Show simple item record

Significance of buccal bone wall thickness on the fate of peri-implant hard and soft tissues: A systematic review

dc.contributor.authorMonje, Alberto
dc.contributor.authorRoccuzzo, Andrea
dc.contributor.authorBuser, Daniel
dc.contributor.authorWang, Hom-Lay
dc.date.accessioned2023-04-04T17:41:37Z
dc.date.available2024-04-04 13:41:35en
dc.date.available2023-04-04T17:41:37Z
dc.date.issued2023-03
dc.identifier.citationMonje, Alberto; Roccuzzo, Andrea; Buser, Daniel; Wang, Hom-Lay (2023). "Significance of buccal bone wall thickness on the fate of peri- implant hard and soft tissues: A systematic review." Clinical Oral Implants Research (3): 157-176.
dc.identifier.issn0905-7161
dc.identifier.issn1600-0501
dc.identifier.urihttps://hdl.handle.net/2027.42/176069
dc.description.abstractBackgroundThe significance of the association between the peri-implant buccolingual dimension (BLD) at the stage of implant placement and the occurrence of biological and esthetic complications is yet unknown.Material and MethodsSystematic screening of electronic sources was carried out to identify clinical and preclinical studies reporting on the baseline BLD and/or buccal bone thickness (BBT) values. A secondary objective was to assess the effect of simultaneous grafting at sites with deficient or no buccal bone wall (BBW) at baseline. The primary outcome variables were BBT, BLD, and vertical bone loss (VBL) at re-evaluation. Moreover, radiographic, clinical- and patient-reported outcome measures (PROMs) were evaluated.ResultsOverall, 12 clinical and four preclinical studies met the inclusion criteria. The clinical evidence demonstrated that during healing, dimensional changes occur in the alveolar bone and in the BBW that may compromise the integrity of bone around a dental implant. The preclinical evidence validated the fact that implants placed in the presence of thin BBW are more prone to exhibit major dimensional changes. Moreover, the clinical and preclinical data supported that in scenarios where dehiscence-type defects are left for spontaneous healing, greater VBL and mucosal recession (MR) together with the occurrence of biologic complications are expected. Furthermore, the augmentation of dehiscence-type defects is associated with hard and soft tissue stability.ConclusionsDimensional changes occur as a result of implant placement in healed ridges that may lead to VBL and MR. Thin BBW (≲2 mm) are prone to exhibit major postchanges that may compromise the integrity of the buccal bone, biologic and esthetic complications.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomaterials
dc.subject.otherbone implant interactions
dc.subject.otherbone regeneration
dc.subject.otherguided tissue regeneration
dc.titleSignificance of buccal bone wall thickness on the fate of peri-implant hard and soft tissues: A systematic review
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176069/1/clr14029.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176069/2/clr14029_am.pdf
dc.identifier.doi10.1111/clr.14029
dc.identifier.sourceClinical Oral Implants Research
dc.identifier.citedreferenceRodriguez-Ortiz, G., Chen, S., Davies, H., Fitzgerald, W., & Darby, I. ( 2021 ). Early implant placement in ridge preserved extraction sockets: A pre-clinical in vivo study. Clinical Oral Implants Research, 32 ( 6 ), 745 – 755. https://doi.org/10.1111/clr.13744
dc.identifier.citedreferenceSchwarz, F., Sager, M., Golubovic, V., Iglhaut, G., & Becker, K. ( 2016 ). Horizontal mucosal thickness at implant sites as it correlates with the integrity and thickness of the buccal bone plate. Clinical Oral Implants Research, 27 ( 10 ), 1305 – 1309. https://doi.org/10.1111/clr.12747
dc.identifier.citedreferenceSchwarz, F., Sahm, N., & Becker, J. ( 2012 ). Impact of the outcome of guided bone regeneration in dehiscence-type defects on the long-term stability of peri-implant health: Clinical observations at 4 years. Clinical Oral Implants Research, 23 ( 2 ), 191 – 196. https://doi.org/10.1111/j.1600-0501.2011.02214.x
dc.identifier.citedreferenceScipioni, A., Bruschi, G. B., Giargia, M., Berglundh, T., & Lindhe, J. ( 1997 ). Healing at implants with and without primary bone contact. An experimental study in dogs. Clinical Oral Implants Research, 8 ( 1 ), 39 – 47. https://doi.org/10.1111/j.1600-0501.1997.tb00006.x
dc.identifier.citedreferenceSerrano, B., Sanz-Sanchez, I., Serrano, K., Montero, E., & Sanz, M. ( 2022 ). One-year outcomes of dental implants with a hybrid surface macro-design placed in patients with history of periodontitis: A randomized clinical trial. Journal of Clinical Periodontology, 49 ( 2 ), 90 – 100. https://doi.org/10.1111/jcpe.13575
dc.identifier.citedreferenceSouza, A. B., Alshihri, A., Kammerer, P. W., Araujo, M. G., & Gallucci, G. O. ( 2018 ). Histological and micro-CT analysis of peri-implant soft and hard tissue healing on implants with different healing abutments configurations. Clinical Oral Implants Research, 29 ( 10 ), 1007 – 1015. https://doi.org/10.1111/clr.13367
dc.identifier.citedreferenceSpray, J. R., Black, C. G., Morris, H. F., & Ochi, S. ( 2000 ). The influence of bone thickness on facial marginal bone response: Stage 1 placement through stage 2 uncovering. Annals of Periodontology, 5 ( 1 ), 119 – 128. https://doi.org/10.1902/annals.2000.5.1.119
dc.identifier.citedreferenceSterne, J. A. C., Savovic, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. ( 2019 ). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898. https://doi.org/10.1136/bmj.l4898
dc.identifier.citedreferenceSuaid, F. A., Novaes, A. B., Jr., Queiroz, A. C., Muglia, V. A., Almeida, A. L., & Grisi, M. F. ( 2014 ). Buccal bone plate remodeling after immediate implants with or without synthetic bone grafting and flapless surgery: A histomorphometric and fluorescence study in dogs. Clinical Oral Implants Research, 25 ( 2 ), e10 – e21. https://doi.org/10.1111/clr.12036
dc.identifier.citedreferenceSutter, F., Schroeder, A., & Buser, D. ( 1988 ). [New ITI implant concept–technical aspects and methods (I)]. Die Quintessenz, 39 ( 11 ), 1875 – 1890.
