Show simple item record

Simulating the Transport and Rupture of Pollen in the Atmosphere

dc.contributor.authorSubba, Tamanna
dc.contributor.authorZhang, Yingxiao
dc.contributor.authorSteiner, Allison L.
dc.date.accessioned2023-04-04T17:41:53Z
dc.date.available2024-04-04 13:41:50en
dc.date.available2023-04-04T17:41:53Z
dc.date.issued2023-03
dc.identifier.citationSubba, Tamanna; Zhang, Yingxiao; Steiner, Allison L. (2023). "Simulating the Transport and Rupture of Pollen in the Atmosphere." Journal of Advances in Modeling Earth Systems 15(3): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/176075
dc.description.abstractPollen, one type of primary biological aerosol particle (PBAP), is emitted from the terrestrial biosphere and can undergo physical changes in the atmosphere via particle rupture. To examine the fate of pollen and its atmospheric processing, a pollen emission and transport scheme is coupled to the Weather Research and Forecasting Model with Chemistry (WRF-Chem). We simulate the emission of pollen and its impacts on the cloud properties and precipitation in the Southern Great Plains from 12 to 19 April 2013, a period with both high pollen emissions and convective activity. We conduct a suite of ensemble runs that simulate primary pollen and three different pollen rupture mechanisms that generate subpollen particles, including (a) high humidity-induced surface rupture, (b) high humidity-induced in-atmosphere plus surface rupture, and (c) lightning-induced rupture, where in-cloud and cloud-to-ground lightning strikes trigger pollen rupture events. When relative humidity is high (>80%), coarse primary pollen (∼1 μg m−3) is converted into fine subpollen particles (∼1.2e−4 μg m−3), which produces 80% more subpollen particles than lightning-induced rupture. The in-atmosphere humidity-driven rupture predominantly produces subpollen particles, which is further enhanced during a frontal thunderstorm. During strong convection, vertical updrafts lift primary pollen and subpollen particles (∼0.5e−4 μg m−3) to the upper troposphere (∼12 km) and laterally transports the ruptured pollen in the anvil top outflow. In regions of high pollen and strong convection, ruptured pollen can influence warm cloud formation by decreasing low cloud (<4 km) cloud water mixing ratios and increasing ice phase hydrometeors aloft (>10 km).Plain Language SummaryBiological aerosols like pollen are released from the terrestrial biosphere into the atmosphere and affect atmospheric processes, hydrology, and climate. For example, large primary pollen ruptures in different atmospheric conditions to produce multiple small-sized pollen fragments. Moreover, these ruptured particles can trigger thunderstorm asthma. In this study, a Weather Research and Forecasting Model with Chemistry was used to evaluate the fate of pollen in the atmosphere. Model simulations indicate that the three pollen rupture mechanisms, including high humidity-induced surface rupture, in-atmosphere plus surface rupture, and lightning-induced rupture, influence the overall pollen load over the Southern Great Plains during convective days with high pollen emissions. The SPP are produced in the highest concentrations in the atmosphere and on the surface due to the high relative humidity-induced-rupture. Even though in-cloud and cloud-to-ground lightning strikes trigger pollen rupture events, they cannot produce as much as humidity-induced ruptures. The ruptured pollen is transported to higher altitudes by vertical updrafts, horizontally through the outflows from the top of the clouds, and finally to the surface by the downdraft. In regions of high pollen and strong convection, ruptured particles can further alter the hydrometeors and influence cloud formation.Key PointsThe greatest amount of subpollen particles is formed from surface and in-atmosphere humidity-driven primary pollen ruptureVertical updrafts lift pollen to the upper troposphere (∼12 km) during convective eventsRuptured pollen can reduce cloud water mixing ratios and slightly increase ice phase hydrometeors aloft
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpollen
dc.subject.otherhydrometeors
dc.subject.otherWRF-Chem
dc.subject.otherthunderstorm asthma
dc.subject.otherlightning
dc.subject.otherbiological aerosols
dc.titleSimulating the Transport and Rupture of Pollen in the Atmosphere
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176075/1/jame21813.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176075/2/jame21813_am.pdf
dc.identifier.doi10.1029/2022MS003329
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceRathnayake, C. M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P. S., et al. ( 2017 ). Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmospheric Chemistry and Physics, 17 ( 3 ), 2459 – 2475. https://doi.org/10.5194/acp-17-2459-2017
dc.identifier.citedreferenceStockwell, W. R., Middleton, P., Chang, J. S., & Tang, X. ( 1990 ). The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research, 95 ( D10 ), 16343 – 16367. https://doi.org/10.1029/JD095iD10p16343
dc.identifier.citedreferenceStone, E. A., Mampage, C. B. A., Hughes, D. D., & Jones, L. M. ( 2021 ). Airborne sub-pollen particles from rupturing giant ragweed pollen. Aerobiologia, 37 ( 3 ), 625 – 632. https://doi.org/10.1007/s10453-021-09702-x
dc.identifier.citedreferenceStraka, H. ( 1975 ). Pollen-und Sporenkunde. Grundbegriffe der modernen Biologie 13. Gustav Fischer.
