Show simple item record

Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars

dc.contributor.authorVicente-Retortillo, A.
dc.contributor.authorMartínez, G. M.
dc.contributor.authorLemmon, M. T.
dc.contributor.authorHueso, R.
dc.contributor.authorJohnson, J. R.
dc.contributor.authorSullivan, R.
dc.contributor.authorNewman, C. E.
dc.contributor.authorSebastián, E.
dc.contributor.authorToledo, D.
dc.contributor.authorApéstigue, V.
dc.contributor.authorArruego, I.
dc.contributor.authorMunguira, A.
dc.contributor.authorSánchez-Lavega, A.
dc.contributor.authorMurdoch, N.
dc.contributor.authorGillier, M.
dc.contributor.authorStott, A.
dc.contributor.authorMora-Sotomayor, L.
dc.contributor.authorBertrand, T.
dc.contributor.authorTamppari, L. K.
dc.contributor.authorJuárez, M. De La Torre
dc.contributor.authorRodríguez-Manfredi, J.-A.
dc.date.accessioned2023-04-04T17:41:49Z
dc.date.available2024-05-04 13:41:48en
dc.date.available2023-04-04T17:41:49Z
dc.date.issued2023-04
dc.identifier.citationVicente-Retortillo, A. ; Martínez, G. M. ; Lemmon, M. T.; Hueso, R.; Johnson, J. R.; Sullivan, R.; Newman, C. E.; Sebastián, E. ; Toledo, D.; Apéstigue, V. ; Arruego, I.; Munguira, A.; Sánchez-Lavega, A. ; Murdoch, N.; Gillier, M.; Stott, A.; Mora-Sotomayor, L. ; Bertrand, T.; Tamppari, L. K.; Juárez, M. De La Torre ; Rodríguez-Manfredi, J.-A. (2023). "Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars." Journal of Geophysical Research: Planets 128(4): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/176074
dc.description.abstractWe identify temporal variations in surface albedo at Jezero crater using first-of-their-kind high-cadence in-situ measurements of reflected shortwave radiation during the first 350 sols of the Mars 2020 mission. Simultaneous Mars Environmental Dynamics Analyzer (MEDA) measurements of pressure, radiative fluxes, winds, and sky brightness indicate that these albedo changes are caused by dust devils under typical conditions and by a dust storm at Ls ∼ 155°. The 17% decrease in albedo caused by the dust storm is one order of magnitude larger than the most apparent changes caused during quiescent periods by dust devils. Spectral reflectance measurements from Mastcam-Z images before and after the storm indicate that the decrease in albedo is mainly caused by dust removal. The occurrence of albedo changes is affected by the intensity and proximity of the convective vortex, and the availability and mobility of small particles at the surface. The probability of observing an albedo change increases with the magnitude of the pressure drop (ΔP): changes were detected in 3.5%, 43%, and 100% of the dust devils with ΔP < 2.5 Pa, ΔP > 2.5 Pa and ΔP > 4.5 Pa, respectively. Albedo changes were associated with peak wind speeds above 15 m·s−1. We discuss dust removal estimates, the observed surface temperature changes coincident with albedo changes, and implications for solar-powered missions. These results show synergies between multiple instruments (MEDA, Mastcam-Z, Navcam, and the Supercam microphone) that improve our understanding of aeolian processes on Mars.Plain Language SummarySmall particles at the surface of Mars are lifted and transported through interactions with the atmosphere, modifying the fraction of solar radiation reflected by the surface (albedo). We analyzed the first albedo measurements acquired at 1 Hz and other environmental variables measured at Jezero crater, concluding that albedo changes are caused by dust devils under typical conditions and by a dust storm. The darkening of the surface induced by the storm is around 10 times larger than that caused in the absence of a storm by dust devils. Surface images indicate that this darkening is caused by dust removal. Only a fraction of the dust devils cause an albedo change, depending on their intensity, size