dc.identifier.citedreferenceTal, H., Artzi, Z., Moses, O., Nemcovsky, C. E., & Kozlovsky, A. ( 2001 ). Spontaneous early exposure of submerged endosseous implants resulting in crestal bone loss: A clinical evaluation between stage I and stage II surgery. The International Journal of Oral & Maxillofacial Implants, 16 ( 4 ), 514 – 521.
dc.identifier.citedreferenceTanaka, K., Sailer, I., Iwama, R., Yamauchi, K., Nogami, S., Yoda, N., & Takahashi, T. ( 2018 ). Relationship between cortical bone thickness and implant stability at the time of surgery and secondary stability after osseointegration measured using resonance frequency analysis. Journal of Periodontal & Implant Science, 48 ( 6 ), 360 – 372. https://doi.org/10.5051/jpis.2018.48.6.360
dc.identifier.citedreferenceTarnow, D. ( 1993 ). Esthetic excellence with the single-tooth implant. Dental Economics, 83 ( 3 ), 80 – 82.
dc.identifier.citedreferenceTemmerman, A., Keestra, J. A., Coucke, W., Teughels, W., & Quirynen, M. ( 2015 ). The outcome of oral implants placed in bone with limited bucco-oral dimensions: A 3-year follow-up study. Journal of Clinical Periodontology, 42 ( 3 ), 311 – 318. https://doi.org/10.1111/jcpe.12376
dc.identifier.citedreferenceThoma, D. S., Lim, H. C., Paeng, K. W., Jung, U. W., Hammerle, C. H. F., & Jung, R. E. ( 2019 ). Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects-A histologic and radiographic preclinical study. Clinical Oral Implants Research, 30 ( 7 ), 660 – 669. https://doi.org/10.1111/clr.13451
dc.identifier.citedreferencevan Eekeren, P., van Elsas, P., Tahmaseb, A., & Wismeijer, D. ( 2017 ). The influence of initial mucosal thickness on crestal bone change in similar macrogeometrical implants: A prospective randomized clinical trial. Clinical Oral Implants Research, 28 ( 2 ), 214 – 218. https://doi.org/10.1111/clr.12784
dc.identifier.citedreferenceVera, C., De Kok, I. J., Chen, W., Reside, G., Tyndall, D., & Cooper, L. F. ( 2012 ). Evaluation of post-implant buccal bone resorption using cone beam computed tomography: A clinical pilot study. The International Journal of Oral & Maxillofacial Implants, 27 ( 5 ), 1249 – 1257.
dc.identifier.citedreferenceVignoletti, F., Sanz-Esporrin, J., Sanz-Martin, I., Nunez, J., Luengo, F., & Sanz, M. ( 2019 ). Ridge alterations after implant placement in fresh extraction sockets or in healed crests: An experimental in vivo investigation. Clinical Oral Implants Research, 30 ( 4 ), 353 – 363. https://doi.org/10.1111/clr.13421
dc.identifier.citedreferenceWadamoto, M., Akagawa, Y., Sato, Y., & Kubo, T. ( 1996 ). The three-dimensional bone interface of an osseointegrated implant. I: A morphometric evaluation in initial healing. The Journal of Prosthetic Dentistry, 76 ( 2 ), 170 – 175. https://doi.org/10.1016/s0022-3913(96)90302-9
dc.identifier.citedreferenceWells, G. A., Shea, B., O’Connell, D., Peterson, J., Welch, V., Losos, M., & Tugwell, P. ( 2014 ). The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Applied Engineering in Agriculture.
