Show simple item record

First Observations of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno

dc.contributor.authorMigliorini, A.
dc.contributor.authorDinelli, B. M.
dc.contributor.authorCastagnoli, C.
dc.contributor.authorMoriconi, M. L.
dc.contributor.authorAltieri, F.
dc.contributor.authorAtreya, S.
dc.contributor.authorAdriani, A.
dc.contributor.authorMura, A.
dc.contributor.authorTosi, F.
dc.contributor.authorMoirano, A.
dc.contributor.authorPiccioni, G.
dc.contributor.authorGrassi, D.
dc.contributor.authorSordini, R.
dc.contributor.authorNoschese, R.
dc.contributor.authorCicchetti, A.
dc.contributor.authorBolton, S. J.
dc.contributor.authorSindoni, G.
dc.contributor.authorPlainaki, C.
dc.contributor.authorOlivieri, A.
dc.date.accessioned2023-04-04T17:41:31Z
dc.date.available2024-04-04 13:41:29en
dc.date.available2023-04-04T17:41:31Z
dc.date.issued2023-03
dc.identifier.citationMigliorini, A.; Dinelli, B. M.; Castagnoli, C.; Moriconi, M. L.; Altieri, F.; Atreya, S.; Adriani, A.; Mura, A.; Tosi, F.; Moirano, A.; Piccioni, G.; Grassi, D.; Sordini, R.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Sindoni, G.; Plainaki, C.; Olivieri, A. (2023). "First Observations of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno." Journal of Geophysical Research: Planets 128(3): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/176067
dc.description.abstractIn this work, we present the detection of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ emissions in the equatorial atmosphere of Jupiter as two well-separated layers located, respectively, at tangent altitudes of about 200 and 500–600 km above the 1-bar level using the observations of the Jovian InfraRed Auroral Mapper (JIRAM), on board Juno. This provides details of the vertical distribution of H3+ ${mathrm{H}}_{3}^{+}$ retrieving its Volume Mixing Ratio (VMR), concentration, and temperature. The thermal profile obtained from H3+ ${mathrm{H}}_{3}^{+}$ shows a peak of 600–800 K at about 550 km, with lower values than the ones reported in Seiff et al. (1998), https://doi.org/10.1029/98JE01766 above 500 km using VMR and temperature as free parameters and above 650 km when VMR is kept fixed with that model in the retrieval procedure. The observed deviations from the Galileo’s profile could potentially point to significant variability in the exospheric temperature with time. We suggest that vertically propagating waves are the most likely explanation for the observed VMR and temperature variations in the JIRAM data. Other possible phenomena could explain the observed evidence, for example, dynamic activity driving chemical species from lower layers toward the upper atmosphere, like the advection-diffusion processes, or precipitation by soft electrons, although better modeling is required to test these hypothesis. The characterization of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ species, simultaneously observed by JIRAM, offers the opportunity for better constraining atmospheric models of Jupiter at equatorial latitudes.Plain Language SummaryThe Jovian Infrared Auroral Mapper (JIRAM) is the infrared imager and spectrometer on board the Juno mission, designed to investigate Jupiter’s atmosphere. A key objective of JIRAM is the investigation of the minor species, such as CH4 and H3+ ${mathrm{H}}_{3}^{+}$ that are very important to understanding the energy balance of the middle and upper atmosphere of Jupiter. These species have strong signatures in the 3.3–3.8 μm spectral region, well within the nominal wavelength range of the instrument. We present the analysis of recent images and spectra obtained by JIRAM, in the period December 2018–September 2020, plus additional measurements in March 2017, to study methane and H3+ ${mathrm{H}}_{3}^{+}$ vertical distribution at equatorial latitudes. We find that CH4 is localized around 200 km above the 1-bar level, while a distinct layer of H3+ ${mathrm{H}}_{3}^{+}$ is observed around 500–600 km (0.04–0.016 μbar). The observed vertical distribution and intensity