Show simple item record

Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients

dc.contributor.authorMakinde, Hadijat-Kubura M.
dc.contributor.authorDunn, Julia L. M.
dc.contributor.authorGadhvi, Gaurav
dc.contributor.authorCarns, Mary
dc.contributor.authorAren, Kathleen
dc.contributor.authorChung, Anh H.
dc.contributor.authorMuhammad, Lutfiyya N.
dc.contributor.authorSong, Jing
dc.contributor.authorCuda, Carla M.
dc.contributor.authorDominguez, Salina
dc.contributor.authorPandolfino, John E.
dc.contributor.authorDematte D’Amico, Jane E.
dc.contributor.authorBudinger, G. Scott
dc.contributor.authorAssassi, Shervin
dc.contributor.authorFrech, Tracy M.
dc.contributor.authorKhanna, Dinesh
dc.contributor.authorShaeffer, Alex
dc.contributor.authorPerlman, Harris
dc.contributor.authorHinchcliff, Monique
dc.contributor.authorWinter, Deborah R.
dc.date.accessioned2023-04-04T17:42:29Z
dc.date.available2024-05-04 13:42:12en
dc.date.available2023-04-04T17:42:29Z
dc.date.issued2023-04
dc.identifier.citationMakinde, Hadijat-Kubura M. ; Dunn, Julia L. M.; Gadhvi, Gaurav; Carns, Mary; Aren, Kathleen; Chung, Anh H.; Muhammad, Lutfiyya N.; Song, Jing; Cuda, Carla M.; Dominguez, Salina; Pandolfino, John E.; Dematte D’Amico, Jane E.; Budinger, G. Scott; Assassi, Shervin; Frech, Tracy M.; Khanna, Dinesh; Shaeffer, Alex; Perlman, Harris; Hinchcliff, Monique; Winter, Deborah R. (2023). "Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients." Arthritis & Rheumatology 75(4): 595-608.
dc.identifier.issn2326-5191
dc.identifier.issn2326-5205
dc.identifier.urihttps://hdl.handle.net/2027.42/176081
dc.publisherWiley Periodicals, Inc.
dc.titleThree Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/1/art42380-sup-0005-FigureS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/2/art42380-sup-0004-FigureS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/3/art42380.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/4/art42380-sup-0007-FigureS6.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/5/art42380_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/6/art42380-sup-0002-FigureS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/7/art42380-sup-0001-Disclosureform.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/8/art42380-sup-0006-FigureS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176081/9/art42380-sup-0003-FigureS2.pdf
dc.identifier.doi10.1002/art.42380
dc.identifier.sourceArthritis & Rheumatology
dc.identifier.citedreferenceChen S, Bonifati S, Qin Z, et al. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proc Natl Acad Sci U S A 2018; 115: E3798 – 807.
dc.identifier.citedreferenceGordon JK, Girish G, Berrocal VJ, et al. Reliability and validity of the tender and swollen joint counts and the modified Rodnan skin score in early diffuse cutaneous systemic sclerosis: analysis from the Prospective Registry of Early Systemic Sclerosis Cohort. J Rheumatol 2017; 44: 791 – 4.
dc.identifier.citedreferenceJaafar S, Lescoat A, Huang S, et al. Clinical characteristics, visceral involvement, and mortality in at-risk or early diffuse systemic sclerosis: a longitudinal analysis of an observational prospective multicenter US cohort. Arthritis Res Ther 2021; 23: 170.
dc.identifier.citedreferenceSkaug B, Khanna D, Swindell WR, et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis 2020; 79: 379 – 86.
dc.identifier.citedreferenceLove MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.
dc.identifier.citedreferenceWong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118: e16 – 31.
dc.identifier.citedreferenceVan der Kroef M, Castellucci M, Mokry M, et al. Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Ann Rheum Dis 2019; 78: 529 – 38.
dc.identifier.citedreferenceDao DT, Anez-Bustillos L, Adam RM, et al. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration. Am J Pathol 2018; 188: 2446 – 56.
dc.identifier.citedreferenceYona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013; 38: 79 – 91.