and trajectory, and on the features of the small particles at the surface. The combined analysis of environmental variables, images and microphone recordings acquired by the Mars 2020 mission improve our understanding of the processes involved in the lifting and transport of small particles.Key PointsWe identify surface albedo changes using Mars 2020 first-of-their-kind high-cadence in situ measurements of reflected solar radiationThe most remarkable albedo changes observed within seconds outside dust storm conditions were caused by dust devilsA multi-instrument analysis showed that the dust storm reduced surface albedo by more than 15%, primarily caused by dust removal
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMEDA
dc.subject.otherdust lifting
dc.subject.otheralbedo change
dc.subject.otherMars 2020
dc.subject.otherdust devil
dc.subject.otherdust storm
dc.titleDust Lifting Through Surface Albedo Changes at Jezero Crater, Mars
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176074/1/jgre22169_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176074/2/jgre22169.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176074/3/2022JE007672-sup-0001-Figure_SI-S01.pdf
dc.identifier.doi10.1029/2022JE007672
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceReid, R. J., Smith, P. H., Lemmon, M., Tanner, R., Burkland, M., Wegryn, E., et al. ( 1999 ). Imager for Mars Pathfinder (IMP) image calibration. Journal of Geophysical Research, 104 ( E4 ), 8907 – 8925. https://doi.org/10.1029/1998je900011
dc.identifier.citedreferenceLemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126
dc.identifier.citedreferenceLorenz, R. D. ( 2014 ). Vortex encounter rates with fixed barometer stations: Comparison with visual dust devil counts and large-eddy simulations. Journal of the Atmospheric Sciences, 71 ( 12 ), 4461 – 4472. https://doi.org/10.1175/jas-d-14-0138.1
dc.identifier.citedreferenceLorenz, R. D. ( 2016 ). Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: Application to InSight at Mars. Icarus, 271, 326 – 337. https://doi.org/10.1016/j.icarus.2016.02.001
dc.identifier.citedreferenceLorenz, R. D., Lemmon, M. T., & Maki, J. ( 2021 ). First Mars year of observations with the InSight solar arrays: Winds, dust devil shadows, and dust accumulation. Icarus, 364, 114468. https://doi.org/10.1016/j.icarus.2021.114468
dc.identifier.citedreferenceLorenz, R. D., Martínez, G. M., Spiga, A., Vicente-Retortillo, A., Newman, C. E., Murdoch, N., et al. ( 2021 ). Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planetary and Space Science, 207, 105337. https://doi.org/10.1016/j.pss.2021.105337
dc.identifier.citedreferenceMaki, J. N. ( 2020 ). Calibrated data products for the Mars 2020 perseverance rover navigation cameras. NASA Planetary Data System Imaging Node. https://doi.org/10.17189/yvkm-rx37
dc.identifier.citedreferenceMaki, J. N., Gruel, D., McKinney, C., Ravine, M. A., Morales, M., Lee, D., et al. ( 2020 ). The Mars 2020 engineering cameras and microphone on the perseverance rover: A next-generation imaging system for Mars exploration. Space Science Reviews, 216 ( 8 ), 1 – 48. https://doi.org/10.1007/s11214-020-00765-9
dc.identifier.citedreferenceMalin, M. C., & Cantor, B. A. ( 2022 ). MRO MARCI weather report for the week of 3 January 2022–9 January 2022, Malin space science systems captioned image release, MSSS 432 604. Retrieved from http://www.msss.com/msss_images/2022/01/12/
dc.identifier.citedreferenceMartínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128 ( 2 ), e2022JE007537. https://doi.org/10.1029/2022je007537
dc.identifier.citedreferenceMaurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., et al. ( 2021 ). The SuperCam instrument suite on the Mars 2020 rover: Science objectives and Mast-Unit description. Space Science Reviews, 217 ( 3 ), 1 – 108.
