Show simple item record

Turning Noise Into Data: Characterization of the Van Allen Radiation Belt Using SDO Spikes Data

dc.contributor.authorKasapis, Spiridon
dc.contributor.authorThompson, Barbara J.
dc.contributor.authorRodriguez, Juan V.
dc.contributor.authorAttie, Raphael
dc.contributor.authorCucho-Padin, Gonzalo
dc.contributor.authorSilva, Daniel
dc.contributor.authorJin, Meng
dc.contributor.authorPesnell, William D.
dc.date.accessioned2023-04-04T17:42:05Z
dc.date.available2024-04-04 13:41:59en
dc.date.available2023-04-04T17:42:05Z
dc.date.issued2023-03
dc.identifier.citationKasapis, Spiridon; Thompson, Barbara J.; Rodriguez, Juan V.; Attie, Raphael; Cucho-Padin, Gonzalo ; Silva, Daniel; Jin, Meng; Pesnell, William D. (2023). "Turning Noise Into Data: Characterization of the Van Allen Radiation Belt Using SDO Spikes Data." Space Weather 21(3): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/176078
dc.description.abstractThe Solar Dynamics Observatory (SDO) is a solar mission in an inclined geosynchronous orbit. Since commissioning, images acquired by Atmospheric Imaging Assembly (AIA) instrument on-board the SDO have frequently displayed “spikes,” pixel regions yielding extreme number of digital counts. These are theorized to occur from energetic electron collisions with the instrument detector system. These spikes are regularly removed from AIA Level 1.0 images to produce clean and reliable data. A study of historical data has found over 100 trillion spikes in the past decade. This project correlates spike detection frequency with radiation environment parameters in order to generate an augmented data product from SDO. We conduct a correlation study between SDO/AIA data and radiation belt activity within the SDO’s orbit. By extracting radiation “spike” data from the SDO/AIA images, we produce a comprehensive data product which is correlated not only with geomagnetic parameters such as Kp, Ap, and Sym-H but also with the electron and proton fluxes measured by the GOES-14 satellite. As a result, we find that AIA spikes are highly correlated with the GOES-14 electrons detected by the magnetospheric electron detector and energetic proton, electron and alpha detectors instruments at the equator (where the two satellites meet) with Spearman’s Correlation values of ρ = 0.73 and ρ = 0.53, respectively, while a weaker correlation of ρ = 0.47 is shown with magnetospheric proton detector protons for the 2 year period where both missions returned data uninterruptedly. This correlation proves that the SDO spike data can be proven useful for characterizing the Van Allen radiation belt, especially at areas where other satellites cannot.Plain Language SummaryThe Solar Dynamics Observatory (SDO) is a NASA mission that has been observing the Sun since 2010. One instrument aboard SDO is the Atmospheric Imaging Assembly (AIA) which acquires pictures of the Sun in seven extreme ultraviolet and two ultraviolet channels. The AIA detector is designed to capture solar photons of different wavelengths to create images. However, SDO is located in a geosynchronous orbit, which passes through regions of the outer radiation belt. Energetic particles that impact the detector result in brightened pixels in the SDO images. An algorithm removes and records these unusual pixels in every AIA image. Although these pixels are considered noise, in this research we use them to infer the particle density along SDO’s orbit. This paper proves that the fluctuation of the number of noisy pixels in AIA’s images best matches the fluctuation of the electron readings from the nearby GOES-14 weather satellite. This research shows that these noisy pixels can be turned to a data product useful for characterizing the Van Allen radiation belt.Key PointsMore than 3 trillion “spiked pixels” attributed to magnetospheric particle impacts have been removed from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images so farThe SDO spike rate was compared to particle measurements from GOES-14 during close orbital conjunctions occurring twice daily over 27 monthsThe high correlation between AIA spikes and GOES-14 electron fluxes indicates that AIA spikes could be a proxy for radiation belt electron fluxes
dc.publisherAssurance Technology Corporation
dc.publisherWiley Periodicals, Inc.