dc.identifier.citedreferenceGuilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. 2018; 49: 595 – 613.
dc.identifier.citedreferenceDashti N, Mahmoudi M, Gharibdoost F, et al. Evaluation of ITGB2 (CD18) and SELL (CD62L) genes expression and methylation of ITGB2 promoter region in patients with systemic sclerosis. Rheumatol Int 2018; 38: 489 – 98.
dc.identifier.citedreferenceVan Caam A, Aarts J, van Ee T, et al. TGFβ-mediated expression of TGFβ-activating integrins in SSc monocytes: disturbed activation of latent TGFβ? Arthritis Res Ther 2020; 22: 42.
dc.identifier.citedreferenceSilvan J, Gonzalez-Tajuelo R, Vicente-Rabaneda E, et al. Deregulated PSGL-1 expression in B cells and dendritic cells may be implicated in human systemic sclerosis development. J Invest Dermatol 2018; 138: 2123 – 32.
dc.identifier.citedreferenceKim SN, Akindehin S, Kwon HJ, et al. Anti-inflammatory role of 15-lipoxygenase contributes to the maintenance of skin integrity in mice. Sci Rep 2018; 8: 8856.
dc.identifier.citedreferenceHoober JK, Eggink LL, Cote R. Stories from the dendritic cell guardhouse. Front Immunol 2019; 10: 2880.
dc.identifier.citedreferenceSato K, Imai Y, Higashi N, et al. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a. Blood 2005; 106: 207 – 15.
dc.identifier.citedreferenceSalim PH, Jobim M, Bredemeier M, et al. Interleukin-10 gene promoter and NFKB1 promoter insertion/deletion polymorphisms in systemic sclerosis. Scand J Immunol 2013; 77: 162 – 8.
dc.identifier.citedreferenceShen YM, Zhao Y, Zeng Y, et al. Inhibition of Pim-1 kinase ameliorates dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2012, 57: 1822 – 31.
dc.identifier.citedreferenceTsoi LC, Spain SL, Knight J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012; 44: 1341 – 8.
dc.identifier.citedreferenceKo CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein δ during inflammation. J Biomed Sci 2015; 22: 6.
dc.identifier.citedreferenceChang LH, Huang HS, Wu PT, et al. Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice. PLoS One 2012; 7: e45378.
dc.identifier.citedreferenceMass E, Ballesteros I, Farlik M, et al. Specification of tissue-resident macrophages during organogenesis. Science 2016; 353: aaf4238.
dc.identifier.citedreferenceLi X, Zhang X, Xia J, et al. Macrophage HIF-2α suppresses NLRP3 inflammasome activation and alleviates insulin resistance. Cell Rep 2021; 36: 109607.
dc.identifier.citedreferenceWang X, Abraham S, McKenzie JA, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature 2013; 499: 306 – 11.
dc.identifier.citedreferenceMehta BK, Espinoza ME, Hinchcliff M, et al. Molecular “omic” signatures in systemic sclerosis. Eur J Rheumatol 2020; 7 Suppl: S173 – 80.
dc.identifier.citedreferenceJohnson ME, Mahoney JM, Taroni J, et al. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLoS One 2015; 10: e0114017.
dc.identifier.citedreferenceTaroni JN, Greene CS, Martyanov V, et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 2017; 9: 27.
dc.identifier.citedreferenceLofgren S, Hinchcliff M, Carns M, et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight 2016; 1: e89073.
dc.identifier.citedreferenceKobayashi S, Nagafuchi Y, Okubo M, et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J Autoimmun 2021; 116: 102547.
dc.identifier.citedreferenceXue D, Tabib T, Morse C, et al. Expansion of FCGR3A(+) macrophages, FCN1(+) mo-DC, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis Rheumatol 2022; 74: 329 – 41.
dc.identifier.citedreferenceGur C, Wang SY, Sheban F, et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 2022; 185: 1373 – 88.
dc.identifier.citedreferenceYang M, Goh V, Lee J, et al. Clinical phenotypes of patients with systemic sclerosis with distinct molecular signatures in skin. Arthritis Care Res 2023. doi: 10.1002/acr.24998.