dc.identifier.citedreferenceWindael, S., Collaert, B., De Buyser, S., De Bruyn, H., & Vervaeke, S. ( 2021 ). Early peri-implant bone loss as a predictor for peri-implantitis: A 10-year prospective cohort study. Clinical Implant Dentistry and Related Research, 23 ( 3 ), 298 – 308. https://doi.org/10.1111/cid.13000
dc.identifier.citedreferenceYi, H. Y., Park, Y. S., Pippenger, B. E., Lee, B., Miron, R. J., & Dard, M. ( 2017 ). Dimensional changes following immediate and delayed implant placement: A histomorphometric study in the canine. The International Journal of Oral & Maxillofacial Implants, 32 ( 3 ), 541 – 546. https://doi.org/10.11607/jomi.5145
dc.identifier.citedreferenceYoda, N., Zheng, K., Chen, J., Li, W., Swain, M., Sasaki, K., & Li, Q. ( 2017 ). Bone morphological effects on post-implantation remodeling of maxillary anterior buccal bone: A clinical and biomechanical study. Journal of Prosthodontic Research, 61 ( 4 ), 393 – 402. https://doi.org/10.1016/j.jpor.2016.12.010
dc.identifier.citedreferenceBozkaya, S., Uraz, A., Guler, B., Kahraman, S. A., & Turhan Bal, B. ( 2021 ). The stability of implants and microbiological effects following photobiomodulation therapy with one-stage placement: A randomized, controlled, single-blinded, and split-mouth clinical study. Clinical Implant Dentistry and Related Research, 23 ( 3 ), 329 – 340. https://doi.org/10.1111/cid.12999
dc.identifier.citedreferenceBratu, E. A., Tandlich, M., & Shapira, L. ( 2009 ). A rough surface implant neck with microthreads reduces the amount of marginal bone loss: A prospective clinical study. Clinical Oral Implants Research, 20 ( 8 ), 827 – 832. https://doi.org/10.1111/j.1600-0501.2009.01730.x
dc.identifier.citedreferenceAbrahamsson, I., Berglundh, T., Linder, E., Lang, N. P., & Lindhe, J. ( 2004 ). Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clinical Oral Implants Research, 15 ( 4 ), 381 – 392. https://doi.org/10.1111/j.1600-0501.2004.01082.x
dc.identifier.citedreferenceAbrahamsson, I., Berglundh, T., Moon, I. S., & Lindhe, J. ( 1999 ). Peri-implant tissues at submerged and non-submerged titanium implants. Journal of Clinical Periodontology, 26 ( 9 ), 600 – 607. https://doi.org/10.1034/j.1600-051x.1999.260907.x
dc.identifier.citedreferenceAbrahamsson, I., Berglundh, T., Wennstrom, J., & Lindhe, J. ( 1996 ). The peri-implant hard and soft tissues at different implant systems. A comparative study in the dog. Clinical Oral Implants Research, 7 ( 3 ), 212 – 219. https://doi.org/10.1034/j.1600-0501.1996.070303.x
dc.identifier.citedreferenceAbrahamsson, I., Welander, M., Linder, E., & Berglundh, T. ( 2014 ). Healing at implants placed in an alveolar ridge with a sloped configuration: An experimental study in dogs. Clinical Implant Dentistry and Related Research, 16 ( 1 ), 62 – 69. https://doi.org/10.1111/j.1708-8208.2012.00460.x
dc.identifier.citedreferenceBaffone, G., Lang, N. P., Pantani, F., Favero, G., Ferri, M., & Botticelli, D. ( 2015 ). Hard and soft tissue changes around implants installed in regular-sized and reduced alveolar bony ridges. An experimental study in dogs. Clinical Oral Implants Research, 26 ( 1 ), 96 – 101. https://doi.org/10.1111/clr.12306
dc.identifier.citedreferenceBaffone, G. M., Botticelli, D., Canullo, L., Scala, A., Beolchini, M., & Lang, N. P. ( 2012 ). Effect of mismatching abutments on implants with wider platforms – An experimental study in dogs. Clinical Oral Implants Research, 23 ( 3 ), 334 – 339. https://doi.org/10.1111/j.1600-0501.2011.02320.x
dc.identifier.citedreferenceBaffone, G. M., Botticelli, D., Pantani, F., Cardoso, L. C., Schweikert, M. T., & Lang, N. P. ( 2011 ). Influence of various implant platform configurations on peri-implant tissue dimensions: An experimental study in dog. Clinical Oral Implants Research, 22 ( 4 ), 438 – 444. https://doi.org/10.1111/j.1600-0501.2010.02146.x
dc.identifier.citedreferenceBarone, A., Alfonsi, F., Derchi, G., Tonelli, P., Toti, P., Marchionni, S., & Covani, U. ( 2016 ). The effect of insertion torque on the clinical outcome of single implants: A randomized clinical trial. Clinical Implant Dentistry and Related Research, 18 ( 3 ), 588 – 600. https://doi.org/10.1111/cid.12337
dc.identifier.citedreferenceBarone, A., Toti, P., Quaranta, A., Derchi, G., & Covani, U. ( 2015 ). The clinical outcomes of immediate versus delayed restoration procedures on immediate implants: A comparative cohort study for single-tooth replacement. Clinical Implant Dentistry and Related Research, 17 ( 6 ), 1114 – 1126. https://doi.org/10.1111/cid.12225
dc.identifier.citedreferenceBecker, J., Ferrari, D., Herten, M., Kirsch, A., Schaer, A., & Schwarz, F. ( 2007 ). Influence of platform switching on crestal bone changes at non-submerged titanium implants: A histomorphometrical study in dogs. Journal of Clinical Periodontology, 34 ( 12 ), 1089 – 1096. https://doi.org/10.1111/j.1600-051X.2007.01155.x
dc.identifier.citedreferenceBecker, K., Klitzsch, I., Stauber, M., & Schwarz, F. ( 2017 ). Three-dimensional assessment of crestal bone levels at titanium implants with different abutment microstructures and insertion depths using micro-computed tomography. Clinical Oral Implants Research, 28 ( 6 ), 671 – 676. https://doi.org/10.1111/clr.12860