variation of H3+ ${mathrm{H}}_{3}^{+}$ is likely to be the result of vertically propagating waves. However, other possible phenomena can be invoked to explain these findings, like for example, an uplifting of chemical species from lower layers toward the upper atmosphere, or soft electrons precipitation, although a rigorous modeling is needed to confirm the latter hypothesis.Key PointsDetection of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ emissions over Jupiter’s disc as two well separated layers in the equatorial region at 200 and 600 kmThe H3+ ${mathrm{H}}_{3}^{+}$ temperature profile shows a peak of 600–800 K at about 600 km with some differences with respect to the Galileo’s profileThe observed features point out the presence of localized variability with altitude, perhaps indicative of wave activities
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.titleFirst Observations of CH4 and H3+ ${mathrm{H}}_{3}^{+}$ Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176067/1/jgre22151.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176067/2/jgre22151_am.pdf
dc.identifier.doi10.1029/2022JE007509
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceMoore, L., Melin, H., O’Donoghue, J., Stallard, T. S., Moses, J. I., Galand, M., et al. ( 2019 ). Modelling H 3 + in planetary atmospheres: Effects of vertical gradients on observed quantities. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 377 ( 2154 ), 20190067. https://doi.org/10.1098/rsta.2019.0067
dc.identifier.citedreferenceKim, S., Sim, C., Ho, J., Geballe, T. R., Yung, Y. L., Miller, S., & Kim, Y. H. ( 2015 ). Hot CH 4 in the polar regions of Jupiter. Icarus, 257, 217 – 220. https://doi.org/10.1016/j.icarus.2015.05.008
dc.identifier.citedreferenceKim, S., Sim, C., Sohn, M., & Moses, J. ( 2014 ). CH 4 mixing ratios at microbar pressure levels of Jupiter a constrained by 3-micron ISO data. Icarus, 237, 42 – 51. https://doi.org/10.1016/j.icarus.2014.04.023
dc.identifier.citedreferenceKita, H., Fujisawa, S., Tao, C., Kagitani, M., Sakanoi, T., & Kasaba, Y. ( 2018 ). Horizontal and vertical structures of Jovian infrared aurora: Observations using Subaru IRCS with adaptive optics. Icarus, 313, 93 – 106. https://doi.org/10.1016/j.icarus.2018.05.002
dc.identifier.citedreferenceKoskinen, T., Aylaward, A., & Miller, S. ( 2007 ). A stability limit for the atmospheres of giant extrasolar planets. Nature, 412 ( 7171 ), 891 – 848. https://doi.org/10.1038/nature06378
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., et al. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4 ( 6 ), 609 – 616. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., et al. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44 ( 11 ), 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceLindsay, C., & McCall, B. ( 2001 ). Comprehensive evaluation and compilation of H 3 + spectroscopy. Journal of Molecular Spectroscopy, 210 ( 1 ), 60 – 83. https://doi.org/10.1006/jmsp.2001.8444
dc.identifier.citedreferenceLystrup, M., Miller, S., Dello Russo, N., Vervack, R., & Stallard, T. ( 2008 ). First vertical ion density profile in Jupiter’s auroral atmosphere: Direct observations using the Keck II telescope. The Astrophysical Journal, 677 ( 1 ), 790 – 797. https://doi.org/10.1086/529509
dc.identifier.citedreferenceMarten, A., De Bergh, C., Owen, T., Gautier, D., Maillard, J., Drossart, P., et al. ( 1994 ). Four micron high-resolution spectra of jupiter in the North equatorial belt: H 3 + emissions and the 12 C/ 13 C ratio. Planetary and Space Science, 42 ( 5 ), 391 – 399. https://doi.org/10.1016/0032-0633(94)90128-7
dc.identifier.citedreferenceMelin, H., Miller, S., Stallard, T., & Grodent, D. ( 2005 ). Non-LTE effects on H 3 + emission in the Jovian upper atmosphere. Icarus, 178 ( 1 ), 97 – 103. https://doi.org/10.1016/j.icarus.2005.04.016
dc.identifier.citedreferenceMelin, H., Stallard, T., O’Donoghue, J., Badman, S., Miller, S., & Blake, J. S. D. ( 2014 ). On the anticorrelation between H 3 + temperature and density in giant planet ionospheres. Monthly Notices of the Royal Astronomical Society, 438 ( 2 ), 1611 – 1617. https://doi.org/10.1093/mnras/stt2299