dc.identifier.citedreferenceSubba, T., Lawler, M. J., & Steiner, A. L. ( 2021 ). Estimation of possible primary biological particle emissions and rupture events at the Southern Great Plains ARM site. Journal of Geophysical Research: Atmospheres, 126 ( 16 ), e2021JD034679. https://doi.org/10.1029/2021JD034679
dc.identifier.citedreferenceSun, J., & Ariya, P. ( 2006 ). Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment, 40 ( 5 ), 795 – 820. https://doi.org/10.1016/j.atmosenv.2005.05.052
dc.identifier.citedreferenceSuphioglu, C., Singh, M. B., Taylor, P., Knox, R. B., Bellomo, R., Holmes, P., & Puy, R. ( 1992 ). Mechanism of grass-pollen-induced asthma. The Lancet, 339 ( 8793 ), 569 – 572. https://doi.org/10.1016/0140-6736(92)90864-Y
dc.identifier.citedreferenceTackenberg, O. ( 2003 ). Modeling long distance dispersal of plant diaspores by wind. Ecological Monographs, 73 ( 2 ), 173 – 189. https://doi.org/10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2
dc.identifier.citedreferenceTang, M., Gu, W., Ma, Q., Li, Y. J., Zhong, C., Li, S., et al. ( 2019 ). Water adsorption and hygroscopic growth of six anemophilous pollen species: The effect of temperature. Atmospheric Chemistry and Physics, 19 ( 4 ), 2247 – 2258. https://doi.org/10.5194/acp-19-2247-2019
dc.identifier.citedreferenceTaylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., & Glovsky, M. M. ( 2004 ). Birch pollen rupture and the release of aerosols of respirable allergens. Clinical and Experimental Allergy, 34 ( 10 ), 1591 – 1596. https://doi.org/10.1111/j.1365-2222.2004.02078
dc.identifier.citedreferenceTaylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. ( 2002 ). Release of allergens as respirable aerosols: A link between grass pollen and asthma. Journal of Allergy and Clinical Immunology, 109 ( 1 ), 51 – 56. https://doi.org/10.1067/mai.2002.120759
dc.identifier.citedreferenceTaylor, P. E., & Jonsson, H. ( 2004 ). Thunderstorm asthma. Current Allergy and Asthma Reports, 4 ( 5 ), 409 – 413. https://doi.org/10.1007/s11882-004-0092-3
dc.identifier.citedreferenceThien, F., Beggs, P. J., Csutoros, D., Darvall, J., Hew, M., Davies, J. M., et al. ( 2018 ). The Melbourne epidemic thunderstorm asthma event 2016: An investigation of environmental triggers, effect on health services, and patient risk factors. The Lancet Planetary Health, 2 ( 2 ), 255 – 263. https://doi.org/10.1016/S2542-5196(18)30120-7
dc.identifier.citedreferenceVeriankaitė, L., Siljamo, P., Sofiev, M., Šauliene, I., & Kukkonen, J. ( 2010 ). Modeling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26 ( 1 ), 47 – 62. https://doi.org/10.1007/s10453-009-9142-6
dc.identifier.citedreferenceVial, J., Bony, S., Dufresne, J. L., & Roehrig, R. ( 2016 ). Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme. Journal of Advances in Modeling Earth Systems, 8 ( 4 ), 1892 – 1911. https://doi.org/10.1002/2016MS000740
dc.identifier.citedreferenceVial, J., Bony, S., Stevens, B., & Vogel, R. ( 2017 ). Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: A review. Surveys in Geophysics, 38 ( 6 ), 1331 – 1353. https://doi.org/10.1007/s10712-017-9418-2
dc.identifier.citedreferenceWozniak, M. C., Solmon, F., & Steiner, A. L. ( 2018 ). Pollen rupture and its impact on precipitation in clean continental conditions. Geophysical Research Letters, 45 ( 14 ), 7156 – 7164. https://doi.org/10.1029/2018GL077692
dc.identifier.citedreferenceWozniak, M. C., & Steiner, A. L. ( 2017 ). A prognostic pollen emissions model for climate models (PECM1.0). Geoscientific Model Development, 10 ( 11 ), 1 – 36. https://doi.org/10.5194/gmd-10-4105-2017
dc.identifier.citedreferenceYair, Y., Yair, Y., Rubin, B., Confino-Cohen, R., Rosman, Y., Shachar, E., & Rottem, M. ( 2019 ). First reported case of thunderstorm asthma in Israel. Natural Hazards Earth System Science, 19 ( 12 ), 2715 – 2725. https://doi.org/10.5194/nhess-19-2715-2019
dc.identifier.citedreferenceYin, Y., Levin, Z., Reisin, T. G., & Tzivion, S. ( 2000 ). The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds – A numerical study. Atmospheric Research, 53 ( 1–3 ), 91 – 116. https://doi.org/10.1016/s0169-8095(99)00046-0
