Show simple item record

Twelve Months of Denosumab and/or Alendronate Is Associated With Improved Bone Fatigue Life, Microarchitecture, and Density in Ovariectomized Cynomolgus Monkeys

dc.contributor.authorHaider, Ifaz T.
dc.contributor.authorLoundagin, Lindsay L.
dc.contributor.authorSawatsky, Andrew
dc.contributor.authorKostenuik, Paul J.
dc.contributor.authorBoyd, Steven K.
dc.contributor.authorEdwards, W. Brent
dc.date.accessioned2023-04-04T17:40:44Z
dc.date.available2024-04-04 13:40:43en
dc.date.available2023-04-04T17:40:44Z
dc.date.issued2023-03
dc.identifier.citationHaider, Ifaz T.; Loundagin, Lindsay L.; Sawatsky, Andrew; Kostenuik, Paul J.; Boyd, Steven K.; Edwards, W. Brent (2023). "Twelve Months of Denosumab and/or Alendronate Is Associated With Improved Bone Fatigue Life, Microarchitecture, and Density in Ovariectomized Cynomolgus Monkeys." Journal of Bone and Mineral Research 38(3): 403-413.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/176049
dc.description.abstractProlonged use of antiresorptives such as the bisphosphonate alendronate (ALN) and the RANKL inhibitor denosumab (DMAb) are associated with rare cases of atypical femoral fracture (AFF). The etiology of AFF is unclear, but it has been hypothesized that potent osteoclast inhibitors may reduce bone fatigue resistance. The purpose of this study was to quantify the relationship between antiresorptive treatment and fatigue life (cycles to failure) in bone from ovariectomized cynomolgus monkeys. We analyzed humeral bone from 30 animals across five treatment groups. Animals were treated for 12 months with subcutaneous (sc) vehicle (VEH), sc DMAb (25 mg/kg/month), or intravenous (iv) ALN (50 μg/kg/month). Another group received 6 months VEH followed by 6 months DMAb (VEH-DMAb), and the final group received 6 months ALN followed by 6 months DMAb (ALN-DMAb). A total of 240 cortical beam samples were cyclically tested in four-point bending at 80, 100, 120, or 140 MPa peak stress. High-resolution imaging and density measurements were performed to evaluate bone microstructure and composition. Samples from the ALN (p = 0.014), ALN-DMAb (p = 0.008), and DMAb (p < 0.001) groups illustrated higher fatigue-life measurements than VEH. For example, at 140 MPa the VEH group demonstrated a median ± interquartile range (IQR) fatigue life of 1987 ± 10593 cycles, while animals in the ALN, ALN-DMAb, and DMAb groups survived 9850 ± 13648 (+395% versus VEH), 10493 ± 16796 (+428%), and 14495 ± 49299 (+629%) cycles, respectively. All antiresorptive treatment groups demonstrated lower porosity, smaller pore size, greater pore spacing, and lower number of canals versus VEH (p < 0.001). Antiresorptive treatment was also associated with greater apparent density, dry density, and ash density (p ≤ 0.03). We did not detect detrimental changes following antiresorptive treatments that would explain their association with AFF. In contrast, 12 months of treatment may have a protective effect against fatigue fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherOSTEOPOROSIS
dc.subject.otherATYPICAL FEMORAL FRACTURE
dc.subject.otherINSUFFICIENCY FRACTURE
dc.subject.otherANTIRESORPTIVE
dc.subject.otherμCT
dc.titleTwelve Months of Denosumab and/or Alendronate Is Associated With Improved Bone Fatigue Life, Microarchitecture, and Density in Ovariectomized Cynomolgus Monkeys
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176049/1/jbmr4758.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176049/2/jbmr4758_am.pdf
dc.identifier.doi10.1002/jbmr.4758
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceBayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004; 37 ( 1 ): 27 - 35.
dc.identifier.citedreferenceLoundagin LL, Pohl AJ, Edwards WB. Stressed volume estimated by finite element analysis predicts the fatigue life of human cortical bone: the role of vascular canals as stress concentrators. Bone. 2021; 143: 115647. https://doi.org/10.1016/j.bone.2020.115647.
