Show simple item record

Community-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals

dc.contributor.authorFears, Nicholas E.
dc.contributor.authorSherrod, Gabriela M.c
dc.contributor.authorTemplin, Tylan N.
dc.contributor.authorBugnariu, Nicoleta L.
dc.contributor.authorPatterson, Rita M.
dc.contributor.authorMiller, Haylie L.
dc.date.accessioned2023-04-04T17:42:32Z
dc.date.available2024-04-04 13:42:31en
dc.date.available2023-04-04T17:42:32Z
dc.date.issued2023-03
dc.identifier.citationFears, Nicholas E.; Sherrod, Gabriela M.c; Templin, Tylan N.; Bugnariu, Nicoleta L.; Patterson, Rita M.; Miller, Haylie L. (2023). "Community-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals." Autism Research 16(3): 543-557.
dc.identifier.issn1939-3792
dc.identifier.issn1939-3806
dc.identifier.urihttps://hdl.handle.net/2027.42/176082
dc.description.abstractAutistic individuals exhibit significant sensorimotor differences. Postural stability and control are foundational motor skills for successfully performing many activities of daily living. In neurotypical development, postural stability and control develop throughout childhood and adolescence. In autistic development, previous studies have focused primarily on individual age groups (e.g., childhood, adolescence, adulthood) or only controlled for age using age-matching. Here, we examined the age trajectories of postural stability and control in autism from childhood through adolescents using standardized clinical assessments. In study 1, we tested the postural stability of autistic (n = 27) and neurotypical (n = 41) children, adolescents, and young adults aged 7–20 years during quiet standing on a force plate in three visual conditions: eyes open (EO), eyes closed (EC), and eyes open with the head in a translucent dome (Dome). Postural sway variability decreased as age increased for both groups, but autistic participants showed greater variability than neurotypical participants across age. In study 2, we tested autistic (n = 21) and neurotypical (n = 32) children and adolescents aged 7–16 years during a dynamic postural control task with nine targets. Postural control efficiency increased as age increased for both groups, but autistic participants were less efficient compared to neurotypical participants across age. Together, these results indicate that autistic individuals have a similar age trajectory for postural stability and control compared to neurotypical individuals, but have lower postural stability and control overall.Lay SummaryAutistic and neurotypical children and adolescents performed a balance test and a body control test. Autistic participants had less stable balance than neurotypical participants. Autistic and neurotypical participants had less stable balance with their eyes closed and when wearing a dome on their head. Neurotypical participants had better body control than autistic participants. Autistic and neurotypical children had less stable balance and body control than adolescents.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherautism spectrum disorder
dc.subject.otherbalance
dc.subject.othermotor development
dc.subject.otherpostural control
dc.subject.othersensorimotor
dc.subject.othersensory reweighting
dc.titleCommunity-based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176082/1/aur2889_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176082/2/aur2889.pdf
dc.identifier.doi10.1002/aur.2889
dc.identifier.sourceAutism Research
dc.identifier.citedreferencePiirtola, M., & Era, P. ( 2006 ). Force platform measurements as predictors of falls among older people - a review. Gerontology, 52 ( 1 ), 1 – 16. https://doi.org/10.1159/000089820
dc.identifier.citedreferenceOzkan, E., & Aki, E. ( 2021 ). The effect of occupation-based postural stability training on postural stability and occupational performance in visually impaired individuals: A randomised controlled trial. British Journal of Occupational Therapy, 84 ( 11 ), 673 – 683.