dc.identifier.citedreferenceZhang, R., Duhl, T., Salam, M. T., House, J. M., Flagan, R. C., Avol, E. L., et al. ( 2014 ). Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences, 11 ( 6 ), 1461 – 1478. https://doi.org/10.5194/bg-11-1461-2014
dc.identifier.citedreferenceZhang, Y., Bielory, L., & Georgopoulos, P. ( 2014 ). Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in US. International Journal of Biometeorology, 58 ( 5 ), 909 – 919. https://doi.org/10.1007/s00484-013-0674-7
dc.identifier.citedreferenceZhang, Y., & Steiner, A. L. ( 2022 ). Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications, 13 ( 1 ), 1234. https://doi.org/10.1038/s41467-022-28764-0
dc.identifier.citedreferenceZhu, Q., Laughner, J. L., & Cohen, R. C. ( 2019 ). Lightning NO 2 simulation over the contiguous US and its effects on satellite NO 2 retrievals. Atmospheric Chemistry and Physics, 19 ( 20 ), 13067 – 13078. https://doi.org/10.5194/acp-19-13067-2019
dc.identifier.citedreferenceZiska, L., Knowlton, K., Rogers, C., Dalan, D., Tierney, N., Elder, M. A., et al. ( 2011 ). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences, USA, 108 ( 10 ), 4248 – 4251. https://doi.org/10.1073/pnas.1014107108
dc.identifier.citedreferenceHallett, J., & Mossop, S. C. ( 1974 ). Production of secondary ice particles during the riming process. Nature, 249 ( 5452 ), 26 – 28. https://doi.org/10.1038/249026a0
dc.identifier.citedreferenceAckermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., & Shankar, U. ( 1998 ). Modal aerosol dynamics model for Europe: Development and first applications. Atmospheric Environment, 32 ( 17 ), 2981 – 2999. https://doi.org/10.1016/S1352-2310(98)00006-5
dc.identifier.citedreferenceAndreae, M. O., & Rosenfeld, D. ( 2008 ). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89 ( 1 ), 13 – 41. https://doi.org/10.1016/j.earscirev.2008.03.001
dc.identifier.citedreferenceAndrew, E., Nehme, Z., Bernard, S., Abramson, M. J., Newbigin, E., Piper, B., et al. ( 2017 ). Stormy weather, a retrospective analysis of demand for emergency medical services during epidemic thunderstorm asthma. British Medical Journal, 359, j5636. https://doi.org/10.1136/bmj.j5636
dc.identifier.citedreferenceAnenberg, S. C., Weinberger, K. R., Roman, H., Neumann, J. E., Crimmins, A., Fann, N., et al. ( 2017 ). Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. Global Environmental and Occupational Health, 1 ( 3 ), 80 – 92. https://doi.org/10.1002/2017GH000055
dc.identifier.citedreferenceAriya, P., Sun, J., Eltouny, N., Hudson, E. D., Hayes, C. T., & Kos, G. ( 2009 ). Physical and chemical characterization of bioaerosols—Implications for nucleation processes. International Reviews in Physical Chemistry, 28 ( 1 ), 1 – 32. https://doi.org/10.1080/01442350802597438
dc.identifier.citedreferenceArritt, R. W., Rink, T. D., Segal, M., Todey, D. P., Clark, C. A., Mitchell, M. J., & Labas, K. M. ( 1997 ). The Great Plains low-level jet during the warm season of 1993. Monthly Weather Review, 125 ( 9 ), 2176 – 2192. https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2
dc.identifier.citedreferenceBabin, S. M., Burkom, H. S., Holtry, R. S., Tabernero, N. R., Stokes, L. D., Davies-Cole, J. O., et al. ( 2007 ). Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environmental Health, 6 ( 1 ), 9. https://doi.org/10.1186/1476-069X-6-9
dc.identifier.citedreferenceBannister, T., Csutoros, D., Arnold, A. L., Black, J., Feren, G., Russell, R., et al. ( 2020 ). Are convergence lines associated with high asthma presentation days? A case-control study in Melbourne, Australia. Science of the Total Environment, 737, 140263. https://doi.org/10.1016/j.scitotenv.2020.140263
dc.identifier.citedreferenceBarth, M. C., Wong, J., Bela, M. M., Pickering, K. E., Li, Y., & Cummings, K. ( 2014 ). Simulations of lightning - Generated NO x for parameterized convection in the WRF - Chem model. In Paper presented at 15th International Conference on Atmospheric Electricity, 15–20 June 2014, Norman, Oklahoma, U.S.A.