dc.identifier.citedreferenceBengazi, F., Botticelli, D., Favero, V., Perini, A., Urbizo Velez, J., & Lang, N. P. ( 2014 ). Influence of presence or absence of keratinized mucosa on the alveolar bony crest level as it relates to different buccal marginal bone thicknesses. An experimental study in dogs. Clinical Oral Implants Research, 25 ( 9 ), 1065 – 1071. https://doi.org/10.1111/clr.12233
dc.identifier.citedreferenceBeolchini, M., Lang, N. P., Ricci, E., Bengazi, F., Triana, B. G., & Botticelli, D. ( 2015 ). Influence on alveolar resorption of the buccal bony plate width in the edentulous ridge expansion (E.R.E.) – An experimental study in the dog. Clinical Oral Implants Research, 26 ( 1 ), 109 – 114. https://doi.org/10.1111/clr.12308
dc.identifier.citedreferenceBuser, D., Janner, S. F., Wittneben, J. G., Bragger, U., Ramseier, C. A., & Salvi, G. E. ( 2012 ). 10-Year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clinical Implant Dentistry and Related Research, 14 ( 6 ), 839 – 851. https://doi.org/10.1111/j.1708-8208.2012.00456.x
dc.identifier.citedreferenceCalvo-Guirado, J. L., Delgado Ruiz, R. A., Ramirez-Fernandez, M. P., Abboud, M., Janjic, B., Sanchez, M., & de Val, J. E. ( 2016 ). Histological and histomorphometric analyses of narrow implants, crestal and subcrestally placed in severe alveolar atrophy: A study in foxhound dogs. Clinical Oral Implants Research, 27 ( 4 ), 497 – 504. https://doi.org/10.1111/clr.12569
dc.identifier.citedreferenceCarcuac, O., Abrahamsson, I., Derks, J., Petzold, M., & Berglundh, T. ( 2020 ). Spontaneous progression of experimental peri-implantitis in augmented and pristine bone: A pre-clinical in vivo study. Clinical Oral Implants Research, 31 ( 2 ), 192 – 200. https://doi.org/10.1111/clr.13564
dc.identifier.citedreferenceCardaropoli, G., Lekholm, U., & Wennstrom, J. L. ( 2006 ). Tissue alterations at implant-supported single-tooth replacements: A 1-year prospective clinical study. Clinical Oral Implants Research, 17 ( 2 ), 165 – 171. https://doi.org/10.1111/j.1600-0501.2005.01210.x
dc.identifier.citedreferenceCarmagnola, D., Araujo, M., Berglundh, T., Albrektsson, T., & Lindhe, J. ( 1999 ). Bone tissue reaction around implants placed in a compromised jaw. Journal of Clinical Periodontology, 26 ( 10 ), 629 – 635. https://doi.org/10.1034/j.1600-051x.1999.261001.x
dc.identifier.citedreferenceCarmo Filho, L. C. D., Faot, F., Madruga, M. M., Marcello-Machado, R. M., Bordin, D., & Del Bel Cury, A. A. ( 2019 ). Effect of implant macrogeometry on peri-implant healing outcomes: A randomized clinical trial. Clinical Oral Investigations, 23 ( 2 ), 567 – 575. https://doi.org/10.1007/s00784-018-2463-5
dc.identifier.citedreferenceCesaretti, G., Lang, N. P., Salata, L. A., Schweikert, M. T., Gutierrez Hernandez, M. E., & Botticelli, D. ( 2015 ). Sub-crestal positioning of implants results in higher bony crest resorption: An experimental study in dogs. Clinical Oral Implants Research, 26 ( 12 ), 1355 – 1360. https://doi.org/10.1111/clr.12467
dc.identifier.citedreferenceChacun, D., Lafon, A., Courtois, N., Reveron, H., Chevalier, J., Margossian, P., Alves, A., Gritsch, K., & Grosgogeat, B. ( 2021 ). Histologic and histomorphometric evaluation of new zirconia-based ceramic dental implants: A preclinical study in dogs. Dental Materials, 37 ( 9 ), 1377 – 1389. https://doi.org/10.1016/j.dental.2021.06.010
dc.identifier.citedreferenceChan, D., Pelekos, G., Ho, D., Cortellini, P., & Tonetti, M. S. ( 2019 ). The depth of the implant mucosal tunnel modifies the development and resolution of experimental peri-implant mucositis: A case-control study. Journal of Clinical Periodontology, 46 ( 2 ), 248 – 255. https://doi.org/10.1111/jcpe.13066
dc.identifier.citedreferenceChang, C. C., Greenspan, A., & Gershwin, M. E. ( 1993 ). Osteonecrosis: Current perspectives on pathogenesis and treatment. Seminars in Arthritis and Rheumatism, 23 ( 1 ), 47 – 69.
dc.identifier.citedreferenceChatvaratthana, K., Thaworanunta, S., Seriwatanachai, D., & Wongsirichat, N. ( 2017 ). Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients. PLoS One, 12 ( 12 ), e0190293. https://doi.org/10.1371/journal.pone.0190293
dc.identifier.citedreferenceChecchi, V., Felice, P., Zucchelli, G., Barausse, C., Piattelli, M., Pistilli, R., Grandi, G., & Esposito, M. ( 2017 ). Wide diameter immediate post-extractive implants vs delayed placement of normal-diameter implants in preserved sockets in the molar region: 1-year post-loading outcome of a randomised controlled trial. European Journal of Oral Implantology, 10 ( 3 ), 263 – 278.
dc.identifier.citedreferenceChen, H., Liu, Z., Hu, X., Wu, B., & Gu, Y. ( 2021 ). Comparison of mandibular cross-sectional morphology between class I and class II subjects with different vertical patterns: Based on CBCT images and statistical shape analysis. BMC Oral Health, 21 ( 1 ), 238. https://doi.org/10.1186/s12903-021-01591-3
dc.identifier.citedreferenceChen, S. T., Darby, I. B., & Reynolds, E. C. ( 2007 ). A prospective clinical study of non-submerged immediate implants: Clinical outcomes and esthetic results. Clinical Oral Implants Research, 18 ( 5 ), 552 – 562. https://doi.org/10.1111/j.1600-0501.2007.01388.x
dc.identifier.citedreferenceCooper, L. F., De Kok, I. J., Rojas-Vizcaya, F., Pungpapong, P., & Chang, S. H. ( 2007 ). The immediate loading of dental implants. The Compendium of Continuing Education in Dentistry, 28 ( 4 ), 216 – 225 quiz 226.