dc.subject.othersolar wind
dc.subject.othercorrelation
dc.subject.othersolar dynamics observatory
dc.subject.otherradiation belts
dc.subject.othermagnetosphere
dc.subject.otherheliophysics
dc.titleTurning Noise Into Data: Characterization of the Van Allen Radiation Belt Using SDO Spikes Data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176078/1/swe21472.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176078/2/swe21472_am.pdf
dc.identifier.doi10.1029/2022SW003310
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceReames, D. V. ( 2013 ). The two sources of solar energetic particles. Space Science Reviews, 175 ( 1 ), 53 – 92. https://doi.org/10.1007/s11214-013-9958-9
dc.identifier.citedreferenceLanzerotti, L. ( 1968 ). Penetration of solar protons and alphas to the geomagnetic equator. Physical Review Letters, 21 ( 13 ), 929 – 933. https://doi.org/10.1103/physrevlett.21.929
dc.identifier.citedreferenceLanzerotti, L., Roberts, C., & Brown, W. ( 1967 ). Temporal variations in the electron flux at synchronous altitudes. Journal of Geophysical Research, 72 ( 23 ), 5893 – 5902. https://doi.org/10.1029/jz072i023p05893
dc.identifier.citedreferenceLario, D. ( 2005 ). Advances in modeling gradual solar energetic particle events. Advances in Space Research, 36 ( 12 ), 2279 – 2288. https://doi.org/10.1016/j.asr.2005.07.081
dc.identifier.citedreferenceLemen, J. R., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., et al. ( 2011 ). The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The solar dynamics observatory (pp. 17 – 40 ). Springer.
dc.identifier.citedreferenceLezniak, T., Arnoldy, R., Parks, G., & Winckler, J. ( 1968 ). Measurement and intensity of energetic electrons at the equator at 6.6 R e. Radio Science, 3 ( 7 ), 710 – 714. https://doi.org/10.1002/rds196837710
dc.identifier.citedreferenceLi, W., & Hudson, M. ( 2019 ). Earth’s Van Allen radiation belts: From discovery to the Van Allen probes era. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8319 – 8351. https://doi.org/10.1029/2018ja025940
dc.identifier.citedreferenceLi, X., Baker, D., Kanekal, S., Looper, M., & Temerin, M. ( 2001 ). Long term measurements of radiation belts by SAMPEX and their variations. Geophysical Research Letters, 28 ( 20 ), 3827 – 3830. https://doi.org/10.1029/2001gl013586
dc.identifier.citedreferenceMatthiä, D., Heber, B., Reitz, G., Meier, M., Sihver, L., Berger, T., & Herbst, K. ( 2009 ). Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. Journal of Geophysical Research, 114 ( A8 ), A08104. https://doi.org/10.1029/2009ja014125
dc.identifier.citedreferenceMatzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. ( 2021 ). The geomagnetic kp index and derived indices of geomagnetic activity. Space Weather, 19 ( 5 ), e2020SW002641. https://doi.org/10.1029/2020sw002641
dc.identifier.citedreferenceMenvielle, M., & Berthelier, A. ( 1991 ). The k-derived planetary indices: Description and availability. Reviews of Geophysics, 29 ( 3 ), 415 – 432. https://doi.org/10.1029/91rg00994
dc.identifier.citedreferencePaulikas, G., & Blake, J. ( 1979 ). Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. Quantitative Modeling of Magnetospheric Processes, 21, 180 – 202.
dc.identifier.citedreferencePaulikas, G. A., & Blake, J. B. ( 1969 ). Penetration of solar protons to synchronous altitude. Journal of Geophysical Research, 74 ( 9 ), 2161 – 2168. https://doi.org/10.1029/ja074i009p02161
dc.identifier.citedreferencePearson, K. ( 1896 ). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London - Series A: Containing Papers of a Mathematical or Physical Character, ( 187 ), 253 – 318.