dc.identifier.citedreferenceMerusi, M., Kinch, K. B., Madsen, M. B., Bell, J. F., Maki, J. N., Hayes, A. G., et al. ( 2022 ). The Mastcam-Z radiometric calibration targets on NASA’s Perseverance rover: Derived irradiance time-series, dust deposition, and performance over the first 350 sols on Mars. Earth and Space Science, 9 ( 12 ), e2022EA002552. https://doi.org/10.1029/2022ea002552
dc.identifier.citedreferenceMorris, R. V., Golden, D. C., Bell, J. F., III., Shelfer, T. D., Scheinost, A. C., Hinman, N. W., et al. ( 2000 ). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, 105 ( E1 ), 1757 – 1817. https://doi.org/10.1029/1999je001059
dc.identifier.citedreferenceNeakrase, L. D., & Greeley, R. ( 2010 ). Dust devil sediment flux on Earth and Mars: Laboratory simulations. Icarus, 206 ( 1 ), 306 – 318. https://doi.org/10.1016/j.icarus.2009.08.028
dc.identifier.citedreferenceNeakrase, L. D. V., Greeley, R., Iversen, J. D., Balme, M. R., & Eddlemon, E. E. ( 2006 ). Dust flux within dust devils: Preliminary laboratory simulations. Geophysical Research Letters, 33 ( 19 ), L19S09. https://doi.org/10.1029/2006gl026810
dc.identifier.citedreferenceNewman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and Aeolian environment of Jezero crater, Mars. Science Advances, 8 ( 21 ), eabn3783.
dc.identifier.citedreferenceNewman, C. E., Lewis, S. R., Read, P. L., & Forget, F. ( 2002a ). Modeling the Martian dust cycle, 1. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 107 ( E12 ), 6 – 1. https://doi.org/10.1029/2002je001910
dc.identifier.citedreferenceNewman, C. E., Lewis, S. R., Read, P. L., & Forget, F. ( 2002b ). Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 107 ( E12 ), 7 – 1. https://doi.org/10.1029/2002je001920
dc.identifier.citedreferencePérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004
dc.identifier.citedreferenceReiss, D., Fenton, L., Neakrase, L., Zimmerman, M., Statella, T., Whelley, P., et al. ( 2016 ). Dust devil tracks. Space Science Reviews, 203 ( 1 ), 143 – 181. https://doi.org/10.1007/s11214-016-0308-6
dc.identifier.citedreferenceReiss, D., & Lorenz, R. D. ( 2016 ). Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites. Icarus, 266, 315 – 330. https://doi.org/10.1016/j.icarus.2015.11.012
dc.identifier.citedreferenceReiss, D., Raack, J., Rossi, A. P., Di Achille, G., & Hiesinger, H. ( 2010 ). First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophysical Research Letters, 37 ( 14 ). https://doi.org/10.1029/2010gl044016
dc.identifier.citedreferenceRice, M. S., Reynolds, M., Studer-Ellis, G., Bell, J. F., III., Johnson, J. R., Herkenhoff, K. E., et al. ( 2018 ). The albedo of Mars: Six Mars years of observations from Pancam on the Mars exploration rovers and comparisons to MOC, CTX and HiRISE. Icarus, 314, 159 – 174. https://doi.org/10.1016/j.icarus.2018.05.017
dc.identifier.citedreferenceRice, M. S., Seeger, C., Bell, J., Calef, F., St. Clair, M., Eng, A., et al. ( 2022 ). Spectral diversity of rocks and soils in Mastcam observations along the Curiosity rover’s traverse in Gale crater, Mars. Journal of Geophysical Research: Planets, 127 ( 8 ), e2021JE007134. https://doi.org/10.1029/2021je007134
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. NASA Planetary Data System Atmospheres Node. https://doi.org/10.17189/1522849
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M. T., et al. ( 2023 ). The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars. Nature Geoscience, 16, 19 – 28.
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86.