dc.identifier.citedreferenceCooper, L. F., Reside, G., Stanford, C., Barwacz, C., Feine, J., Abi Nader, S., Scheyer, E. T., & McGuire, M. ( 2015 ). A multicenter randomized comparative trial of implants with different abutment interfaces to replace anterior maxillary single teeth. The International Journal of Oral & Maxillofacial Implants, 30 ( 3 ), 622 – 632. https://doi.org/10.11607/jomi.3772
dc.identifier.citedreferenceCovani, U., Bortolaia, C., Barone, A., & Sbordone, L. ( 2004 ). Bucco-lingual crestal bone changes after immediate and delayed implant placement. Journal of Periodontology, 75 ( 12 ), 1605 – 1612. https://doi.org/10.1902/jop.2004.75.12.1605
dc.identifier.citedreferenceCrespi, R., Toti, P., Covani, U., Crespi, G., & Menchini-Fabris, G. B. ( 2021 ). Clinical and radiographic evaluation of modified transalveolar two-step osteotome-mediated localized maxillary sinus elevation: A retrospective computed tomography study with a 3-year follow-up. The International Journal of Oral & Maxillofacial Implants, 36 ( 3 ), 553 – 560. https://doi.org/10.11607/jomi.8573
dc.identifier.citedreferenceda Silva Pereira, S. L., Sallum, A. W., Casati, M. Z., Caffesse, R. G., Weng, D., Nociti, F. H., Jr., & Sallum, E. A. ( 2000 ). Comparison of bioabsorbable and non-resorbable membranes in the treatment of dehiscence-type defects. A histomorphometric study in dogs. Journal of Periodontology, 71 ( 8 ), 1306 – 1314. https://doi.org/10.1902/jop.2000.71.8.1306
dc.identifier.citedreferenceDeporter, D. A., Watson, P. A., Pilliar, R. M., Howley, T. P., & Winslow, J. ( 1988 ). A histological evaluation of a functional endosseous, porous-surfaced, titanium alloy dental implant system in the dog. Journal of Dental Research, 67 ( 9 ), 1190 – 1195. https://doi.org/10.1177/00220345880670090801
dc.identifier.citedreferenceDerks, J., Schaller, D., Hakansson, J., Wennstrom, J. L., Tomasi, C., & Berglundh, T. ( 2016 ). Effectiveness of implant therapy analyzed in a Swedish population: Prevalence of peri-implantitis. Journal of Dental Research, 95 ( 1 ), 43 – 49. https://doi.org/10.1177/0022034515608832
dc.identifier.citedreferenceDi Raimondo, R., Sanz-Esporrin, J., Martin, I. S., Vignoletti, F., Nunez, J., Munoz, F., Haugen, H. J., & Sanz, M. ( 2021 ). Hard tissue volumetric and soft tissue contour linear changes at implants with different surface characteristics after experimentally induced peri-implantitis: An experimental in vivo investigation. Clinical Oral Investigations, 25 ( 6 ), 3905 – 3918. https://doi.org/10.1007/s00784-020-03720-8
dc.identifier.citedreferenceDuong, M., Mealey, B. L., Walker, C., Al-Harthi, S., Prihoda, T. J., & Huynh-Ba, G. ( 2020 ). Evaluation of healing at molar extraction sites with and without ridge preservation: A three-arm histologic analysis. Journal of Periodontology, 91 ( 1 ), 74 – 82. https://doi.org/10.1002/JPER.19-0237
dc.identifier.citedreferenceDursun, E., Tulunoglu, I., Canpinar, P., Uysal, S., Akalin, F. A., & Tozum, T. F. ( 2012 ). Are marginal bone levels and implant stability/mobility affected by single-stage platform switched dental implants? A comparative clinical study. Clinical Oral Implants Research, 23 ( 10 ), 1161 – 1167. https://doi.org/10.1111/j.1600-0501.2011.02277.x
dc.identifier.citedreferenceFarronato, D., Pasini, P. M., Orsina, A. A., Manfredini, M., Azzi, L., & Farronato, M. ( 2020 ). Correlation between buccal bone thickness at implant placement in healed sites and buccal soft tissue maturation pattern: A prospective three-year study. Materials, 13 ( 3 ), 511. https://doi.org/10.3390/ma13030511
dc.identifier.citedreferenceFenner, M., Vairaktaris, E., Stockmann, P., Schlegel, K. A., Neukam, F. W., & Nkenke, E. ( 2009 ). Influence of residual alveolar bone height on implant stability in the maxilla: An experimental animal study. Clinical Oral Implants Research, 20 ( 8 ), 751 – 755. https://doi.org/10.1111/j.1600-0501.2008.01570.x
dc.identifier.citedreferenceFienitz, T., Schwarz, F., Ritter, L., Dreiseidler, T., Becker, J., & Rothamel, D. ( 2012 ). Accuracy of cone beam computed tomography in assessing peri-implant bone defect regeneration: A histologically controlled study in dogs. Clinical Oral Implants Research, 23 ( 7 ), 882 – 887. https://doi.org/10.1111/j.1600-0501.2011.02232.x
dc.identifier.citedreferenceFinelle, G., Papadimitriou, D. E. V., Souza, A. B., Katebi, N., Gallucci, G. O., & Araujo, M. G. ( 2015 ). Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: Micro-CT analysis. Clinical Oral Implants Research, 26 ( 4 ), e42 – e46. https://doi.org/10.1111/clr.12328
dc.identifier.citedreferenceFiorellini, J. P., Llobell, A., Norton, M. R., Sarmiento, H. L., Chang, Y. C., & Wada, K. ( 2020 ). Healed edentulous sites: Suitability for dental implant placement, need for secondary procedures, and contemporary implant designs. The International Journal of Oral & Maxillofacial Implants, 35 ( 5 ), 924 – 930. https://doi.org/10.11607/jomi.8215
dc.identifier.citedreferenceGehrke, S. A., Braganca, L. K., Velasco-Ortega, E., & Calvo-Guirado, J. L. ( 2018 ). Evaluation of dimensional behavior of peri-implant tissues in implants immediately exposed or submerged in fresh extraction and healed sites: A histological study in dogs. International Journal of Implant Dentistry, 4 ( 1 ), 5. https://doi.org/10.1186/s40729-018-0120-z
dc.identifier.citedreferenceGlibert, M., Ostman, S., De Bruyn, H., & Ostman, P. O. ( 2018 ). The influence of initial hard and soft tissue dimensions on initial crestal bone loss of immediately loaded dental implants. The International Journal of Periodontics & Restorative Dentistry, 38 ( 6 ), 873 – 878. https://doi.org/10.11607/prd.3458
dc.identifier.citedreferenceGrunder, U., Gracis, S., & Capelli, M. ( 2005 ). Influence of the 3-D bone-to-implant relationship on esthetics. The International Journal of Periodontics & Restorative Dentistry, 25 ( 2 ), 113 – 119.
