Show simple item record

Polymeric Photonic Crystal Fibers for Textile Tracing and Sorting

dc.contributor.authorIezzi, Brian
dc.contributor.authorCoon, Austin
dc.contributor.authorCantley, Lauren
dc.contributor.authorPerkins, Bradford
dc.contributor.authorDoran, Erin
dc.contributor.authorWang, Tairan
dc.contributor.authorRothschild, Mordechai
dc.contributor.authorShtein, Max
dc.date.accessioned2023-04-04T17:41:06Z
dc.date.available2024-04-04 13:41:04en
dc.date.available2023-04-04T17:41:06Z
dc.date.issued2023-03
dc.identifier.citationIezzi, Brian; Coon, Austin; Cantley, Lauren; Perkins, Bradford; Doran, Erin; Wang, Tairan; Rothschild, Mordechai; Shtein, Max (2023). "Polymeric Photonic Crystal Fibers for Textile Tracing and Sorting." Advanced Materials Technologies 8(6): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/176058
dc.description.abstractCircular supply chains require more accurate product labeling and traceability. In the apparel industry, product life cycle management is hampered in part by inaccurate, poorly readable, and detachable standard care labels. Instead, this article seeks to enable a labeling system capable of being integrated into the fabric itself, intrinsically recyclable, low-cost, encodes information, and allows rapid readout after years of normal use. In this work, all-polymer photonic crystals are designed and then fabricated by thermal drawing with >100 layers having sub-micrometer individual thickness and low refractive index contrast (Δn = 0.1). The fibers exhibit reflectance features in the 1–5.5 µm wavelength range, characterized using insitu Fourier transform infrared spectroscopy. Drawn photonic fibers are then woven into fabrics, characterized by near-infrared spectroscopy and short-wave infrared imaging, techniques commonly used in industrial facilities for sorting materials. The fibers’ optical design also enables the use of overtone peaks to avoid overlap with parasitic molecular absorption, substantially improving the signal-to-noise ratio (and therefore ease and speed) of readout. The ability to produce kilometers of fiber that are compatible with existing textile manufacturing processes, coupled with low input material cost, make these a potential market-viable improvement over the standard care label.Over 85% of textiles currently end up in landfills, despite a recent study indicating 74% of low-value, post-consumer textiles could be recovered via fiber-to-fiber recycling. A key challenge in implementing fiber-to-fiber recycling is feedstock ambiguity, and in this work, a polymeric photonic tracer fiber is proposed as a method to enable more efficient life cycle tracing and sorting.
dc.publisherIEEE
dc.publisherWiley Periodicals, Inc.
dc.subject.othertracing
dc.subject.otherfiber
dc.subject.otherphotonic crystal
dc.subject.otherpolymeric
dc.subject.otherrecycling
dc.subject.othertextile
dc.titlePolymeric Photonic Crystal Fibers for Textile Tracing and Sorting
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176058/1/admt202201099_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176058/2/admt202201099.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176058/3/admt202201099-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/admt.202201099
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceK. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, M. Skorobogatiy, Polym. Eng. Sci. 2010, 50, 1122.
dc.identifier.citedreferenceH. van Duijn, N. Carrone, O. Bakowska, Q. Huang, M. Akerboom, K. Rademan, D. Vellanki, Sorting for circularity Europe: An evaluation and commercial assessment of textiles waste across Europe, https://reports.fashionforgood.com/report/sorting-for-circularity-europe/ (accessed: November 2022 ).
dc.identifier.citedreferenceA. Juels, IEEE J. Sel. Areas Commun. 2006, 24, 381.
dc.identifier.citedreferenceR. Nayak, A. Singh, R. Padhye, L. Wang, Fash. Text. 2015, 2, 9.
dc.identifier.citedreferenceT. K. Agrawal, L. Koehl, C. Campagne, Int. J. Adv. Des. Manuf. Technol. 2018, 99, 2563.
dc.identifier.citedreferenceK. Wang, V. Kumar, X. Zeng, L. Koehl, X. Tao, Y. Chen, Int. J. Comput. Intell. Syst. 2019, 12, 713.
dc.identifier.citedreferenceA. P. Tran, A. Berrada, M. B. Liang, L. Jung, (APDN BVI Inc.), US 10760182B2, 2020.
dc.identifier.citedreferenceM. Greene, P. Stenning, (Fibremark Solutions Ltd), US10247667B2, 2019.