dc.identifier.citedreferenceBedka, K. M., & Mecikalski, J. R., ( 2005 ). Application of satellite-derived atmospheric vectors for estimating mesoscale flows. Journal of Appllied Meteorology, 44 ( 11 ), 1761 – 1772. https://doi.org/10.1175/JAM2264.1
dc.identifier.citedreferenceBeggs, P. J. ( 2017 ). Allergen aerosol from pollen-nucleated precipitation: A novel thunderstorm asthma trigger. Atmospheric Environment, 152, 455 – 457. https://doi.org/10.1016/j.atmosenv.2016.12.045
dc.identifier.citedreferenceBellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., et al. ( 2020 ). Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 58 ( 1 ), e2019RG000660. https://doi.org/10.1029/2019RG000660
dc.identifier.citedreferenceBigg, E. K. ( 1953 ). The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of the Royal Meteorological Society, 79 ( 342 ), 510 – 519. https://doi.org/10.1002/qj.49707934207
dc.identifier.citedreferenceBrient, F., Schneider, T., Tan, Z., Bony, S., Qu, X., & Hall, A. ( 2015 ). Shallowness of tropical low clouds as a predictor of climate models response to warming. Climate Dynamics, 47 ( 1 ), 433 – 449. https://doi.org/10.1007/s00382-015-2846-0
dc.identifier.citedreferenceBurkart, J., Gratzl, J., Seifried, T. M., Bieber, P., & Grothe, H. ( 2021 ). Subpollen particles (SPP) of birch as carriers of ice nucleating macromolecules. Biogeosciences Discussions, 1 – 15.
dc.identifier.citedreferenceChen, F., & Dudhia, J. ( 2001 ). Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129 ( 4 ), 569 – 585. https://doi.org/10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2
dc.identifier.citedreferenceChou, M., Suarez, M. J., Ho, C., Yan, M. M., & Lee, K. ( 1998 ). Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. Journal of Climate, 11 ( 2 ), 202 – 214. https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2
dc.identifier.citedreferenceChristensen, M. W., Jones, W. K., & Stier, P. ( 2020 ). Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition. Proceedings of the National Academy of Sciences of the United Stated of America, 117 ( 30 ), 17591 – 17598. https://doi.org/10.1073/pnas.1921231117
dc.identifier.citedreferenceCooper, W. A. ( 1986 ). Ice initiation in natural clouds. Meteorological Monographs, 43, 29 – 32. https://doi.org/10.1175/0065-9401-21.43.29
dc.identifier.citedreferenceDales, R. E., Cakmak, S., Judek, S., & Coates, F. ( 2008 ). Tree pollen and hospitalization for asthma in urban Canada. International Archives of Allergy and Immunology, 146 ( 3 ), 241 – 247. https://doi.org/10.1159/000116360
dc.identifier.citedreferenceDales, R. E., Cakmak, S., Judek, S., Dann, T., Coates, F., Brook, J. R., & Burnett, R. T. ( 2004 ). Influence of outdoor aeroallergens on hospitalization for asthma in Canada. Journal of Allergy and Clinical Immunology, 113 ( 2 ), 303 – 306. https://doi.org/10.1016/j.jaci.2003.11.016
dc.identifier.citedreferenceD’Amato, G., Annesi-Maesano, I., Cecchi, L., & D’Amato, M. ( 2019 ). Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy, 74 ( 1 ), 9 – 11. https://doi.org/10.1111/all.13616
dc.identifier.citedreferenceD’Amato, G., Vitale, C., D’Amato, M., Cecchi, L., Liccardi, G., Molino, A., et al. ( 2016 ). Thunderstorm-related asthma: What happens and why. Clinical and Experimental Allergy, 46 ( 3 ), 390 – 396. https://doi.org/10.1111/cea.12709
dc.identifier.citedreferenceDarrow, L. A., Hess, J., Rogers, C. A., Tobert, P. E., Klein, M., & Sarnat, S. E. ( 2012 ). Ambient pollen concentrations and emergency department visits for asthma and wheeze. Journal of Allergy and Clinical Immunology, 130 ( 3 ), 630 – 638.e4. https://doi.org/10.1016/j.jaci.2012.06.020