dc.identifier.citedreferencePesnell, W. D., Thompson, B. J., & Chamberlin, P. ( 2011 ). The solar dynamics observatory (SDO). In The solar dynamics observatory (pp. 3 – 15 ). Springer.
dc.identifier.citedreferenceRangarajan, G., & Lyemori, T. ( 1997 ). Time variations of geomagnetic activity indices kp and ap: An update. Annales Geophysicae, 15 ( 10 ), 1271 – 1290. https://doi.org/10.1007/s00585-997-1271-z
dc.identifier.citedreferenceRodriguez, J., Krosschell, J., & Green, J. ( 2014 ). Intercalibration of GOES 8–15 solar proton detectors. Space Weather, 12 ( 1 ), 92 – 109. https://doi.org/10.1002/2013sw000996
dc.identifier.citedreferenceRodriguez, J., Onsager, T., & Mazur, J. ( 2010 ). The east-west effect in solar proton flux measurements in geostationary orbit: A new GOES capability. Geophysical Research Letters, 37 ( 7 ), L07109. https://doi.org/10.1029/2010gl042531
dc.identifier.citedreferenceRowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three-axis stabilized geostationary platform. Space Weather, 10 ( 11 ), S11002. https://doi.org/10.1029/2012sw000816
dc.identifier.citedreferenceScherrer, P. H., Schou, J., Bush, R., Kosovichev, A., Bogart, R., Hoeksema, J., et al. ( 2012 ). The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Physics, 275 ( 1 ), 207 – 227. https://doi.org/10.1007/s11207-011-9834-2
dc.identifier.citedreferenceSillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15 ( 12 ), 1602 – 1614. https://doi.org/10.1002/2017sw001698
dc.identifier.citedreferenceSpearman, C. ( 1961 ). The proof and measurement of association between two things. Appleton-Century-Crofts.
dc.identifier.citedreferenceSt Cyr, O., Kaiser, M., Meyer-Vernet, N., Howard, R., Harrison, R., Bale, S., et al. ( 2009 ). STEREO SECCHI and S/WAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts. Solar Physics, 256 ( 1 ), 475 – 488. https://doi.org/10.1007/s11207-009-9362-5
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High-resolution global storm index: Dst versus SYM-H. Journal of Geophysical Research, 111 ( A2 ), A02202. https://doi.org/10.1029/2005ja011034
dc.identifier.citedreferenceWhitman, K., Egeland, R., Richardson, I. G., Allison, C., Quinn, P., Barzilla, J., et al. ( 2022 ). Review of solar energetic particle models. Advances in Space Research.
dc.identifier.citedreferenceWoods, T., Eparvier, F., Hock, R., Jones, A., Woodraska, D., Judge, D., et al. ( 2010 ). Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. The Solar Dynamics Observatory, 275, 115 – 143. https://doi.org/10.1007/978-1-4614-3673-7_7
dc.identifier.citedreferenceYoung, P., Doschek, G., Warren, H., & Hara, H. ( 2013 ). Properties of a solar flare kernel observed by Hinode and SDO. The Astrophysical Journal, 766 ( 2 ), 127. https://doi.org/10.1088/0004-637x/766/2/127
dc.identifier.citedreferenceYoung, P., & Muglach, K. ( 2014 ). Solar dynamics observatory and Hinode observations of a blowout jet in a coronal hole. Solar Physics, 289 ( 9 ), 3313 – 3329. https://doi.org/10.1007/s11207-014-0484-z
dc.identifier.citedreferenceYoung, P. R., Viall, N. M., Kirk, M. S., Mason, E. I., & Chitta, L. P. ( 2021 ). An analysis of spikes in atmospheric imaging assembly (AIA) data. Solar Physics, 296 ( 12 ), 1 – 21. https://doi.org/10.1007/s11207-021-01929-8
dc.identifier.citedreferenceBerger, M., Inokuti, M., Anderson, H., Bichsel, H., & Dennis, J. ( 1984 ). ICRU report 37: Stopping powers for electrons and positrons. International Commission on Radiation Units Measurements, 19 ( 2 ).