dc.identifier.citedreferenceSpiera RF, Gordon JK, Mersten JN, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis 2011; 70: 1003 – 9.
dc.identifier.citedreferenceGordon JK, Martyanov V, Magro C, et al. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther 2015; 17: 213.
dc.identifier.citedreferenceAssassi S, Radstake TR, Mayes MD, et al. Genetics of scleroderma: implications for personalized medicine? BMC Med 2013; 11: 9.
dc.identifier.citedreferenceHu Y, Hu Y, Xiao Y, et al. Genetic landscape and autoimmunity of monocytes in developing Vogt-Koyanagi-Harada disease. Proc Natl Acad Sci U S A 2020; 117: 25712 – 21.
dc.identifier.citedreferenceRoberts ME, Barvalia M, Silva J, et al. Deep phenotyping by mass cytometry and single-cell RNA-sequencing reveals LYN-regulated signaling profiles underlying monocyte subset heterogeneity and lifespan. Circ Res 2020; 126: e61 – 79.
dc.identifier.citedreferenceVan der Kroef M, van den Hoogen LL, Mertens JS, et al. Cytometry by time of flight identifies distinct signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjogrens syndrome. Eur J Immunol 2020; 50: 119 – 29.
dc.identifier.citedreferenceToledo DM, Pioli PA. Macrophages in systemic sclerosis: novel insights and therapeutic implications. Curr Rheumatol Rep 2019; 21: 31.
dc.identifier.citedreferenceMisharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214: 2387 – 404.
dc.identifier.citedreferenceReyfman PA, Walter JM, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199: 1517 – 36.
dc.identifier.citedreferenceHigashi-Kuwata N, Jinnin M, Makino T, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 2010; 12: R128.
dc.identifier.citedreferenceArai M, Ikawa Y, Chujo S, et al. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J Dermatol Sci 2013; 69: 250 – 8.
dc.identifier.citedreferenceHinchcliff M, Toledo DM, Taroni JN, et al. Mycophenolate mofetil treatment of systemic sclerosis reduces myeloid cell numbers and attenuates the inflammatory gene signature in skin. J Invest Dermatol 2018; 138: 1301 – 10.
dc.identifier.citedreferenceBeretta L, Barturen G, Vigone B, et al. Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients. Ann Rheum Dis 2020; 79: 1218 – 26.
dc.identifier.citedreferenceMilano A, Pendergrass SA, Sargent JL, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One 2008; 3: e2696.
dc.identifier.citedreferencePendergrass SA, Lemaire R, Francis IP, et al. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol 2012; 132: 1363 – 73.
dc.identifier.citedreferenceTaroni JN, Martyanov V, Huang CC, et al. Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Res Ther 2015; 17: 194.
dc.identifier.citedreferenceFranks JM, Martyanov V, Wang Y, et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann Rheum Dis 2020; 79: 1608 – 15.
dc.identifier.citedreferenceAssassi S, Swindell WR, Wu M, et al. Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheumatol 2015; 67: 3016 – 26.
dc.identifier.citedreferenceHinchcliff M, Huang CC, Wood TA, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol 2013; 133: 1979 – 89.
dc.identifier.citedreferenceChakravarty EF, Martyanov V, Fiorentino D, et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther 2015; 17: 159.
dc.identifier.citedreferenceAssassi S, Li N, Volkmann ER, et al. Predictive significance of serum interferon-inducible protein score for response to treatment in systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol 2021; 73: 1005 – 13.
dc.identifier.citedreferenceBernstein EJ, Jaafar S, Assassi S, et al. Performance characteristics of pulmonary function tests for the detection of interstitial lung disease in adults with early diffuse cutaneous systemic sclerosis. Arthritis Rheumatol 2020; 72: 1892 – 6.
dc.identifier.citedreferenceFrech TM, Revelo MP, Ryan JJ, et al. Cardiac metabolomics and autopsy in a patient with early diffuse systemic sclerosis presenting with dyspnea: a case report. J Med Case Rep 2015; 9: 136.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.