dc.identifier.citedreferenceBajaj D, Geissler JR, Allen MR, Burr DB, Fritton JC. Response to Courtney et al. Bone. 2016; 89: 77 - 79. https://doi.org/10.1016/j.bone.2015.03.007.
dc.identifier.citedreferenceCourtney A, Corrigan CF, Steffey D. Letter to the Editor regarding Bajaj D, et al., The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate, Bone 2014;64:57-64. Bone. 2014; 89: 80 - 91. https://doi.org/10.1016/j.bone.2015.03.008.
dc.identifier.citedreferenceRoschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001; 29 ( 2 ): 185 - 191.
dc.identifier.citedreferenceLespessailles E, Hambli R, Ferrari S. Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses. Bonekey Rep. 2016; 5 ( 6 ): 1 - 8. https://doi.org/10.1038/bonekey.2016.59.
dc.identifier.citedreferenceLoundagin LL, Haider IT, Cooper DML, Edwards WB. Association between intracortical microarchitecture and the compressive fatigue life of human bone: a pilot study. Bone Rep. 2020; 12 ( 2 ): 100254. https://doi.org/10.1016/j.bonr.2020.100254.
dc.identifier.citedreferenceWachter NJ, Krischak GD, Mentzel M, et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone. 2002; 31 ( 1 ): 90 - 95. https://doi.org/10.1016/S8756-3282(02)00779-2.
dc.identifier.citedreferenceCarter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. 1981; 52 ( 5 ): 481 - 490.
dc.identifier.citedreferenceZioupos P, Currey JD, Casinos A. Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J Theor Biol. 2001; 210 ( 3 ): 389 - 399.
dc.identifier.citedreferenceBrennan M, O’Shea PM, O’Keeffe ST, Mulkerrin EC. Spontaneous insufficiency fractures. J Nutr Heal Aging. 2019; 23 ( 8 ): 758 - 760.
dc.identifier.citedreferenceSoubrier M, Dubost JJ, Boisgard S, et al. Insufficiency fracture. A survey of 60 cases and review of the literature. Joint Bone Spine. 2003; 70 ( 3 ): 209 - 218.
dc.identifier.citedreferenceNevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc. 1993; 41 ( 11 ): 1226 - 1234. https://doi.org/10.1111/j.1532-5415.1993.tb07307.x.
dc.identifier.citedreferenceAnderson DE, Burkhart K, Alemi MM, Bouxsein ML. Biomechanics of Hip and Vertebral Fractures [Internet]. London, UK: Marcus Feldman’s Osteoporos. INC; 2020. https://doi.org/10.1016/B978-0-12-813073-5.00016-2.
dc.identifier.citedreferenceHernandez CJ, van der Meulen MCH. Understanding bone strength is not enough. J Bone Miner Res. 2017; 32 ( 6 ): 1157 - 1162.
dc.identifier.citedreferenceBurr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM. Intermittently administered human parathyroid hormone(1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001; 16 ( 1 ): 157 - 165.
dc.identifier.citedreferenceRecker RR, Delmas PD, Halse J, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res. 2008; 23 ( 1 ): 6 - 16.
dc.identifier.citedreferenceSchilcher J, Koeppen V, Aspenberg P, Michaëlsson K. Risk of atypical femoral fracture during and after bisphosphonate use. Acta Orthop. 2015; 86 ( 1 ): 100 - 107.
dc.identifier.citedreferenceMahjoub Z, Jean S, Leclerc JT, et al. Incidence and characteristics of atypical femoral fractures: clinical and geometrical data. J Bone Miner Res. 2016; 31 ( 4 ): 767 - 776.
dc.identifier.citedreferenceOh Y, Wakabayashi Y, Kurosa Y, Fujita K, Okawa A. Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: mechanical analysis by the CT-based finite element method. Injury. 2014; 45 ( 11 ): 1764 - 1771.
dc.identifier.citedreferenceHaider ITIT, Schneider P, Michalski A, Edwards WBB. Influence of geometry on proximal femoral shaft strains: implications for atypical femoral fracture. Bone. 2018; 110: 295 - 303.