dc.identifier.citedreferenceHooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. ( 2014 ). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. https://doi.org/10.1186/1471-2288-14-43
dc.identifier.citedreferenceHur, Y., Ogata, Y., Kim, D. W., Pham, C. M., Yoon, T. H., & Ogata, H. ( 2017 ). Bone resorption during submerged healing after guided bone regeneration: A prospective case series. Implant Dentistry, 26 ( 6 ), 820 – 825. https://doi.org/10.1097/ID.0000000000000686
dc.identifier.citedreferenceJemt, T., & Lekholm, U. ( 2003 ). Measurements of buccal tissue volumes at single-implant restorations after local bone grafting in maxillas: A 3-year clinical prospective study case series. Clinical Implant Dentistry and Related Research, 5 ( 2 ), 63 – 70. https://doi.org/10.1111/j.1708-8208.2003.tb00185.x
dc.identifier.citedreferenceJemt, T., & Lekholm, U. ( 2005 ). Single implants and buccal bone grafts in the anterior maxilla: Measurements of buccal crestal contours in a 6-year prospective clinical study. Clinical Implant Dentistry and Related Research, 7 ( 3 ), 127 – 135. https://doi.org/10.1111/j.1708-8208.2005.tb00056.x
dc.identifier.citedreferenceJonker, B. P., Wolvius, E. B., van der Tas, J. T., Tahmaseb, A., & Pijpe, J. ( 2020 ). Esthetics and patient-reported outcomes of implants placed with guided bone regeneration and complete native bone: A prospective controlled clinical trial. The International Journal of Oral & Maxillofacial Implants, 35 ( 2 ), 406 – 414. https://doi.org/10.11607/jomi.7751
dc.identifier.citedreferenceJung, R. E., Herzog, M., Wolleb, K., Ramel, C. F., Thoma, D. S., & Hammerle, C. H. ( 2017 ). A randomized controlled clinical trial comparing small buccal dehiscence defects around dental implants treated with guided bone regeneration or left for spontaneous healing. Clinical Oral Implants Research, 28 ( 3 ), 348 – 354. https://doi.org/10.1111/clr.12806
dc.identifier.citedreferenceKatafuchi, M., Weinstein, B. F., Leroux, B. G., Chen, Y. W., & Daubert, D. M. ( 2018 ). Restoration contour is a risk indicator for peri-implantitis: A cross-sectional radiographic analysis. Journal of Clinical Periodontology, 45 ( 2 ), 225 – 232. https://doi.org/10.1111/jcpe.12829
dc.identifier.citedreferenceKatranji, A., Misch, K., & Wang, H. L. ( 2007 ). Cortical bone thickness in dentate and edentulous human cadavers. Journal of Periodontology, 78 ( 5 ), 874 – 878. https://doi.org/10.1902/jop.2007.060342
dc.identifier.citedreferenceKim, D. G., Elias, K. L., Jeong, Y. H., Kwon, H. J., Clements, M., Brantley, W. A., Lee, D. J., & Han, J. S. ( 2016 ). Differences between buccal and lingual bone quality and quantity of peri-implant regions. Journal of the Mechanical Behavior of Biomedical Materials, 60, 48 – 55. https://doi.org/10.1016/j.jmbbm.2015.12.036
dc.identifier.citedreferenceKoutouzis, T., Koutouzis, G., Gadalla, H., & Neiva, R. ( 2013 ). The effect of healing abutment reconnection and disconnection on soft and hard peri-implant tissues: A short-term randomized controlled clinical trial. The International Journal of Oral & Maxillofacial Implants, 28 ( 3 ), 807 – 814. https://doi.org/10.11607/jomi.3022
dc.identifier.citedreferenceLee, J., Fiorini, T., Gamborena, I., Wenzel, B. A., Schupbach, P., Wikesjo, U. M., & Susin, C. ( 2016 ). Effect of platform shift/switch on Crestal bone levels and mucosal profile following flapless surgery and crestal/subcrestal implant placement. Clinical Implant Dentistry and Related Research, 18 ( 1 ), 73 – 81. https://doi.org/10.1111/cid.12243
dc.identifier.citedreferenceLee, J., Yoo, J. M., Amara, H. B., Lee, Y. M., Lim, Y. J., Kim, H., & Koo, K. T. ( 2019 ). Bone healing dynamics associated with 3 implants with different surfaces: Histologic and histomorphometric analyses in dogs. Journal of Periodontal & Implant Science, 49 ( 1 ), 25 – 38. https://doi.org/10.5051/jpis.2019.49.1.25
dc.identifier.citedreferenceLi Manni, L., Lecloux, G., Rompen, E., Aouini, W., Shapira, L., & Lambert, F. ( 2020 ). Clinical and radiographic assessment of circular versus triangular cross-section neck implants in the posterior maxilla: A 1-year randomized controlled trial. Clinical Oral Implants Research, 31 ( 9 ), 814 – 824. https://doi.org/10.1111/clr.13624
dc.identifier.citedreferenceLin, D., Li, Q., Li, W., & Swain, M. ( 2009 ). Dental implant induced bone remodeling and associated algorithms. Journal of the Mechanical Behavior of Biomedical Materials, 2 ( 5 ), 410 – 432. https://doi.org/10.1016/j.jmbbm.2008.11.007
dc.identifier.citedreferenceLindhe, J., Bressan, E., Cecchinato, D., Corra, E., Toia, M., & Liljenberg, B. ( 2013 ). Bone tissue in different parts of the edentulous maxilla and mandible. Clinical Oral Implants Research, 24 ( 4 ), 372 – 377. https://doi.org/10.1111/clr.12064