dc.identifier.citedreferenceMigliorini, A., Dinelli, B., Moriconi, M., Altieri, F., Adriani, A., Mura, A., et al. ( 2019 ). H 3 + characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 329, 132 – 139. https://doi.org/10.1016/j.icarus.2019.04.003
dc.identifier.citedreferenceMiller, S., Achilleos, N., Ballester, G. E., Lam, H. A., Tennyson, J., Geballe, T. R., & Trafton, L. M. ( 1997 ). Mid-to-low latitude H 3 + emission from Jupiter. Icarus, 130 ( 1 ), 57 – 67. https://doi.org/10.1006/icar.1997.5813
dc.identifier.citedreferenceMiller, S., Joseph, R. D., & Tennyson, J. ( 1990 ). Infrared emissions of H 3 + in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. The Astrophysical Journal Letters, 360, L55. https://doi.org/10.1086/185811
dc.identifier.citedreferenceMiller, S., Tennyson, J., Geballe, T. R., & Stallard, T. ( 2020 ). Thirty years of H 3 + astronomy. Reviews of Modern Physics, 92 ( 3 ), 035003. https://doi.org/10.1103/RevModPhys.92.035003
dc.identifier.citedreferenceMoriconi, M., Adriani, A., Dinelli, B., Fabiano, F., Altieri, F., Tosi, F., et al. ( 2017 ). Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 44 ( 10 ), 4641 – 4648. https://doi.org/10.1002/2017GL073592
dc.identifier.citedreferenceMura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. ( 2018 ). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361 ( 6404 ), 774 – 777. https://doi.org/10.1126/science.aat1450
dc.identifier.citedreferenceMura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., et al. ( 2017 ). Infrared observations of Jovian aurora from Juno’s first orbit: Main oval and satellite footprints. Geophysical Research Letters, 44 ( 11 ), 5308 – 5316. https://doi.org/10.1022/2017GRL072954
dc.identifier.citedreferenceNoschese, R., & Adriani, A. ( 2017 ). Juno Jupiter JIRAM raw data archive v1.0. NASA Planetary Data System. https://doi.org/10.17189/FAY5-DE13
dc.identifier.citedreferenceO’Donoghue, J., Moore, L., Bhakyapaibul, T., Melin, H., Stallard, T., Connerney, J., & Tao, C. ( 2021 ). Global upper-atmospheric heating on Jupiter by the pola aurorae heating of Jupiter’s upper atmosphere above the great red spot. Nature, 596 ( 7870 ), 54 – 67. https://doi.org/10.1038/s41596-021-03706-w
dc.identifier.citedreferenceO’Donoghue, J., Moore, L., Stallard, T., & Melin, H. ( 2016 ). Heating of Jupiter’s upper atmosphere above the great red spot. Nature, 536 ( 7615 ), 190 – 192. https://doi.org/10.1038/nature18940
dc.identifier.citedreferenceRay, L., Lorch, C., O’Donoghue, J., Yates, J., Badman, S., Smith, C., & Stallard, T. ( 2019 ). Why is the H 3 + hot spot above Jupiter’s great red spot so hot? Philosophical Transaction of the Royal Society A, 377 ( 2154 ), 20180407. https://doi.org/10.1098/rsta.2018.0407
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding. World Scientific. https://doi.org/10.1142/3171
dc.identifier.citedreferenceSada, P., Jennings, D., Romani, P., Bjoraker, G., Flasar, F., Kunde, V., et al. ( 2003 ). Transient IR phenomena observed by Cassini/CIRS in Jupiter’s auroral regions. Bulletin of the American Astronomical Society, 35, 402.
dc.identifier.citedreferenceSànchez-Lòpez, A., Lòpez-Puertas, M., Garcìa-Comas, M., Funke, B., Fouchet, T., & Snellen, I. ( 2022 ). The CH 4 abundance in Jupiter’s upper atmosphere. Astronomy and Astrophysics, 662, A91. https://doi.org/10.1051/0004-6361/202141933
dc.identifier.citedreferenceSatoh, T., & Connerney, J. ( 1999 ). Jupiter H 3 + emissions viewed in corrected Jovi magnetic coordinates. Icarus, 141 ( 2 ), 236 – 252. https://doi.org/10.1006/icar.1999.6173
dc.identifier.citedreferenceSeiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., et al. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103 ( E10 ), 22857 – 22889. https://doi.org/10.1029/98JE01766
dc.identifier.citedreferenceSinclair, J., Orton, G., Fernandes, J., Kasaba, Y., Sato, T. M., Fujiyoshi, T., et al. ( 2019 ). A brightening of Jupiter’s auroral 7.8-μm CH 4 emission during a solar-wind compression. Nature Astronomy, 3 ( 7 ), 607 – 613. https://doi.org/10.1038/s41550-019-0743-x