dc.identifier.citedreferenceRuff, S. W., & Christensen, P. R. ( 2002 ). Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal emission spectrometer data. Journal of Geophysical Research, 107 ( E12 ), 5119 – 5122. https://doi.org/10.1029/2001je001580
dc.identifier.citedreferenceSebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968
dc.identifier.citedreferenceSebastián, E., Martínez, G., Ramos, M., Pérez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006
dc.identifier.citedreferenceSullivan, R., Arvidson, R., Bell, J. F., III., Gellert, R., Golombek, M., Greeley, R., et al. ( 2008 ). Wind-driven particle mobility on Mars: Insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. Journal of Geophysical Research, 113 ( E6 ), E06S07. https://doi.org/10.1029/2008je003101
dc.identifier.citedreferenceSzwast, M. A., Richardson, M. I., & Vasavada, A. R. ( 2006 ). Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. Journal of Geophysical Research, 111 ( E11 ), E11008. https://doi.org/10.1029/2005je002485
dc.identifier.citedreferenceToledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., Montoro, A. D. F., et al. ( 2023 ). Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007494. https://doi.org/10.1029/2022je007494
dc.identifier.citedreferenceVicente-Retortillo, A. ( 2023 ). Derived data supporting the analysis of surface albedo changes from Mars 2020 observations: Probabilistic distribution of the Amplitude Spectral Densities of Supercam microphone recordings and Monte-Carlo dust devil simulations. (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7689351
dc.identifier.citedreferenceVicente-Retortillo, Á., Martínez, G. M., Renno, N., Newman, C. E., Ordonez-Etxeberria, I., Lemmon, M. T., et al. ( 2018 ). Seasonal deposition and lifting of dust on Mars as observed by the Curiosity rover. Scientific Reports, 8 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-018-35946-8
dc.identifier.citedreferenceVicente-Retortillo, Á., Martínez, G. M., Renno, N. O., Lemmon, M. T., & de la Torre-Juárez, M. ( 2017 ). Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophysical Research Letters, 44 ( 8 ), 3502 – 3508. https://doi.org/10.1002/2017gl072589
dc.identifier.citedreferenceVicente-Retortillo, A., Martínez, G. M., Rennó, N. O., Lemmon, M. T., de la Torre-Juárez, M., & Gómez-Elvira, J. ( 2020 ). In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews, 216 ( 5 ), 97. https://doi.org/10.1007/s11214-020-00722-6
dc.identifier.citedreferenceWellington, D. F., & Bell, J. F., III. ( 2020 ). Patterns of surface albedo changes from Mars reconnaissance orbiter Mars color imager (MARCI) observations. Icarus, 349, 113766. https://doi.org/10.1016/j.icarus.2020.113766
dc.identifier.citedreferenceWellington, D. F., Bell, J. F., Johnson, J. R., Kinch, K. M., Rice, M. S., Godber, A., et al. ( 2017 ). Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars. American Mineralogist, 102 ( 6 ), 1202 – 1217. https://doi.org/10.2138/am-2017-5760ccby
dc.identifier.citedreferenceWells, E., Veverka, J., & Thomas, P. ( 1984 ). Mars: Experimental study of albedo changes caused by dust fallout. Icarus, 58 ( 3 ), 331 – 338. https://doi.org/10.1016/0019-1035(84)90079-4
dc.identifier.citedreferenceWhelley, P. L., & Greeley, R. ( 2008 ). The distribution of dust devil activity on Mars. Journal of Geophysical Research, 113 ( E7 ), E07002. https://doi.org/10.1029/2007je002966
dc.identifier.citedreferenceWiens, R. C., & Maurice, S. A. ( 2021 ). Mars 2020 perseverance rover SuperCam raw, calibrated, and derived data products. NASA PDS Geosciences Node. https://doi.org/10.17189/1522646
dc.identifier.citedreferenceApestigue, V., Gonzalo, A., Jiménez, J. J., Boland, J., Lemmon, M., de Mingo, J. R., et al. ( 2022 ). Radiation and dust sensor for Mars environmental dynamic analyzer onboard M2020 rover. Sensors, 22 ( 8 ), 2907. https://doi.org/10.3390/s22082907
dc.identifier.citedreferenceBaker, M., Newman, C., Charalambous, C., Golombek, M., Spiga, A., Banfield, D., et al. ( 2021 ). Vortex-dominated Aeolian activity at InSight’s landing site, Part 2: Local meteorology, transport dynamics, and model analysis. Journal of Geophysical Research: Planets, 126 ( 4 ), e2020JE006514. https://doi.org/10.1029/2020je006514
