Show simple item record

Clinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3

dc.contributor.authorChandrasekaran, Jayashree
dc.contributor.authorPetit, Emilien
dc.contributor.authorPark, Young Woo
dc.contributor.authorMontcel, Sophie Tezenas
dc.contributor.authorJoers, James M.
dc.contributor.authorDeelchand, Dinesh K.
dc.contributor.authorPovažan, Michal
dc.contributor.authorBanan, Guita
dc.contributor.authorValabregue, Romain
dc.contributor.authorEhses, Philipp
dc.contributor.authorFaber, Jennifer
dc.contributor.authorCoupé, Pierrick
dc.contributor.authorOnyike, Chiadi U.
dc.contributor.authorBarker, Peter B.
dc.contributor.authorSchmahmann, Jeremy D.
dc.contributor.authorRatai, Eva-Maria
dc.contributor.authorSubramony, S. H.
dc.contributor.authorMareci, Thomas H.
dc.contributor.authorBushara, Khalaf O.
dc.contributor.authorPaulson, Henry
dc.contributor.authorDurr, Alexandra
dc.contributor.authorKlockgether, Thomas
dc.contributor.authorAshizawa, Tetsuo
dc.contributor.authorLenglet, Christophe
dc.contributor.authorÖz, Gülin
dc.contributor.authorRosenthal, Liana
dc.date.accessioned2023-04-04T17:42:08Z
dc.date.available2024-05-04 13:42:06en
dc.date.available2023-04-04T17:42:08Z
dc.date.issued2023-04
dc.identifier.citationChandrasekaran, Jayashree; Petit, Emilien; Park, Young Woo; Montcel, Sophie Tezenas; Joers, James M.; Deelchand, Dinesh K.; Považan, Michal ; Banan, Guita; Valabregue, Romain; Ehses, Philipp; Faber, Jennifer; Coupé, Pierrick ; Onyike, Chiadi U.; Barker, Peter B.; Schmahmann, Jeremy D.; Ratai, Eva-Maria ; Subramony, S. H.; Mareci, Thomas H.; Bushara, Khalaf O.; Paulson, Henry; Durr, Alexandra; Klockgether, Thomas; Ashizawa, Tetsuo; Lenglet, Christophe; Öz, Gülin ; Rosenthal, Liana (2023). "Clinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3." Annals of Neurology 93(4): 686-701.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/176079
dc.publisherJohn Wiley & Sons, Inc.
dc.titleClinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176079/1/ana26573.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176079/2/ana26573_am.pdf
dc.identifier.doi10.1002/ana.26573
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceCabeza-Ruiz R, Velazquez-Perez L, Linares-Barranco A, Perez-Rodriguez R. Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging. Sensors 2022; 22: 1345.
dc.identifier.citedreferenceHoche F, Guell X, Vangel MG, et al. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018; 141: 248 – 270.
dc.identifier.citedreferenceLynch DR, Farmer JM, Tsou A, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology 2006; 66: 1711 – 1716.
dc.identifier.citedreferenceKroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001; 16: 606 – 613.
dc.identifier.citedreferenceEuroQol G. EuroQol - a new facility for the measurement of health-related quality of life. Health Policy 1990; 16: 199 – 208.
dc.identifier.citedreferencePark YW, Deelchand DK, Joers JM, et al. AutoVOI: real-time automatic prescription of volume-of-interest for single voxel spectroscopy. Magn Reson Med 2018; 80: 1787 – 1798.
dc.identifier.citedreferenceDeelchand DK, Berrington A, Noeske R, et al. Across-vendor standardization of semi-LASER for single-voxel MRS at 3T. NMR Biomed 2021; 34: e4218.
dc.identifier.citedreferenceWilson M, Andronesi O, Barker PB, et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn Reson Med 2019; 82: 527 – 550.
dc.identifier.citedreferenceDeelchand DK, Adanyeguh IM, Emir UE, et al. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn Reson Med 2015; 73: 1718 – 1725.