dc.identifier.citedreferencePacheco, T. B. F., de Medeiros, C. S. P., de Oliveira, V. H. B., Vieira, E. R., & de Cavalcanti, F. A. C. ( 2020 ). Effectiveness of exergames for improving mobility and balance in older adults: A systematic review and meta-analysis. Systematic Reviews, 9 ( 163 ), 163. https://doi.org/10.1186/s13643-020-01421-7
dc.identifier.citedreferencePaquet, A., Olliac, B., Bouvard, M., Golse, B., & Vaivre-Douret, L. (2016). The semiology of motor disorders in autism spectrum disorders as highlighted from a standardized neuro-psychomotor assessment. Frontiers in Psychology, 7 (1292). https://doi.org/10.3389/fpsyg.2016.01292
dc.identifier.citedreferencePavão, S. L., Dos Santos, A. N., de Oliveira, A. B., & Rocha, N. A. ( 2014 ). Functionality level and its relation to postural control during sitting-to-stand movement in children with cerebral palsy. Research in Developmental Disabilities, 35 ( 2 ), 506 – 511. https://doi.org/10.1016/j.ridd.2013.11.028
dc.identifier.citedreferenceRobinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., Sims-Gould, J., & Loughin, M. ( 2013 ). Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. The Lancet, 381 ( 9860 ), 47 – 54. https://doi.org/10.1016/S0140-6736(12)61263-X
dc.identifier.citedreferenceSalvador-Garcia, C., Valverde-Esteve, T., Chiva-Bartoll, O., & Marave-Vivas, M. ( 2022 ). Dynamic balance improvement in children with autism spectrum disorder after an extracurricular service-learning physical education program. Developmental Neurorehabilitation, 1 – 9. https://doi.org/10.1080/17518423.2022.2131922
dc.identifier.citedreferenceSankaré, I. C., Bross, R., Brown, A. F., Del Pino, H. E., Jones, L. F., Morris, D. A. M., Porter, C., Lucas-Wright, A., Vargas, R., Forge, N., & Norris, K. C. ( 2015 ). Strategies to build trust and recruit African American and Latino community residents for health research: A cohort study. Clinical and Translational Science, 8 ( 5 ), 412 – 420. https://doi.org/10.1111/cts.12273
dc.identifier.citedreferenceSchärli, A. M., van de Langenberg, R., Murer, K., & Muller, R. M. ( 2012 ). The influence of gaze behaviour on postural control from early childhood into adulthood. Gait & Posture, 36 ( 1 ), 78 – 84. https://doi.org/10.1016/j.gaitpost.2012.01.008
dc.identifier.citedreferenceShams, A., Vameghi, R., Dehkordi, P. S., Allafan, N., & Bayati, M. ( 2020 ). The development of postural control among children: Repeatability and normative data for computerized dynamic posturography system. Gait & Posture, 78, 40 – 47. https://doi.org/10.1016/j.gaitpost.2020.03.002
dc.identifier.citedreferenceShumway-Cook, A., & Horak, F. B. ( 1986 ). Assessing the influence of sensory interaction on balance. Physical Therapy, 66 ( 10 ), 1548 – 1550. https://doi.org/10.1093/ptj/66.10.1548
dc.identifier.citedreferenceShumway-Cook, A., & Woollacott, M. H. ( 1985 ). The growth of stability: Postural control from a development perspective. Journal of Motor Behavior, 17 ( 2 ), 131 – 147. https://doi.org/10.1080/00222895.1985.10735341
dc.identifier.citedreferenceSun, R., Hsieh, K. L., & Sosnoff, J. J. (2019). Fall risk prediction in multiple sclerosis using postural sway measures: A machine learning approach. Scientific Reports, 9 (1), 16154. https://doi.org/10.1038/s41598-019-52697-2
dc.identifier.citedreferenceSmith, K. A., Gehricke, J. G., Iadarola, S., Wolfe, A., & Kuhlthau, K. A. ( 2020 ). Disparities in service use among children with autism: A systematic review. Pediatrics, 145 ( Supplement 1 ), S35 – S46. https://doi.org/10.1542/peds.2019-1895G