dc.identifier.citedreferenceM. Elander, Automated feeding equipment for textile waste: Experiences from the FITS project, http://mistrafuturefashion.com/wp-content/uploads/2019/10/M-Elander.-Automated-feeding-equipment-for-textile-waste.-Mistra-Future-Fashion-report.pdf (accessed: December 2021 ).
dc.identifier.citedreferenceP. Peets, K. Kaupmees, S. Vahur, I. Leito, Herit. Sci. 2019, 7, 93.
dc.identifier.citedreferenceT. L. Wong, U. K. Ahmad, S. Tharmalingam, Probl. Forensic Sci. 2015, 103, 163.
dc.identifier.citedreferenceK. Cura, N. Rintala, T. Kamppuri, E. Saarimäki, P. Heikkilä, Recycling 2021, 6, 11.
dc.identifier.citedreferenceW. Li, Z. Wei, Z. Liu, Y. Du, J. Zheng, H. Wang, S. Zhang, Text. Res. J. 2021, 91, 2459.
dc.identifier.citedreferenceC. Blanch-Perez-del-Notario, W. Saeys, A. Lambrechts, J. Spectr. Imaging 2019, 8, a17.
dc.identifier.citedreferenceK. Iga, Jpn. J. Appl. Phys. 2008, 47, 1.
dc.identifier.citedreferenceP. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, D. Comoretto, ACS Photonics 2015, 2, 537.
dc.identifier.citedreferenceP. Lova, G. Manfredi, D. Comoretto, Adv. Opt. Mater. 2018, 6, 1800730.
dc.identifier.citedreferenceG. Manfredi, P. Lova, F. Di Stasio, R. Krahne, D. Comoretto, ACS Photonics 2017, 4, 1761.
dc.identifier.citedreferenceK. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, C. Weder, Opt. Express 2008, 16, 10358.
dc.identifier.citedreferenceB. Iezzi, Z. Afkhami, S. Sanvordenker, D. Hoelzle, K. Barton, M. Shtein, Adv. Mater. Technol. 2020, 5, 2000431.
dc.identifier.citedreferenceJ. C. Tapia-Picazo, J. G. Luna-Bárcenas, A. García-Chávez, R. Gonzalez-Nuñez, A. Bonilla-Petriciolet, A. Alvarez-Castillo, Fibers Polym. 2014, 15, 547.
dc.identifier.citedreferenceC. J. R. Sheppard, Appl. Opt. 1995, 4, 665.
dc.identifier.citedreferenceL. R. Brovelli, U. Keller, Opt. Commun. 1995, 116, 343.
dc.identifier.citedreferenceW. H. Southwell, Appl. Opt. 1999, 38, 5464.
dc.identifier.citedreferenceA. Ciocia, A. Carullo, P. Di Leo, G. Malgaroli, F. Spertino, in 2019 IEEE 46th Photovoltaic Specialists Conf. (PVSC), IEEE, Piscataway, NJ 2019, 2734.
dc.identifier.citedreferenceV. Wiedemair, D. Langore, R. Garsleitner, K. Dillinger, C. Huck, Molecules 2019, 24, 428.
dc.identifier.citedreferenceJ. Coates, Appl. Spectrosc. Rev. 1998, 33, 267.
dc.identifier.citedreferenceX. Zhang, J. Qiu, X. Li, J. Zhao, L. Liu, Appl. Opt. 2020, 59, 2337.
dc.identifier.citedreferenceX. Zhang, J. Qiu, J. Zhao, X. Li, L. Liu, J. Quant. Spectrosc. Radiat. Transfer 2020, 252, 107063.
dc.identifier.citedreferenceM. Asano, T. Kuroda, S. Shimizu, A. Sakihara, K. Kumuzawa, H. Tabata, (Nissan Motor Co., Ltd., Tanaka Kikinzoku Kogyo K.K., Teijin Limited), US 6,326,094 B1, 2001.
dc.identifier.citedreferenceJ. Wilting, H. van Duijn, Clothing labels: Accurate or not?, https://www.circle-economy.com/resources/clothing-labels-accurate-or-not (accessed: November 2021 ).
dc.identifier.citedreferenceP. Harmsen, M. Scheffer, H. Bos, Sustainability 2021, 13, 9714.
dc.identifier.citedreferenceUnited States Environmental Protection Agency – Office of Land and Emergency Management, Advancing sustainable materials management: 2018 fact sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf (accessed: December 2021 ).
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.