dc.identifier.citedreferenceDeelchand DK, Henry PG, Joers JM, et al. Plug-and-play advanced magnetic resonance spectroscopy. Magn Reson Med 2022; 87: 2613 – 2620.
dc.identifier.citedreferenceArchie KA, Marcus DS. DicomBrowser: software for viewing and modifying DICOM metadata. J Digit Imaging 2012; 25: 635 – 645.
dc.identifier.citedreferenceMilchenko M, Marcus D. Obscuring surface anatomy in volumetric imaging data. Neuroinformatics 2013; 11: 65 – 75.
dc.identifier.citedreferenceBackhausen LL, Herting MM, Buse J, et al. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci 2016; 10: 558.
dc.identifier.citedreferenceGlasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013; 80: 105 – 124.
dc.identifier.citedreferenceBastiani M, Andersson JLR, Cordero-Grande L, et al. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage 2019; 185: 750 – 763.
dc.identifier.citedreferenceSchilling KG, Blaber J, Hansen C, et al. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS One 2020; 15: e0236418.
dc.identifier.citedreferenceDeelchand DK, Adanyeguh IM, Emir UE, et al. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single voxel MRS at 3 T. Magn Reson Med 2015; 73: 1718 – 1725.
dc.identifier.citedreferenceFischl B, Salat DH, van der Kouwe AJ, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004; 23: S69 – S84.
dc.identifier.citedreferenceIglesias JE, Van Leemput K, Bhatt P, et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage 2015; 113: 184 – 195.
dc.identifier.citedreferenceRomero JE, Coupe P, Giraud R, et al. CERES: A new cerebellum lobule segmentation method. Neuroimage 2017; 147: 916 – 924.
dc.identifier.citedreferenceSörös P, Wölk L, Bantel C, et al. Replicability, Repeatability, and Long-term Reproducibility of Cerebellar Morphometry. Cerebellum 2021; 20: 439 – 453.
dc.identifier.citedreferencePapinutto ND, Maule F, Jovicich J. Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables. Magn Reson Imaging 2013; 31: 827 – 839.
dc.identifier.citedreferenceProvencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672 – 679.
dc.identifier.citedreferenceBiogen. A Pharmacokinetics and Safety Study of BIIB132 in Adults With Spinocerebellar Ataxia 3, NCT05160558. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT05160558.
dc.identifier.citedreferenceYen TC, Tzen KY, Chen MC, et al. Dopamine transporter concentration is reduced in asymptomatic Machado-Joseph disease gene carriers. J Nucl Med 2002; 43: 153 – 159.
dc.identifier.citedreferenceSoong BW, Liu RS. Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease. J Neurol Neurosurg Psychiatry 1998; 64: 499 – 504.
dc.identifier.citedreferenceSchulz JB, Borkert J, Wolf S, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 2010; 49: 158 – 168.
dc.identifier.citedreferenceReetz K, Costa AS, Mirzazade S, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 2013; 136: 905 – 917.
dc.identifier.citedreferenceNigri A, Sarro L, Mongelli A, et al. Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers. Cerebellum 2022; 21:133–144.
dc.identifier.citedreferencePiccinin CC, Rezende TJR, de Paiva JLR, et al. A 5-Year Longitudinal Clinical and Magnetic Resonance Imaging Study in Spinocerebellar Ataxia Type 3. Mov Disord 2020; 35: 1679 – 1684.
dc.identifier.citedreferenceSong SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17: 1429 – 1436.
dc.identifier.citedreferenceWinklewski PJ, Sabisz A, Naumczyk P, et al. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes-What Do We Know? Front Neurol 2018; 9: 92.
dc.identifier.citedreferenceWheeler-Kingshott CA, Cercignani M. About “axial” and “radial” diffusivities. Magn Reson Med 2009; 61: 1255 – 1260.
dc.identifier.citedreferenceRamani B, Panwar B, Moore LR, et al. Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 2017; 26: 3362 – 3374.
