Show simple item record

Impact of adhesive area on cellular traction force and spread area

dc.contributor.authorHolland, Elijah N.
dc.contributor.authorLobaccaro, Deborah
dc.contributor.authorFu, Jianping
dc.contributor.authorGarcía, Andrés J.
dc.date.accessioned2023-04-04T17:41:20Z
dc.date.available2024-06-04 13:41:17en
dc.date.available2023-04-04T17:41:20Z
dc.date.issued2023-05
dc.identifier.citationHolland, Elijah N.; Lobaccaro, Deborah; Fu, Jianping; García, Andrés J. (2023). "Impact of adhesive area on cellular traction force and spread area." Journal of Biomedical Materials Research Part A 111(5): 609-617.
dc.identifier.issn1549-3296
dc.identifier.issn1552-4965
dc.identifier.urihttps://hdl.handle.net/2027.42/176063
dc.description.abstractCells integrate endogenous and exogenous mechanical forces to sense and respond to environmental signals. In particular, cell-generated microscale traction forces regulate cellular functions and impact macroscale tissue function and development. Many groups have developed tools for measuring cellular traction forces, including microfabricated post array detectors (mPADs). mPADs are a powerful tool that provides direct traction force measurements through imaging post deflections and utilizing Bernoulli-Euler beam theory. In this technical note, we investigated how mPADs presenting two different top surface areas but similar effective stiffness influence cellular spread area and traction forces for murine embryonic fibroblasts and human mesenchymal stromal cells. When focal adhesion size was restricted via mPAD top surface area, we observed a decrease in both cell spread area and cell traction forces as the mPAD top surface area decreased, but the traction force-cell area linear relationship was maintained, which is indicative of cell contractility. We conclude that the mPAD top surface area is an important parameter to consider when utilizing mPADs to measure cellular traction forces. Furthermore, the slope of the traction force-cell area linear relationship provides a useful metric to characterize cell contractility on mPADs
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfocal adhesions
dc.subject.otherforce
dc.subject.othermicropost
dc.subject.othereffective stiffness
dc.subject.othercell area
dc.titleImpact of adhesive area on cellular traction force and spread area
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176063/1/jbma37518.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176063/2/jbma37518_am.pdf
dc.identifier.doi10.1002/jbm.a.37518
dc.identifier.sourceJournal of Biomedical Materials Research Part A
dc.identifier.citedreferenceVanderBurgh JA, Hotchkiss H, Potharazu A, Taufalele PV, Reinhart-King CA. Substrate stiffness heterogeneities disrupt endothelial barrier integrity in a micropillar model of heterogeneous vascular stiffening. Integr Biol (Camb). 2018; 10 ( 12 ): 734 - 746. doi: 10.1039/c8ib00124c
dc.identifier.citedreferenceMammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol. 2013; 29: 27 - 61. doi: 10.1146/annurev-cellbio-101512-122340
dc.identifier.citedreferenceRosinczuk J, Taradaj J, Dymarek R, Sopel M. Mechanoregulation of wound healing and skin homeostasis. Biomed Res Int. 2016; 2016: 3943481 - 3943413. doi: 10.1155/2016/3943481
dc.identifier.citedreferencePolacheck WJ, Chen CS. Measuring cell-generated forces: a guide to the available tools. Nat Methods. 2016; 13 ( 5 ): 415 - 423. doi: 10.1038/nmeth.3834
dc.identifier.citedreferenceZhou DW, Garcia AJ. Measurement systems for cell adhesive forces. J Biomech Eng. 2015; 137 ( 2 ): 020908. doi: 10.1115/1.4029210
dc.identifier.citedreferenceRoca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat Cell Biol. 2017; 19 ( 7 ): 742 - 751. doi: 10.1038/ncb3564
dc.identifier.citedreferenceGarcia AJ, Ducheyne P, Boettiger D. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials. 1997; 18 ( 16 ): 1091 - 1098. doi: 10.1016/S0142-9612(97)00042-2
dc.identifier.citedreferenceLiu Y, Galior K, Ma VP, Salaita K. Molecular tension probes for imaging forces at the cell surface. Acc Chem Res. 2017; 50 ( 12 ): 2915 - 2924. doi: 10.1021/acs.accounts.7b00305
dc.identifier.citedreferenceTan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A. 2003; 100 ( 4 ): 1484 - 1489. doi: 10.1073/pnas.0235407100
dc.identifier.citedreferenceYang MT, Fu J, Wang YK, Desai RA, Chen CS. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc. 2011; 6 ( 2 ): 187 - 213. doi: 10.1038/nprot.2010.189
dc.identifier.citedreferenceDumbauld DW, Lee TT, Singh A, et al. How vinculin regulates force transmission. Proc Natl Acad Sci U S A. 2013; 110 ( 24 ): 9788 - 9793. doi: 10.1073/pnas.1216209110
dc.identifier.citedreferenceGalipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials (in English). Cytotherapy. 2016; 18 ( 2 ): 151 - 159. doi: 10.1016/j.jcyt.2015.11.008
dc.identifier.citedreferenceFu J, Wang YK, Yang MT, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010; 7 ( 9 ): 733 - 736. doi: 10.1038/nmeth.1487
dc.identifier.citedreferenceDickinson LE, Rand DR, Tsao J, Eberle W, Gerecht S. Endothelial cell responses to micropillar substrates of varying dimensions and stiffness. J Biomed Mater Res A. 2012; 100 ( 6 ): 1457 - 1466. doi: 10.1002/jbm.a.34059
dc.identifier.citedreferencedu Roure O, Saez A, Buguin A, et al. Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A. 2005; 102 ( 7 ): 2390 - 2395. doi: 10.1073/pnas.0408482102
dc.identifier.citedreferenceGupta M, Sarangi BR, Deschamps J, et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat Commun. 2015; 6: 7525. doi: 10.1038/ncomms8525
dc.identifier.citedreferenceGhibaudo M, Saez A, Trichet L, et al. "traction forces and rigidity sensing regulate cell functions," (in English). Soft Matter. 2008; 4 ( 9 ): 1836 - 1843. doi: 10.1039/b804103b
dc.identifier.citedreferenceGhassemi S, Meacci G, Liu S, et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci U S A. 2012; 109 ( 14 ): 5328 - 5333. doi: 10.1073/pnas.1119886109
dc.identifier.citedreferenceYang MT, Sniadecki NJ, Chen CS. "geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces," (in English). Adv Mater. 2007; 19 ( 20 ): 3119. doi: 10.1002/adma.200701956
dc.identifier.citedreferenceWeng S, Fu J. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials. 2011; 32 ( 36 ): 9584 - 9593. doi: 10.1016/j.biomaterials.2011.09.006
dc.identifier.citedreferenceCalifano JP, Reinhart-King CA. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng. 2010; 3 ( 1 ): 68 - 75. doi: 10.1007/s12195-010-0102-6
dc.identifier.citedreferenceLegant WR, Choi CK, Miller JS, et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions (in English). P Natl Acad Sci USA. 2013; 110 ( 3 ): 881 - 886. doi: 10.1073/pnas.1207997110
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.