dc.identifier.citedreferenceDavis, M. B., & Brubaker, L. B. ( 1973 ). Differential sedimentation of pollen grains in lakes. Limnology & Oceanography, 18 ( 4 ), 635 – 646. https://doi.org/10.4319/lo.1973.18.4.0635
dc.identifier.citedreferenceDengate, H. N., Baruch, D. W., & Meredith, P. ( 1978 ). The density of wheat starch granules: A tracer dilution procedure for determining the density of an immiscible dispersed phase. Starch, 30 ( 3 ), 80 – 84. https://doi.org/10.1002/star.19780300304
dc.identifier.citedreferenceDespres, V. R., Alex Huffman, J., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. ( 2012 ). Primary biological aerosol particles in the atmosphere: A review. Tellus Series B: Chemical and Physical Meteorology, 64 ( 1 ), 15598. https://doi.org/10.3402/tellusb.v64i0.15598
dc.identifier.citedreferenceDiehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., & Jaenicke, R. ( 2001 ). The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes. Atmospheric Research, 58 ( 2 ), 75 – 87. https://doi.org/10.1016/S0169-8095(01)00091-6
dc.identifier.citedreferenceDonovan, V. M., Wonkka, C. L., & Twidwell, D. ( 2017 ). Surging wildfire activity in a Grassland biome. Geophysical Research Letters, 44 ( 12 ), 5986 – 5993. https://doi.org/10.1002/2017GL072901
dc.identifier.citedreferenceDreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., & Koop, T. ( 2017 ). Boreal pollen contain ice-nucleating as well as ice-binding "antifreeze" polysaccharides. Scientific Reports, 7, 1 – 13. https://doi.org/10.1038/srep41890
dc.identifier.citedreferenceEmmerson, K. M., Silver, J. D., Thatcher, M., Wain, A., Jones, P. J., Dowdy, A., et al. ( 2021 ). Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLoS One, 16 ( 4 ), e0249488. https://doi.org/10.1371/journal.pone.0249488
dc.identifier.citedreferenceEmmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., et al. ( 2010 ). Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geoscientific Model Development, 3 ( 1 ), 43 – 67. https://doi.org/10.5194/gmd-3-43-2010
dc.identifier.citedreferenceFan, J. W., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z. Q., Zhang, J. Q., & Yan, H. R. ( 2013 ). Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proceedings of the National Academy of Sciences of the United Stated of America, 110 ( 48 ), E4581 – E4590. https://doi.org/10.1073/pnas.1316830110
dc.identifier.citedreferenceFedorovich, E., Gibbs, J. A., & Shapiro, A. ( 2017 ). Numerical study of nocturnal low-level jets over gently sloping terrain. Journal of the Atmospheric Sciences, 74 ( 9 ), 2813 – 2834. https://doi.org/10.1175/JAS-D-17-0013.1
dc.identifier.citedreferenceFischer, H., Polikarpov, I., & Craievich, A. F. ( 2004 ). Average protein density is a molecular-weight-dependent function. Protein Science, 13 ( 10 ), 2825 – 2828. https://doi.org/10.1110/ps.04688204
dc.identifier.citedreferenceFröhlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., & Pöschl, U. ( 2009 ). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences of the United Stated of America, 106 ( 31 ), 12814 – 12819. https://doi.org/10.1073/pnas.0811003106
dc.identifier.citedreferenceGrell, G. A., & Devenyi, D. ( 2002 ). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29 ( 4 ), 38-1 – 38-4. https://doi.org/10.1029/2002GL015311
dc.identifier.citedreferenceGrell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Wilczak, J., & Eder, B. ( 2005 ). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39 ( 37 ), 6957 – 6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
dc.identifier.citedreferenceGrote, M., Valenta, R., & Reichelt, R. ( 2003 ). Abortive pollen germination: A mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. Journal of Allergy and Clinical Immunology, 111 ( 5 ), 1017 – 1023. https://doi.org/10.1067/mai.2003.1452