dc.identifier.citedreferenceBoyd, A. J., Spence, H., Reeves, G., Funsten, H., Skoug, R. M., Larsen, B. A., et al. ( 2021 ). RBSP-ECT combined pitch angle resolved electron flux data product. Journal of Geophysical Research: Space Physics, 126 ( 3 ), e2020JA028637. https://doi.org/10.1029/2020ja028637
dc.identifier.citedreferenceCai, L., Ma, S., Cai, H., Zhou, Y., & Liu, R. ( 2009 ). Prediction of SYM-H index by NARX neural network from IMF and solar wind data. Science in China - Series E: Technological Sciences, 52 ( 10 ), 2877 – 2885. https://doi.org/10.1007/s11431-009-0296-9
dc.identifier.citedreferenceCarlton, A., Pich, M. d. S.-S., Kim, W., Jun, I., & Cahoy, K. ( 2018 ). Using the Galileo solid-state imaging instrument as a sensor of Jovian energetic electrons. IEEE Transactions on Nuclear Science, 66 ( 1 ), 255 – 261. https://doi.org/10.1109/tns.2018.2883985
dc.identifier.citedreferenceCliver, E. W. ( 2008 ). History of research on solar energetic particle (SEP) events: The evolving paradigm. Proceedings of the International Astronomical Union, 4 ( S257 ), 401 – 412. https://doi.org/10.1017/s1743921309029639
dc.identifier.citedreferenceDidkovsky, L., Judge, D., Jones, A., Rhodes, E., Jr., & Gurman, J. ( 2006 ). Measuring proton energies and fluxes using EIT (SOHO) CCD areas outside the solar disk images. Astronomische Nachrichten: Astronomical Notes, 327 ( 4 ), 314 – 320. https://doi.org/10.1002/asna.200510529
dc.identifier.citedreferenceFillius, R. W. ( 1968 ). Penetration of solar protons to four Earth radii in the equatorial plane. In IAGA Commission V, solar-Terrestrial and Cosmic-Terrestrial Relationship Conference.
dc.identifier.citedreferenceHanser, F. ( 2011 ). EPS/HEPAD calibration and data handbook. Assurance Technology Corporation.
dc.identifier.citedreferenceKasapis, S., Zhao, L., Chen, Y., Wang, X., Bobra, M., & Gombosi, T. ( 2022 ). Interpretable machine learning to forecast SEP events for solar cycle 23. Space Weather, 20 ( 2 ), e2021SW002842. https://doi.org/10.1029/2021sw002842
dc.identifier.citedreferenceKirk, M. S., Balasubramaniam, K., Jackiewicz, J., & Gilbert, H. R. ( 2017 ). The origin of sequential chromospheric brightenings. Solar Physics, 292 ( 6 ), 1 – 21. https://doi.org/10.1007/s11207-017-1094-3
dc.identifier.citedreferenceKirk, M. S., Balasubramaniam, K., Jackiewicz, J., & McAteer, R. J. ( 2014 ). Qualities of sequential chromospheric brightenings observed in H α and UV images. The Astrophysical Journal, 796 ( 2 ), 78. https://doi.org/10.1088/0004-637x/796/2/78
dc.identifier.citedreferenceKress, B., Rodriguez, J., Mazur, J., & Engel, M. ( 2013 ). Modeling solar proton access to geostationary spacecraft with geomagnetic cutoffs. Advances in Space Research, 52 ( 11 ), 1939 – 1948. https://doi.org/10.1016/j.asr.2013.08.019
dc.identifier.citedreferenceKurth, W., De Pascuale, S., Faden, J., Kletzing, C., Hospodarsky, G., Thaller, S., & Wygant, J. ( 2015 ). Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen probes. Journal of Geophysical Research: Space Physics, 120 ( 2 ), 904 – 914. https://doi.org/10.1002/2014ja020857
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.