dc.identifier.citedreferenceSinclair, J. A., Orton, G., Greathouse, T., Fletcher, L., Tao, C., Gladstone, G. R., et al. ( 2017 ). Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016. Geophysical Research Letters, 44 ( 11 ), 5345 – 5354. https://doi.org/10.1002/2017GL073529
dc.identifier.citedreferenceStallard, T., Burrell, A., Melin, H., Fletcher, L. N., Miller, S., Moore, L., et al. ( 2018 ). Identification of Jupiter’s magnetic equator within H 3 + ionospheric emission. Nature Astronomy, 2 ( 10 ), 773 – 777. https://doi.org/10.1038/s41550-018-0523-z
dc.identifier.citedreferenceStallard, T., Melin, H., Miller, S., Badman, S. V., Baines, K. H., Brown, R. H., et al. ( 2015 ). Cassini vims observations of H 3 + emission on the nightside of Jupiter. Journal of Geophysical Research: Space Physics, 120 ( 8 ), 6948 – 6973. https://doi.org/10.1002/2015JA021097
dc.identifier.citedreferenceStallard, T., Melin, H., Miller, S., Moore, L., O’Donoghue, J., Connerney, J., et al. ( 2017 ). The great cold spot in Jupiter’s upper atmosphere. Geophysical Research Letters, 44 ( 7 ), 3000 – 3008. https://doi.org/10.1002/2016GL071956
dc.identifier.citedreferenceTao, C., Badman, S., & Fujimoto, M. ( 2011 ). UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus, 213 ( 2 ), 581 – 592. https://doi.org/10.1016/j.icarus.2011.04.001
dc.identifier.citedreferenceUno, T., Yasaba, Y., Tao, C., Sakanoi, T., Kagitani, M., Fujisawa, S., et al. ( 2014 ). Vertical emissivity profiles of Jupiter’s northern H 3 + and h 2 infrared auroras observed by Subaru/IRCS. Journal of Geophysical Research: Space Physics, 119 ( 12 ), 10219 – 10241. https://doi.org/10.1002/2014JA020454
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44 ( 1 ), 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceAdriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. ( 2017 ). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213 ( 1–4 ), 393 – 446. https://doi.org/10.1007/s11214-014-0094-y
dc.identifier.citedreferenceAdriani, A., Mura, A., Moriconi, M., Dinelli, B. M., Fabiano, F., Altieri, F., et al. ( 2017 ). Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H 3 + emissions and comparison with the North aurora. Geophysical Research Letters, 44 ( 10 ), 4633 – 4640. https://doi.org/10.1002/2017GRL072905
dc.identifier.citedreferenceAltieri, F., Dinelli, B., Migliorini, A., Moriconi, M. L., Sindoni, G., Adriani, A., et al. ( 2016 ). Mapping of hydrocarbons and H 3 + emissions at Jupiter’s north pole using Galileo/NIMS data. Geophysical Research Letters, 43 ( 22 ), 11558 – 11566. https://doi.org/10.1002/2016GL070787
dc.identifier.citedreferenceAtreya, S. K. ( 1987 ). Atmospheres and ionospheres of the outer planets and their satellites (pp. 47 – 48 ). Springer.
dc.identifier.citedreferenceBallester, G. E., Miller, S., Tennyson, J., Trafton, L., & Geballe, T. ( 1994 ). Latitudinal temperature variations of Jovian H 3 +. Icarus, 107 ( 1 ), 189 – 194. https://doi.org/10.1006/icar.1994.1015
dc.identifier.citedreferenceBonfond, B., Gladstone, G., Grodent, D., Greathause, T., Versteeg, M., Hue, V., et al. ( 2017 ). Morphology of the UV aurorae Jupiter during Juno’s first perijove observations. Geophysical Research Letters, 44 ( 10 ), 4463 – 4471. https://doi.org/10.1002/2017GL073114
dc.identifier.citedreferenceBougher, S., Waite, J., Majeed, T., & Gladstone, G. ( 2005 ). Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 110 ( E4 ), E04008. https://doi.org/10.1029/2003je002230
dc.identifier.citedreferenceCaldwell, J., Halthore, R., Orton, G., & Berstralh, J. ( 1988 ). Infrared polar brightenings on Jupiter VI. Spatial properties of methane emission. Icarus, 74 ( 2 ), 331 – 339. https://doi.org/10.1016/0019-1035(88)90045-0
dc.identifier.citedreferenceCaldwell, J., Tokunags, A., & Orton, G. ( 1983 ). Further observations of 8-μm polar brightenings of Jupiter. Icarus, 53 ( 1 ), 133 – 140. https://doi.org/10.1016/0019-1035(83)90026-x