dc.identifier.citedreferenceSparto, P. J., Redfern, M. S., Jasko, J. G., Casselbrant, M. L., Mandel, E. M., & Furman, J. M. ( 2006 ). The influence of dynamic visual cues for postural control in children aged 7-12 years. Experimental Brain Research, 168 ( 4 ), 505 – 516. https://doi.org/10.1007/s00221-005-0109-8
dc.identifier.citedreferenceStodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. ( 2008 ). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60 ( 2 ), 290 – 306. https://doi.org/10.1080/00336297.2008.10483582
dc.identifier.citedreferenceSwanenburg, J., de Bruin, E. D., Uebelhart, D., & Mulder, T. ( 2010 ). Falls prediction in elderly people: A 1-year prospective study. Gait & Posture, 31 ( 3 ), 317 – 321. https://doi.org/10.1016/j.gaitpost.2009.11.013
dc.identifier.citedreferenceThompson, A., Murphy, D., Dell’Acqua, F., Ecker, C., McAlonan, G., Howells, H., Baron-Cohen, S., Lai, M. C., Lombardo, M. V., Catani, M., & MRC AIMS Consortium. ( 2017 ). Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in Autism Spectrum Disorder. Biological Psychiatry, 81 ( 3 ), 211 – 219. https://doi.org/10.1016/j.biopsych.2016.06.020
dc.identifier.citedreferenceTravers, B. G., Bigler, E. D., Duffield, T. C., Prigge, M. D. B., Froehlich, A. L., Lange, N., Alexander, A. L., & Lainhart, J. E. ( 2017 ). Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills. Developmental Science, 20, 1 – 15. https://doi.org/10.1111/desc.12401
dc.identifier.citedreferenceTravers, B. G., Bigler, E. D., Tromp, D. P. M., Adluru, N., Destiche, D., Samsin, D., Froehlich, A., Prigge, M. D., Duffield, T. C., Lange, N., & Alexander, A. L. ( 2015 ). Brainstem white matter predicts individual differences in manual motor difficulties and symptom severity in Autism. Journal of Autism and Developmental Disorders, 45 ( 9 ), 3030 – 3040. https://doi.org/10.1007/s10803-015-2467-9
dc.identifier.citedreferenceUnruh, K. E., Martin, L. E., Magnon, G., Vaillancourt, D. E., Sweeney, J. A., & Mosconi, M. W. ( 2019 ). Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder. Journal of Neurophysiology, 122 ( 4 ), 1330 – 1341. https://doi.org/10.1152/jn.00286.2019
dc.identifier.citedreferenceVerbecque, E., Vereeck, L., & Hallemans, A. ( 2016 ). Postural sway in children: A literature review. Gait & Posture, 49, 402 – 410. https://doi.org/10.1016/j.gaitpost.2016.08.003
dc.identifier.citedreferenceWang, Z., Hallac, R. R., Conroy, K. C., White, S. P., Kane, A. A., Collinsworth, A. L., Sweeney, J. A., & Mosconi, M. W. ( 2016 ). Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD). Journal of Neurodevelopmental Disorders, 8 ( 1 ), 1 – 17. https://doi.org/10.1186/s11689-016-9178-1
dc.identifier.citedreferenceWang, Z., Wang, Y., Sweeney, J. A., Gong, Q., Lui, S., & Mosconi, M. W. ( 2019 ). Resting-state brain network dysfunctions associated with visuomotor impairments in Autism Spectrum Disorder. Frontiers in Integrative Neuroscience, 13. https://doi.org/10.3389/fnint.2019.00017
dc.identifier.citedreferenceWest, E. A., Travers, J. C., Kemper, T. D., Liberty, L. M., Cote, D. L., McCollow, M. M., & Stansberry Brusnahan, L. L. ( 2016 ). Racial and ethnic diversity of participants in research supporting evidence-based practices for learners with autism spectrum disorder. The Journal of Special Education, 50 ( 3 ), 151 – 163. https://doi.org/10.1177/0022466916632495
dc.identifier.citedreferenceWoollacott, M., Debu, B., & Mowatt, M. ( 1987 ). Neuromuscular control of posture in the infant and child: Is vision dominant? Journal of Motor Behavior, 19 ( 2 ), 167 – 186. https://doi.org/10.1080/00222895.1987.10735406