dc.identifier.citedreferenceSchuster KH, Zalon AJ, Zhang H, et al. Impaired Oligodendrocyte Maturation Is an Early Feature in SCA3 Disease Pathogenesis. J Neurosci 2022; 42: 1604 – 1617.
dc.identifier.citedreferenceMartins Junior CR, Borba FC, Martinez ARM, et al. Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1. Arq Neuropsiquiatr 2018; 76: 555 – 562.
dc.identifier.citedreferenceNunes MB, Martinez AR, Rezende TJ, et al. Dystonia in Machado-Joseph disease: Clinical profile, therapy and anatomical basis. Parkinsonism Relat Disord 2015; 21: 1441 – 1447.
dc.identifier.citedreferenceÖz G, Nelson CD, Koski DM, et al. Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 2010; 30: 3831 – 3838.
dc.identifier.citedreferenceEmir UE, Brent Clark H, Vollmers ML, et al. Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem 2013; 127: 660 – 668.
dc.identifier.citedreferenceKlockgether T, Ashizawa T, Brais B, et al. Paving the Way Toward Meaningful Trials in Ataxias: An Ataxia Global Initiative Perspective. Mov Disord 2022; 37: 1125 – 1130.
dc.identifier.citedreferenceBaumann O, Borra RJ, Bower JM, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 2015; 14: 197 – 220.
dc.identifier.citedreferenceAshizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 2013; 8: 177.
dc.identifier.citedreferenceJacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011; 77: 1035 – 1041.
dc.identifier.citedreferenceSchols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291 – 304.
dc.identifier.citedreferenceAshizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 2018; 14: 590 – 605.
dc.identifier.citedreferenceRubinsztein DC, Orr HT. Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?: There may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. Bioessays 2016; 38: 977 – 980.
dc.identifier.citedreferenceÖz G, Harding IH, Krahe J, Reetz K. MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration. Curr Opin Neurol 2020; 33: 451 – 461.
dc.identifier.citedreferenceRezende TJR, de Paiva JLR, Martinez ARM, et al. Structural signature of SCA3: From presymptomatic to late disease stages. Ann Neurol 2018; 84: 401 – 408.
dc.identifier.citedreferenceFaber J, Schaprian T, Berkan K, et al. Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. Mov Disord 2021; 36: 2273 – 2281.
dc.identifier.citedreferenceJacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013; 12: 650 – 658.
dc.identifier.citedreferenceSolodkin A, Peri E, Chen EE, et al. Loss of Intrinsic Organization of Cerebellar Networks in Spinocerebellar Ataxia Type 1: Correlates with Disease Severity and Duration. Cerebellum 2011; 10: 218 – 232.
dc.identifier.citedreferencePark YW, Joers JM, Guo B, et al. Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI. Front Neurol 2020; 11: 411.
dc.identifier.citedreferenceJoers JM, Deelchand DK, Lyu T, et al. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol 2018; 83: 816 – 829.
dc.identifier.citedreferenceDeelchand DK, Joers JM, Ravishankar A, et al. Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract 2019; 6: 549 – 558.
dc.identifier.citedreferenceClinical Trial Readiness for SCA1 and SCA3 (READISCA), NCT03487367. Available from: https://clinicaltrials.gov/ct2/show/NCT03487367.
dc.identifier.citedreferenceMaas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85: 96 – 103.
dc.identifier.citedreferenceSchmitz-Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66: 1717 – 1720.
dc.identifier.citedreferenceTezenas du Montcel S, Durr A, Rakowicz M, et al. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. J Med Genet 2014; 51: 479 – 486.
dc.identifier.citedreferencePeng L, Chen Z, Long Z, et al. New Model for Estimation of the Age at Onset in Spinocerebellar Ataxia Type 3. Neurology 2021; 96: e2885 – e2895.
dc.identifier.citedreferencedu Montcel ST, Charles P, Ribai P, et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 2008; 131: 1352 – 1361.
dc.identifier.citedreferenceJacobi H, Rakowicz M, Rola R, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum 2013; 12: 418 – 428.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.