dc.identifier.citedreferenceDhanekula ND, Crouch G, Byth K, et al. Asian ethnicity and femoral geometry in atypical femur fractures: independent or interdependent risk factors? JBMR Plus. 2022; 6 ( 4 ): 1 - 8.
dc.identifier.citedreferenceOh Y, Yamamoto K, Hashimoto J, et al. Biological activity is not suppressed in mid-shaft stress fracture of the bowed femoral shaft unlike in “typical” atypical subtrochanteric femoral fracture: a proposed theory of atypical femoral fracture subtypes. Bone. 2020; 137 ( 2 ): 115453. https://doi.org/10.1016/j.bone.2020.115453.
dc.identifier.citedreferencePapapoulos S, Bone H, Cosman F, et al. Incidence of hip and subtrochanteric/femoral shaft fractures in postmenopausal women with osteoporosis in the phase 3 long-term Odanacatib fracture trial. J Bone Miner Res. 2021; 36 ( 7 ): 1225 - 1234.
dc.identifier.citedreferenceSilverman S, Kupperman E, Bukata S. Bisphosphonate-related atypical femoral fracture: managing a rare but serious complication. Cleve Clin J Med. 2018; 85 ( 11 ): 885 - 893.
dc.identifier.citedreferenceKanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002; 359 ( 9321 ): 1929 - 1936.
dc.identifier.citedreferenceKhosla S, Shane E. A crisis in the treatment of osteoporosis. J Bone Miner Res. 2016; 31 ( 8 ): 1485 - 1487.
dc.identifier.citedreferenceSeeman E, Delmas PD, Hanley DA, et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010; 25 ( 8 ): 1886 - 1894. https://doi.org/10.1002/jbmr.81.
dc.identifier.citedreferenceBurghardt AJ, Kazakia GJ, Sode M, De Papp AE, Link TM, Majumdar S. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010; 25 ( 12 ): 2558 - 2571.
dc.identifier.citedreferenceMcClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density: commentary. Obstet Gynecol Surv. 2006; 61 ( 6 ): 384 - 386.
dc.identifier.citedreferenceLiberman UA, Weiss SR, Bröll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med. 1995; 333 ( 22 ): 1437 - 1444.
dc.identifier.citedreferencePols HAPP, Felsenberg D, Hanley DA, et al. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Osteoporos Int. 1999; 9 ( 5 ): 461 - 468. https://doi.org/10.1007/PL00004171.
dc.identifier.citedreferenceFerrari S, Libanati C, Lin CJF, et al. Relationship between Bone mineral density T-score and nonvertebral fracture risk over 10 years of Denosumab treatment. J Bone Miner Res. 2019; 34 ( 6 ): 1033 - 1040.
dc.identifier.citedreferenceImai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009; 20 ( 5 ): 801 - 810.
dc.identifier.citedreferenceZysset P, Pahr D, Engelke K, et al. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone. 2015; 81: 122 - 130. https://doi.org/10.1016/j.bone.2015.06.025.
dc.identifier.citedreferenceNakamura T, Matsumoto T, Sugimoto T, et al. Clinical trials express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab. 2014; 99 ( 7 ): 2599 - 2607.
dc.identifier.citedreferenceMcCloskey EV, Johansson H, Oden A, et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012; 27 ( 7 ): 1480 - 1486.
dc.identifier.citedreferenceShane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014; 29 ( 1 ): 1 - 23.
dc.identifier.citedreferenceUral A. Biomechanical mechanisms of atypical femoral fracture. J Mech Behav Biomed Mater. 2021; 124: 104803. https://doi.org/10.1016/j.jmbbm.2021.104803.
dc.identifier.citedreferenceAllen MR, Gineyts E, Leeming DJ. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 2008; 19: 329 - 337.
dc.identifier.citedreferenceAcevedo C, Bale H, Gludovatz B, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015; 81: 352 - 363. https://doi.org/10.1016/j.bone.2015.08.002.
dc.identifier.citedreferenceGourion-arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010; 46 ( 3 ): 666 - 672.