dc.identifier.citedreferenceMankin, H. J. ( 1992 ). Nontraumatic necrosis of bone (osteonecrosis). The New England Journal of Medicine, 326 ( 22 ), 1473 – 1479. https://doi.org/10.1056/NEJM199205283262206
dc.identifier.citedreferenceMarconcini, S., Giammarinaro, E., Toti, P., Alfonsi, F., Covani, U., & Barone, A. ( 2018 ). Longitudinal analysis on the effect of insertion torque on delayed single implants: A 3-year randomized clinical study. Clinical Implant Dentistry and Related Research, 20 ( 3 ), 322 – 332. https://doi.org/10.1111/cid.12586
dc.identifier.citedreferenceMonje, A., Chappuis, V., Monje, F., Munoz, F., Wang, H. L., Urban, I. A., & Buser, D. ( 2019 ). The critical peri-implant buccal bone wall thickness revisited: An experimental study in the beagle dog. The International Journal of Oral & Maxillofacial Implants, 34 ( 6 ), 1328 – 1336. https://doi.org/10.11607/jomi.7657
dc.identifier.citedreferenceMonje, A., Eick, S., Buser, D., & Salvi, G. E. ( 2021 ). Microbial and host-derived biomarker changes during ligature-induced and spontaneous peri-implantitis in the beagle dog. Journal of Periodontal Research, 56 ( 1 ), 93 – 100. https://doi.org/10.1111/jre.12797
dc.identifier.citedreferenceMonje, A., Galindo-Moreno, P., Tozum, T. F., Suarez-Lopez del Amo, F., & Wang, H. L. ( 2016 ). Into the paradigm of local factors as contributors for Peri-implant disease: Short communication. The International Journal of Oral & Maxillofacial Implants, 31 ( 2 ), 288 – 292. https://doi.org/10.11607/jomi.4265
dc.identifier.citedreferenceMonje, A., & Nart, J. ( 2022 ). Management and sequelae of dental implant removal. Periodontology 2000, 88 ( 1 ), 182 – 200. https://doi.org/10.1111/prd.12418
dc.identifier.citedreferenceMoses, O., Pitaru, S., Artzi, Z., & Nemcovsky, C. E. ( 2005 ). Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clinical Oral Implants Research, 16 ( 2 ), 210 – 219. https://doi.org/10.1111/j.1600-0501.2004.01100.x
dc.identifier.citedreferenceNemcovsky, C. E., & Artzi, Z. ( 2002 ). Comparative study of buccal dehiscence defects in immediate, delayed, and late maxillary implant placement with collagen membranes: Clinical healing between placement and second-stage surgery. Journal of Periodontology, 73 ( 7 ), 754 – 761. https://doi.org/10.1902/jop.2002.73.7.754
dc.identifier.citedreferenceNir-Hadar, O., Palmer, M., & Soskolne, W. A. ( 1998 ). Delayed immediate implants: Alveolar bone changes during the healing period. Clinical Oral Implants Research, 9 ( 1 ), 26 – 33. https://doi.org/10.1034/j.1600-0501.1998.090104.x
dc.identifier.citedreferenceNoelken, R., Donati, M., Fiorellini, J., Gellrich, N. C., Parker, W., Wada, K., & Berglundh, T. ( 2014 ). Soft and hard tissue alterations around implants placed in an alveolar ridge with a sloped configuration. Clinical Oral Implants Research, 25 ( 1 ), 3 – 9. https://doi.org/10.1111/clr.12079
dc.identifier.citedreferenceNohra, J., Dagher, M., Matni, G., Mokbel, N., Jobaili, E., & Naaman, N. ( 2018 ). Effect of primary stability and soft- and hard-tissue thickness on marginal bone loss: A prospective pilot study. Implant Dentistry, 27 ( 5 ), 542 – 546. https://doi.org/10.1097/ID.0000000000000810
dc.identifier.citedreferenceNovaes, A. B., Jr., Suaid, F., Queiroz, A. C., Muglia, V. A., Souza, S. L., Palioto, D. B., Taba, M., Jr., & Grisi, M. F. ( 2012 ). Buccal bone plate remodeling after immediate implant placement with and without synthetic bone grafting and flapless surgery: Radiographic study in dogs. The Journal of Oral Implantology, 38 ( 6 ), 687 – 698. https://doi.org/10.1563/AAID-JOI-D-10-00176
dc.identifier.citedreferenceNowzari, H., Chee, W., Yi, K., Pak, M., Chung, W. H., & Rich, S. ( 2006 ). Scalloped dental implants: A retrospective analysis of radiographic and clinical outcomes of 17 NobelPerfect implants in 6 patients. Clinical Implant Dentistry and Related Research, 8 ( 1 ), 1 – 10. https://doi.org/10.2310/j.6480.2005.00034.x
dc.identifier.citedreferenceOda, Y., Mori, G., Sasaki, H., Furuya, Y., Ito, T., Iijima, T., Sekine, H., & Yajima, Y. ( 2021 ). Dimensional changes of buccal bone in the edentulous maxilla with telescopic-retained implant-supported fixed dental prostheses. The Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2021.08.006
dc.identifier.citedreferenceOeschger, C. E., Bosshardt, D. D., Roehling, S., Gahlert, M., Cochran, D. L., & Janner, S. F. M. ( 2020 ). Crestal bone response to loaded zirconia and titanium implants: A radiographic and histometric analysis in canines. Clinical Oral Investigations, 24 ( 10 ), 3609 – 3617. https://doi.org/10.1007/s00784-020-03235-2
dc.identifier.citedreferenceOnem, E., Baksi, B. G., & Sogur, E. ( 2012 ). Changes in the fractal dimension, feret diameter, and lacunarity of mandibular alveolar bone during initial healing of dental implants. The International Journal of Oral & Maxillofacial Implants, 27 ( 5 ), 1009 – 1013.
