; 42 ( 6 ): 1067 - 1074. doi: 10.2337/dc19-0093
dc.identifier.citedreferenceSchwaiger E, Burghart L, Signorini L, et al. Empagliflozin in posttransplantation diabetes mellitus: a prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am J Transplant. 2019; 19 ( 3 ): 907 - 919. doi: 10.1111/ajt.15223
dc.identifier.citedreferenceMahling M, Schork A, Nadalin S, Fritsche A, Heyne N, Guthoff M. Sodium-Glucose Cotransporter 2 (SGLT2) nmus. Kidney Blood Press Res. 2019; 44 ( 5 ): 984 - 992. doi: 10.1159/000501854
dc.identifier.citedreferenceSong CC, Brown A, Winstead R, et al. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol Diabetes Metab. 2021; 4 ( 2 ): e00185. doi: 10.1002/edm2.185
dc.identifier.citedreferenceAlKindi F, Al-Omary HL, Hussain Q, Al Hakim M, Chaaban A, Boobes Y. Outcomes of SGLT2 inhibitors use in diabetic renal transplant patients. Transplant Proc. 2020; 52 ( 1 ): 175 - 178. doi: 10.1016/j.transproceed.2019.11.007
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.