dc.identifier.citedreferenceGrote, M., Vrtala, S., Niederberger, V., Wiermann, R., Valenta, R., & Reichelt, R. ( 2001 ). Release of allergen-bearing cytoplasm from hydrated pollen: A mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy. Journal of Allergy and Clinical Immunology, 108 ( 1 ), 109 – 115. https://doi.org/10.1067/mai.2001.116431
dc.identifier.citedreferenceGuenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. ( 2012 ). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5 ( 6 ), 1471 – 1492. https://doi.org/10.5194/gmd-5-1471-2012
dc.identifier.citedreferenceGute, E., & Abbatt, J. P. D. ( 2018 ). Oxidative processing lowers the ice nucleation activity of birch and alder pollen. Geophysical Research Letters, 45 ( 3 ), 1647 – 1653. https://doi.org/10.1002/2017GL076357
dc.identifier.citedreferenceHelbig, N., Vogel, B., Vogel, H., & Fiedler, F. ( 2004 ). Numerical modeling of pollen dispersion on the regional scale. Aerobiologia, 3 ( 1 ), 3 – 19. https://doi.org/10.1023/B:AERO.0000022984.51588.30
dc.identifier.citedreferenceHong, S. Y., Noh, Y., & Dudhia, J. ( 2006 ). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134 ( 9 ), 2318 – 2341. https://doi.org/10.1175/MWR3199.1
dc.identifier.citedreferenceHughes, D. D., Mampage, C. B. A., Jones, L. M., Liu, Z., & Stone, E. A. ( 2020 ). Characterization of atmospheric pollen fragments during springtime thunderstorms. Environmental Science and Technology Letters, 7 ( 6 ), 409 – 414. https://doi.org/10.1021/acs.estlett.0c00213
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change (IPCC). ( 2021 ). In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896
dc.identifier.citedreferenceJaenicke, R. ( 2005 ). Abundance of cellular material and proteins in the atmosphere. Science, 308 ( 5718 ), 73. https://doi.org/10.1126/science.1106335
dc.identifier.citedreferenceJanjic, Z. I. ( 2002 ). Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note, 437, 61.
dc.identifier.citedreferenceJones, A. M., & Harrison, R. M. ( 2004 ). The effects of meteorological factors on atmospheric bioaerosol concentrations. Science of the Total Environment, 326 ( 1–3 ), 151 – 180. https://doi.org/10.1016/j.scitotenv.2003.11.021
dc.identifier.citedreferenceJoung, Y. S., Ge, Z., & Buie, C. R. ( 2017 ). Bioaerosol generation by raindrops on soil. Nature Communications, 8 ( 1 ), 14668. https://doi.org/10.1038/ncomms14668
dc.identifier.citedreferenceKawecki, S., & Steiner, A. L. ( 2018 ). The influence of aerosol hygroscopicity on precipitation intensity during a mesoscale convective event. Journal of Geophysical Research: Atmospheres, 123 ( 1 ), 424 – 442. https://doi.org/10.1002/2017JD026535
dc.identifier.citedreferenceKevat, A. ( 2020 ). Thunderstorm asthma: Looking back and looking forward. Journal of Asthma and Allergy, 13, 293 – 299. https://doi.org/10.2147/jaa.s265697
dc.identifier.citedreferenceKnopf, D. A., Barry, K. R., Brubaker, T. A., Jahl, L. G., Jankowski, K. L., Li, J., et al. ( 2021 ). Aerosol–ice formation closure: A Southern Great Plains field campaign. Bulletin of the American Meteorological Society, 102 ( 10 ), E1952 – E1971. https://doi.org/10.1175/BAMS-D-20-0151.1
dc.identifier.citedreferenceKuparinen, A., Katul, G., Nathan, R., & Schurr, F. M. ( 2009 ). Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Royal Society of London B, 276 ( 1670 ), 3081 – 3087. https://doi.org/10.1098/rspb.2009.0693
dc.identifier.citedreferenceKuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. ( 2007 ). Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 208 ( 2–4 ), 177 – 188. https://doi.org/10.1016/j.ecolmodel.2007.05.023