dc.identifier.citedreferenceCarlotti, M. ( 1988 ). Global-fit approach to the analysis of limb-scanning atmospheric measurements. Applied Optics, 27 ( 15 ), 3250 – 3254. https://doi.org/10.1364/ao.27.003250
dc.identifier.citedreferenceClarke, J., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gerard, J. C., et al. ( 2002 ). Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter. Nature, 415 ( 6875 ), 997 – 1000. https://doi.org/10.1038/415997a
dc.identifier.citedreferenceConnerney, J., Baron, R., Satoh, T., & Owen, T. ( 1993 ). Images of excited H 3 + at the foot of the Io flux tube in Jupiter’s atmosphere. Science, 262 ( 5136 ), 1035 – 1038. https://doi.org/10.1126/science.262.5136.1035
dc.identifier.citedreferenceConnerney, J., Timmins, S., Oliversen, R., Cao, H., Yadav, R. K., Stevenson, D. J., et al. ( 2022 ). A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. Journal of Geophysical Research: Planets, 127 ( 5 ), e2021JE007055. https://doi.org/10.1029/2021JE007138
dc.identifier.citedreferenceCosentino, R., Morales-Juberias, R., Greathouse, T., Orton, G., Johnson, P., Fletcher, L., & Simon, A. ( 2017 ). New observations and modeling of Jupiter’s quasi-quadrennial oscillation. Journal of Geophysical Research: Planets, 122 ( 12 ), 2719 – 2744. https://doi.org/10.1002/2017JE005342
dc.identifier.citedreferenceDinelli, B. ( 2021 ). Ch 4 and H 3 + retrieval results [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.5658387
dc.identifier.citedreferenceDinelli, B., Adriani, A., Mura, A., Altieri, F., Migliorini, A., & Moriconi, M. L. ( 2019 ). Juno/JIRAM’s view of Jupiter’s H 3 + emissions. Philosophical Transaction of the Royal Society A, 377 ( 2154 ), 20180406. https://doi.org/10.1098/rsta.2018.0406
dc.identifier.citedreferenceDrossart, P., Bezard, B., Atreya, S., Bishop, J., Waite, J. H., & Boice, D. ( 1993 ). Thermal profiles in the auroral regions of Jupiter. Journal of Geophysical Research, 98 ( E10 ), 18803 – 18812. https://doi.org/10.1029/93JE01801
dc.identifier.citedreferenceDrossart, P., Maillard, J.-P., Cladwell, S., Kim, S. J., Watson, J. K. G., Majewski, W. A., et al. ( 1989 ). Detection of the H 3 + on Jupiter. Nature, 340 ( 6234 ), 539 – 541. https://doi.org/10.1038/340539a0
dc.identifier.citedreferenceGérard, J.-C., Mura, A., Bonfond, B., Gladstone, G., Adriani, A., Hue, V., et al. ( 2018 ). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno’s first perijove. Icarus, 312, 145 – 156. https://doi.org/10.1016/j.icarus.2018.04.020
dc.identifier.citedreferenceGiles, R., Fletcher, L., Irwin, P., Melin, H., & Stallard, T. S. ( 2016 ). Detection of H 3 + auroral emission in the Jupiter’s 5-micron window. Astronomy and Astrophysics, 589, A67. https://doi.org/10.1051/0004-6361/201628170
dc.identifier.citedreferenceGrodent, D., Waite, J. J., & Gérard, J. ( 2001 ). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106 ( A7 ), 12933 – 12952. https://doi.org/10.1029/2000JA900129
dc.identifier.citedreferenceHunten, D. M., & Dessler, A. J. ( 1977 ). Soft electrons as a possible heat source for Jupiter’s thermosphere. Planetary and Space Science, 25 ( 9 ), 817 – 821. https://doi.org/10.1016/0032-0633(77)90035-6
dc.identifier.citedreferenceKim, S., Caldwell, J., Rivolo, A., Wagener, R., & Orton, G. ( 1985 ). Infrared polar brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS experiment. Icarus, 64 ( 2 ), 233 – 248. https://doi.org/10.1016/0019-1035(85)90088-0
dc.identifier.citedreferenceKim, S., Drossart, P., Caldwell, J., Maillard, J. P., Herbst, T., & Shure, M. ( 1991 ). Images of aurorae on Jupiter from H 3 + emission at 4 μm. Nature, 353 ( 6344 ), 536 – 539. https://doi.org/10.1038/353536a0
dc.identifier.citedreferenceKim, S., Geballe, T., Seo, H., & Jim, J. ( 2009 ). Jupiter’s hydrocarbon polar brightening: Discovery of 3-micron line emission from south polar CH 4, C 2 H 2 and C 2 H 6. Icarus, 202 ( 1 ), 354 – 357. https://doi.org/10.1016/j.icarus.2009.03.020
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.