dc.identifier.citedreferencePage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. ( 2021 ). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906
dc.identifier.citedreferencePalombo, D., Rahmati, M., Vignoletti, F., Sanz-Esporrin, J., Haugen, H. J., & Sanz, M. ( 2021 ). Hard and soft tissue healing around implants with a modified implant neck configuration: An experimental in vivo preclinical investigation. Clinical Oral Implants Research, 32 ( 9 ), 1127 – 1141. https://doi.org/10.1111/clr.13812
dc.identifier.citedreferencePatil, Y. B., Asopa, S. J., Deepa, Goel, A., Jyoti, D., Somayaji, N. S., & Sabharwal, R. ( 2020 ). Influence of implant neck design on crestal bone loss: A comparative study. Nigerian Journal of Surgery, 26 ( 1 ), 22 – 27. https://doi.org/10.4103/njs.NJS_28_19
dc.identifier.citedreferencePenarrocha-Oltra, D., Demarchi, C. L., Maestre-Ferrin, L., Penarrocha-Diago, M., & Penarrocha-Diago, M. ( 2012 ). Comparison of immediate and delayed implants in the maxillary molar region: A retrospective study of 123 implants. The International Journal of Oral & Maxillofacial Implants, 27 ( 3 ), 604 – 610.
dc.identifier.citedreferencePons, R., Carreno, M., Amerio, E., Gargallo-Albiol, J., Nart, J., & Monje, A. ( 2021 ). Hard tissue dimensional changes following implant removal due to peri-implantitis: A retrospective study. Clinical Implant Dentistry and Related Research, 23 ( 3 ), 432 – 443. https://doi.org/10.1111/cid.13004
dc.identifier.citedreferenceQahash, M., Susin, C., Polimeni, G., Hall, J., & Wikesjo, U. M. ( 2008 ). Bone healing dynamics at buccal peri-implant sites. Clinical Oral Implants Research, 19 ( 2 ), 166 – 172. https://doi.org/10.1111/j.1600-0501.2007.01428.x
dc.identifier.citedreferenceRaes, S., Eghbali, A., Chappuis, V., Raes, F., De Bruyn, H., & Cosyn, J. ( 2018 ). A long-term prospective cohort study on immediately restored single tooth implants inserted in extraction sockets and healed ridges: CBCT analyses, soft tissue alterations, aesthetic ratings, and patient-reported outcomes. Clinical Implant Dentistry and Related Research, 20 ( 4 ), 522 – 530. https://doi.org/10.1111/cid.12613
dc.identifier.citedreferenceRoush, J. K., Howard, P. E., & Wilson, J. W. ( 1989 ). Normal blood supply to the canine mandible and mandibular teeth. American Journal of Veterinary Research, 50 ( 6 ), 904 – 907.
dc.identifier.citedreferenceRoux, S., & Orcel, P. ( 2000 ). Bone loss. Factors that regulate osteoclast differentiation: An update. Arthritis Research, 2 ( 6 ), 451 – 456. https://doi.org/10.1186/ar127
dc.identifier.citedreferenceSanz-Martin, I., Vignoletti, F., Nunez, J., Permuy, M., Munoz, F., Sanz-Esporrin, J., Fierravanti, L., Shapira, L., & Sanz, M. ( 2017 ). Hard and soft tissue integration of immediate and delayed implants with a modified coronal macrodesign: Histological, micro-CT and volumetric soft tissue changes from a pre-clinical in vivo study. Journal of Clinical Periodontology, 44 ( 8 ), 842 – 853. https://doi.org/10.1111/jcpe.12747
dc.identifier.citedreferenceSarment, D. P., & Meraw, S. J. ( 2008 ). Biological space adaptation to implant dimensions. The International Journal of Oral & Maxillofacial Implants, 23 ( 1 ), 99 – 104.
dc.identifier.citedreferenceSchliephake, H., Wichmann, M., Donnerstag, F., & Vogt, S. ( 2003 ). Imaging of periimplant bone levels of implants with buccal bone defects. Clinical Oral Implants Research, 14 ( 2 ), 193 – 200. https://doi.org/10.1034/j.1600-0501.2003.140209.x
dc.identifier.citedreferenceSchropp, L., Wenzel, A., Spin-Neto, R., & Stavropoulos, A. ( 2015 ). Fate of the buccal bone at implants placed early, delayed, or late after tooth extraction analyzed by cone beam CT: 10-year results from a randomized, controlled, clinical study. Clinical Oral Implants Research, 26 ( 5 ), 492 – 500. https://doi.org/10.1111/clr.12424
dc.identifier.citedreferenceSchwarz, F., Herten, M., Sager, M., Wieland, M., Dard, M., & Becker, J. ( 2007 ). Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: A pilot study in dogs. Journal of Clinical Periodontology, 34 ( 1 ), 78 – 86. https://doi.org/10.1111/j.1600-051X.2006.01008.x
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.