dc.identifier.citedreferenceKuparinen, A., Schurr, F., Tackenberg, O., & O’Hara, R. B. ( 2007 ). Air mediated pollen flow from genetically modified to conventional crops. Ecological Applications, 17 ( 2 ), 431 – 440. https://doi.org/10.1890/05-1599
dc.identifier.citedreferenceLake, I. R., Jones, N. R., Agnew, M., Goodess, C. M., Giorgi, F., Hamaoui-Laguel, L., et al. ( 2016 ). Climate change and future pollen allergy in Europe. Environmental Health Perspectives, 125 ( 3 ), 385 – 391. https://doi.org/10.1289/EHP173
dc.identifier.citedreferenceLawler, M. J., Draper, D. C., & Smith, J. N. ( 2020 ). Atmospheric fungal nanoparticle bursts. Science Advances, 6 ( 3 ). https://doi.org/10.1126/sciadv.aax9051
dc.identifier.citedreferenceLewis, W. H., Vinay, P., & Zenger, V. E. ( 1983 ). Airborne and allergenic pollen of North America. The John Hopkins University Press.
dc.identifier.citedreferenceLinkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., & Sofiev, M. ( 2010 ). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology, 150 ( 12 ), 6 – 11. https://doi.org/10.1016/j.agrformet.2010.08.007
dc.identifier.citedreferenceMaddox, R. A. ( 1983 ). Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Monthly Weather Review, 111 ( 7 ), 1475 – 1493. https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2
dc.identifier.citedreferenceMahura, A., Korsholm, U., Baklanov, A., & Rasmussen, A. ( 2007 ). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23 ( 3 ), 171 – 179. https://doi.org/10.1007/s10453-007-9061-3
dc.identifier.citedreferenceMalm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., & Cahill, T. A. ( 1994 ). Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research, 99 ( D1 ), 1347 – 1370. https://doi.org/10.1029/93JD02916
dc.identifier.citedreferenceMarousis, S. N., & Saravacos, G. D. ( 1990 ). Density and porosity in drying starch materials. Journal of Food Science, 55 ( 5 ), 1367 – 1372. https://doi.org/10.1111/j.1365-2621.1990
dc.identifier.citedreferenceMaupin, C. R., Roark, E. B., Thirumalai, K., Shen, C. C., Schumacher, C., Kampen-Lewis, S. V., et al. ( 2021 ). Abrupt Southern Great Plains thunderstorm shifts linked to glacial climate variability. Nature Geoscience, 14 ( 6 ), 396 – 401. https://doi.org/10.1038/s41561-021-00729-w
dc.identifier.citedreferenceMelvin, M. ( 2018 ). National prescribed fire use survey report Technical Report 03-18 Coalition of Prescribed Fire Councils. Inc National Strategy.
dc.identifier.citedreferenceMeyers, M. P., DeMott, P. J., & Cotton, W. R. ( 1992 ). New primary ice-nucleation 924 parameterizations in an explicit cloud model. Journal of Applied Meteorology, 31 ( 7 ), 708 – 721. https://doi.org/10.1175/1520-0450(1992)0312.0.CO;2
dc.identifier.citedreferenceMiguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., & Flagan, R. C. ( 2006 ). Meteorological influences on respirable fragment release from Chinese elm pollen. Aerosol Science and Technology, 40 ( 9 ), 690 – 696. https://doi.org/10.1080/02786820600798869
dc.identifier.citedreferenceMlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102 ( D14 ), 16663 – 16682. https://doi.org/10.1029/97JD00237
dc.identifier.citedreferenceMo, K. C., & Berbery, E. H. ( 2004 ). Low-level jets and the summer precipitation regimes over North America. Journal of Geophysical Research, 109 ( D6 ), 006117. https://doi.org/10.1029/2003JD004106
dc.identifier.citedreferenceMonin, A. S., & Obukhov, A. M. ( 1954 ). Basic laws of turbulent mixing in the surface layer of the atmosphere. Contributions of the Geophysical Institute of the Slovak Academy of Science, USSR, 151, 163 – 187.