dc.identifier.citedreferenceDonnelly E, Meredith DS, Nguyen JT, et al. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res. 2015; 27 ( 3 ): 672 - 678.
dc.identifier.citedreferenceAllen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006; 39: 872 - 879.
dc.identifier.citedreferenceYamagami Y, Mashiba T, Iwata K, Tanaka M, Nozaki K, Yamamoto T. Effects of minodronic acid and alendronate on bone remodeling, microdamage accumulation, degree of mineralization and bone mechanical properties in ovariectomized cynomolgus monkeys. Bone. 2013; 54 ( 1 ): 1 - 7.
dc.identifier.citedreferenceEdwards WB, Loundagin L, Haider I. Fatigue Life Variation in Secondary Osteonal Bone Is Primarily Determined by Vascular Canal Diameter Rather than Generalized Porosity. ASMBR Annu. Meet. Orlando; 2019.
dc.identifier.citedreferenceBurr DB. Fifty years of bisphosphonates: what are their mechanical effects on bone? Bone. 2020; 138: 115518.
dc.identifier.citedreferenceAllen MR, Reinwald S, Burr DB. Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int. 2008; 82 ( 5 ): 354 - 360.
dc.identifier.citedreferenceBurr DB, Liu Z, Allen MR. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs. Bone. 2015; 71: 58 - 62.
dc.identifier.citedreferenceLloyd AA, Gludovatz B, Riedel C, et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci U S A. 2017; 114 ( 33 ): 8722 - 8727.
dc.identifier.citedreferenceKostenuik PJ, Smith SY, Samadfam R, Jolette J, Zhou L, Ominsky MS. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2015; 30 ( 4 ): 657 - 669.
dc.identifier.citedreferenceKarim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep. 2021; 15: 101137. https://doi.org/10.1016/j.bonr.2021.101137.
dc.identifier.citedreferenceBajaj D, Geissler JR, Allen MR, Burr DB, Fritton JC. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate. Bone. 2014; 64: 57 - 64. https://doi.org/10.1016/j.bone.2014.03.045.
dc.identifier.citedreferenceBrock GR, Chen JT, Ingraffea AR, et al. The effect of osteoporosis treatments on fatigue properties of cortical bone tissue. Bone Rep. 2015; 2: 8 - 13.
dc.identifier.citedreferenceBrown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009; 24 ( 1 ): 153 - 161.
dc.identifier.citedreferenceBurr DB. Estimated intracortical bone turnover in the femur of growing macaques: implications for their use as models in skeletal pathology. Anat Rec. 1992; 232 ( 2 ): 180 - 189.
dc.identifier.citedreferenceJerome CP, Peterson PE. Nonhuman primate models in skeletal research. Bone. 2001; 29 ( 1 ): 1 - 6.
dc.identifier.citedreferenceOminsky MS, Stouch B, Schroeder J, et al. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2011; 49 ( 2 ): 162 - 173. https://doi.org/10.1016/j.bone.2011.04.001.
dc.identifier.citedreferenceKostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS. Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone. 2011; 49 ( 2 ): 151 - 161. https://doi.org/10.1016/j.bone.2011.03.769.
dc.identifier.citedreferenceKoeppen VA, Schilcher J, Aspenberg P. Dichotomous location of 160 atypical femoral fractures. Acta Orthop. 2013; 84 ( 6 ): 561 - 564.
dc.identifier.citedreferenceTaylor D. Fatigue of bone and bones: an analysis based on stressed volume. J Orthop Res. 1998; 16 ( 2 ): 163 - 169.
dc.identifier.citedreferenceLoundagin LL, Edwards WB. Stressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform bone. J Mech Behav Biomed Mater. 2020; 111 ( June ): 104002. https://doi.org/10.1016/j.jmbbm.2020.104002.
dc.identifier.citedreferenceDoube M, Kłosowski MM, Arganda-Carreras I, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010; 47 ( 6 ): 1076 - 1079.
dc.identifier.citedreferenceTony SK. Predicting the compressive mechanical behavior of bone. J Biomech. 1994; 27 ( 9 ): 1159 - 1168.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.