dc.identifier.citedreferenceBanerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson, C. L., et al. ( 2020 ). Initial results from the InSight mission on Mars. Nature Geoscience, 13 ( 3 ), 183 – 189. https://doi.org/10.1038/s41561-020-0544-y
dc.identifier.citedreferenceBapst, J., Piqueux, S., Edwards, C. S., Wolfe, C., Hayne, P. O., Kass, D. M., & Kleinböhl, A. ( 2022 ). Surface dust redistribution on Mars from interannual differences in temperature and albedo. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007365. https://doi.org/10.1029/2022je007365
dc.identifier.citedreferenceBasu, S., Richardson, M. I., & Wilson, R. J. ( 2004 ). Simulation of the Martian dust cycle with the GFDL Mars GCM. Journal of Geophysical Research, 109 ( E11 ), E11006. https://doi.org/10.1029/2004je002243
dc.identifier.citedreferenceBell, J. F., III., Rice, M. S., Johnson, J. R., & Hare, T. M. ( 2008 ). Surface albedo observations at Gusev crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113 ( E6 ), E06S18. https://doi.org/10.1029/2007je002976
dc.identifier.citedreferenceBell, J. F., & Maki, J. N. ( 2021 ). Calibrated data products for the Mars 2020 Perseverance rover mast camera zoom camera created by the Arizona State University Mastcam-Z instrument team for the science team. NASA Planetary Data System Imaging Node. https://doi.org/10.17189/q3ts-c749
dc.identifier.citedreferenceBell, J. F., Maki, J. N., Mehall, G. L., Ravine, M. A., Caplinger, M. A., Bailey, Z. J., et al. ( 2021 ). The Mars 2020 perseverance rover mast camera zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Science Reviews, 217 ( 1 ), 1 – 40. https://doi.org/10.1007/s11214-020-00755-x
dc.identifier.citedreferenceCantor, B. A., Kanak, K. M., & Edgett, K. S. ( 2006 ). Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. Journal of Geophysical Research, 111 ( E12 ), E12002. https://doi.org/10.1029/2006je002700
dc.identifier.citedreferenceCharalambous, C., McClean, J. B., Baker, M., Pike, W. T., Golombek, M., Lemmon, M., et al. ( 2021 ). Vortex-dominated Aeolian activity at InSight’s Landing Site, Part 1: Multi-instrument observations, analysis, and implications. Journal of Geophysical Research: Planets, 126 ( 6 ), e2020JE006757. https://doi.org/10.1029/2020je006757
dc.identifier.citedreferenceChide, B., Murdoch, N., Bury, Y., Maurice, S., Jacob, X., Merrison, J. P., et al. ( 2021 ). Experimental wind characterization with the SuperCam microphone under a simulated Martian atmosphere. Icarus, 354, 114060. https://doi.org/10.1016/j.icarus.2020.114060
dc.identifier.citedreferenceClancy, R. T., Wolff, M. J., & Christensen, P. R. ( 2003 ). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108 ( E9 ), 5098. https://doi.org/10.1029/2003je002058
dc.identifier.citedreferenceFarley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y
dc.identifier.citedreferenceFarrand, W. H., Bell, J. F., III., Johnson, J. R., Squyres, S. W., Soderblom, J., & Ming, D. W. ( 2006 ). Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophysical Research, 111 ( E2 ), E02S15. https://doi.org/10.1029/2005JE002495
dc.identifier.citedreferenceFenton, L., Reiss, D., Lemmon, M., Marticorena, B., Lewis, S., & Cantor, B. ( 2016 ). Orbital observations of dust lofted by daytime convective turbulence. Space Science Reviews, 203 ( 1 ), 89 – 142. https://doi.org/10.1007/s11214-016-0243-6
dc.identifier.citedreferenceGeissler, P. E., Fenton, L. K., Enga, M. T., & Mukherjee, P. ( 2016 ). Orbital monitoring of Martian surface changes. Icarus, 278, 279 – 300. https://doi.org/10.1016/j.icarus.2016.05.023
dc.identifier.citedreferenceGreeley, R., Arvidson, R., Bell, J. F., III., Christensen, P., Foley, D., Haldemann, A., et al. ( 2005 ). Martian variable features: New insight from the Mars express orbiter and the Mars exploration rover spirit. Journal of Geophysical Research, 110 ( E6 ), E06002. https://doi.org/10.1029/2005je002403