dc.identifier.citedreferenceMorrison, H., Curry, J. A., & Khvorostyanov, V. I. ( 2005 ). A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences, 62 ( 6 ), 1665 – 1677. https://doi.org/10.1175/jas3446.1
dc.identifier.citedreferenceMurray, B. J., O’Sullivan, D., Atkinson, J. D., & Webb, M. E. ( 2012 ). Ice nucleation by particles immersed in supercooled cloud droplets. Chemical Society Reviews, 41 ( 19 ), 6519 – 6554. https://doi.org/10.1039/C2CS35200A
dc.identifier.citedreferenceNathan, R., Horvitz, N., He, Y., Kuparinen, A., Schurr, F. M., & Katul, G. G. ( 2011 ). Spread of North-American wind-dispersed trees in future environments. Ecology Letters, 14 ( 3 ), 211 – 219. https://doi.org/10.1111/j.1461-0248.2010.01573.x
dc.identifier.citedreferenceNeumann, J. E., Anenberg, S. C., Weinberger, K. R., Amend, M., Gulati, S., Crimmins, A., et al. ( 2019 ). Estimates of present and future asthma emergency department visits associated with exposure to oak, birch, and grass pollen in the United States. Global Environmental and Occupational Health, 3 ( 1 ), 11 – 27. https://doi.org/10.1029/2018GH000153
dc.identifier.citedreferenceNewson, R., Strachan, D., Archibald, E., Emberlin, J., Hardaker, P., & Collier, C. ( 1998 ). Acute asthma epidemics, weather and pollen in England, 1987–1994. European Respiratory Journal, 11 ( 3 ), 694 – 701. https://doi.org/10.1136/THX.52.8.680
dc.identifier.citedreferenceNIFC. ( 2019 ). National Interagency Fire Center. Retrieved from https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html
dc.identifier.citedreferenceParworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., et al. ( 2015 ). Long-term 655 measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Environment, 106, 43 – 55. https://doi.org/10.1016/j.atmosenv.2015.01.060
dc.identifier.citedreferencePenner, J. E., Dong, X. Q., & Chen, Y. ( 2004 ). Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427 ( 6971 ), 231 – 234. https://doi.org/10.1038/nature02234
dc.identifier.citedreferencePollock, J., Lu, S., & Gimbel, R. W. ( 2017 ). Outdoor environment and pediatric asthma: An update on the evidence from North America. Canadian Respiratory Journal, 2017, 1 – 16. https://doi.org/10.1155/2017/8921917
dc.identifier.citedreferencePöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., et al. ( 2010 ). Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329 ( 5998 ), 1513 – 1516. https://doi.org/10.1126/science.1191056
dc.identifier.citedreferencePosselt, R., & Lohmann, U. ( 2008 ). Influence of Giant CCN on warm rain processes in the ECHAM5 GCM. Atmospheric Chemistry and Physics, 8 ( 14 ), 3769 – 3788. https://doi.org/10.5194/acp-8-3769-2008
dc.identifier.citedreferencePummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., & Grothe, H. ( 2012 ). Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmospheric Chemistry and Physics, 12 ( 5 ), 2541 – 2550. https://doi.org/10.5194/acp-12-2541-2012
dc.identifier.citedreferenceSchell, B., Ackerman, I. J., Hass, H., Binkowski, F. S., & Ebel, A. ( 2001 ). Modelling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research, 106 ( D22 ), 28275 – 28293. https://doi.org/10.1029/2001JD000384
dc.identifier.citedreferenceSofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. ( 2013 ). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57 ( 1 ), 45 – 58. https://doi.org/10.1007/s00484-012-0532-z
dc.identifier.citedreferenceSofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. ( 2006 ). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50 ( 392 ), 392 – 402. https://doi.org/10.1007/s00484-006-0027-x
dc.identifier.citedreferenceSteiner, A. L., Brooks, S. D., Deng, C., Thornton, D. C. O., Pendleton, M. W., & Bryant, V. ( 2015 ). Pollen as atmospheric cloud condensation nuclei. Geophysical Research Letters, 42 ( 9 ), 3596 – 3602. https://doi.org/10.1002/2015GL064060
dc.identifier.citedreferenceSteiner, J. L., Wetter, J., Robertson, S., Teet, S., Wang, J., Wu, X., et al. ( 2020 ). Grassland wildfires in the Southern Great Plains: Monitoring ecological impacts and recovery. Remote Sensing, 12 ( 619 ), 619. https://doi.org/10.3390/rs1204061
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.