dc.identifier.citedreferenceHarri, A. M., Genzer, M., Kemppinen, O., Kahanpää, H., Gomez-Elvira, J., Rodriguez-Manfredi, J. A., et al. ( 2014 ). Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research: Planets, 119 ( 1 ), 82 – 92. https://doi.org/10.1002/2013je004423
dc.identifier.citedreferenceHayes, A. G., Corlies, P., Tate, C., Barrington, M., Bell, J. F., Maki, J. N., et al. ( 2021 ). Pre-flight calibration of the Mars 2020 rover Mastcam zoom (Mastcam-Z) multispectral, stereoscopic imager. Space Science Reviews, 217 ( 2 ), 1 – 95. https://doi.org/10.1007/s11214-021-00795-x
dc.identifier.citedreferenceHueso ( 2022 ). General tools for analysis of convective vortices (IDL and Fortran codes) (0.9). Zenodo. https://doi.org/10.5281/zenodo.6958141
dc.identifier.citedreferenceHueso, R., Newman, C. E., del Río-Gaztelurrutia, T., Munguira, A., Sánchez-Lavega, A., Toledo, D., et al. ( 2023 ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, 128 ( 2 ), e2022JE007516. https://doi.org/10.1029/2022je007516
dc.identifier.citedreferenceJacob, S. R., Wellington, D. F., Bell, J. F., Achilles, C., Fraeman, A. A., Horgan, B., et al. ( 2020 ). Spectral, compositional, and physical properties of the Upper Murray formation and Vera Rubin ridge, Gale crater, Mars. Journal of Geophysical Research: Planets, 125 ( 11 ), e2019JE006290. https://doi.org/10.1029/2019je006290
dc.identifier.citedreferenceJohnson, J. R., Bell, J. F., Bender, S., Blaney, D., Cloutis, E., DeFlores, L., et al. ( 2015 ). ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 249, 74 – 92. https://doi.org/10.1016/j.icarus.2014.02.028
dc.identifier.citedreferenceJohnson, J. R., & Grundy, W. M. ( 2001 ). Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts. Geophysical Research Letters, 28 ( 10 ), 2101 – 2104. https://doi.org/10.1029/2000gl012669
dc.identifier.citedreferenceJohnson, J. R., Grundy, W. M., & Lemmon, M. T. ( 2003 ). Dust deposition at the Mars Pathfinder landing site: Observations and modeling of visible/near-infrared spectra. Icarus, 163 ( 2 ), 330 – 346. https://doi.org/10.1016/s0019-1035(03)00084-8
dc.identifier.citedreferenceJohnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R. G., et al. ( 2006 ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 1. Spirit. Journal of Geophysical Research, 111 ( E2 ), 114261. https://doi.org/10.1029/2005je002494
dc.identifier.citedreferenceJohnson, J. R., Grundy, W. M., & Shepard, M. K. ( 2004 ). Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks. Icarus, 171 ( 2 ), 546 – 556. https://doi.org/10.1016/j.icarus.2004.05.013
dc.identifier.citedreferenceJohnson, J. R., Sohl-Dickstein, J., Grundy, W. M., Arvidson, R. E., Bell, J. F., III., Christensen, P., et al. ( 2006 ). Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry. Journal of Geophysical Research, 111 ( E12 ), E12S07. https://doi.org/10.1029/2005je002658
dc.identifier.citedreferenceKahre, M. A., Murphy, J. R., & Haberle, R. M. ( 2006 ). Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. Journal of Geophysical Research, 111 ( E6 ), E06008. https://doi.org/10.1029/2005je002588
dc.identifier.citedreferenceKahre, M. A., Murphy, J. R., Newman, C. E., Wilson, R. J., Cantor, B. A., Lemmon, M. T., & Wolff, M. J. ( 2017 ). The Mars dust cycle. In R. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 295 – 337 ). Cambridge Univ. Press.
dc.identifier.citedreferenceKinch, K. M., Bell, J. F., III., Goetz, W., Johnson, J. R., Joseph, J., Madsen, M. B., & Sohl-Dickstein, J. ( 2015 ). Dust deposition on the decks of the Mars exploration rovers: 10 years of dust dynamics on the panoramic camera calibration targets. Earth and Space Science, 2 ( 5 ), 144 – 172. https://doi.org/10.1002/2014ea000073
dc.identifier.citedreferenceKinch, K. M., Sohl-Dickstein, J., Bell, J. F., III., Johnson, J. R., Goetz, W., & Landis, G. A. ( 2007 ). Dust deposition on the Mars exploration rover panoramic camera (Pancam) calibration targets. Journal of Geophysical Research, 112 ( E6 ), E06S03. https://doi.org/10.1029/2006je002807
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.