dc.identifier.citedreferenceYingling, M. E., Bell, B. A., & Hock, R. M. ( 2019 ). Treatment utilization trajectories among children with autism spectrum disorder: Differences by race-ethnicity and neighborhood. Journal of Autism and Developmental Disorders, 49 ( 5 ), 2173 – 2183. https://doi.org/10.1007/s10803-019-03896-3
dc.identifier.citedreferenceZablotsky, B., Pringle, B. A., Colpe, L. J., Kogan, M. D., Rice, C., & Blumberg, S. J. ( 2015 ). Service and treatment use among children diagnosed with Autism Spectrum Disorders. Journal of Developmental & Behavioral Pediatrics, 36 ( 2 ), 98 – 105. https://doi.org/10.1097/DBP.0000000000000127
dc.identifier.citedreferenceFears, N. E., Palmer, S. A., & Miller, H. L. ( 2022 ). Motor skills predict adaptive behavior in autistic children and adolescents. Autism Research, 15 ( 6 ), 1083 – 1089. https://doi.org/10.1002/aur.2708
dc.identifier.citedreferenceFears, N. E., Templin, T., Sherrod, G. M., Bugnariu, N., Patterson, R., & Miller, H. L. ( 2022 ). Autistic children use less efficient goal-directed whole body movements compared to neurotypical development. Journal of Autism & Developmental Disorders. https://doi.org/10.1007/s10803-022-05523-0
dc.identifier.citedreferenceAjzenman, H. F., Standeven, J. W., & Shurtleff, T. L. ( 2013 ). Effect of Hippotherapy on motor control, adaptive behaviors, and participation in children with Autism Spectrum Disorder: A pilot study. The American Journal of Occupational Therapy, 67 ( 6 ), 653 – 663. https://doi.org/10.5014/ajot.2013.008383
dc.identifier.citedreferenceAssaiante, C., Mallau, S., Viel, S., Jover, M., & Schmitz, C. ( 2005 ). Development of postural control in healthy children: A functional approach. Neural Plasticity, 12 ( 2–3 ), 109; discussion 263-172– 118. https://doi.org/10.1155/NP.2005.109
dc.identifier.citedreferenceBair, W. N., Kiemel, T., Jeka, J. J., & Clark, J. E. ( 2007 ). Development of multisensory reweighting for posture control in children. Experimental Brain Research, 183 ( 4 ), 435 – 446. https://doi.org/10.1007/s00221-007-1057-2
dc.identifier.citedreferenceBates, D., Machler, M., Bolker, B. M., & Walker, S. ( 2015 ). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1 – 48. https://doi.org/10.18637/jss.v067.i01
dc.identifier.citedreferenceBhat, A. N., Landa, R. J., & Galloway, J. C. ( 2011 ). Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders. Physical Therapy, 91 ( 7 ), 1116 – 1129. https://doi.org/10.2522/ptj.20100294
dc.identifier.citedreferenceBlanchet, M., Prince, F., & Messier, J. ( 2019 ). Development of postural stability limits: Anteroposterior and mediolateral postural adjustment mechanisms do not follow the same maturation process. Human Movement Science, 63, 164 – 171. https://doi.org/10.1016/j.humov.2018.11.016
dc.identifier.citedreferenceBojanek, E. K., Wang, Z., White, S. P., & Mosconi, M. W. ( 2020 ). Postural control processes during standing and step initiation in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 12 ( 1 ), 1. https://doi.org/10.1186/s11689-019-9305-x
dc.identifier.citedreferenceBucci, M. P., Gouleme, N., Stordeur, C., Acquaviva, E., Scheid, I., Lefebvre, A., Gerard, C. L., Peyre, H., & Delorme, R. ( 2017 ). Discriminant validity of spatial and temporal postural index in children with neurodevelopmental disorders. International Journal of Developmental Neuroscience, 61, 51 – 57. https://doi.org/10.1016/j.ijdevneu.2017.06.010
dc.identifier.citedreferenceCampione, G. C., Piazza, C., Villa, L., & Molteni, M. ( 2016 ). Three-dimensional kinematic analysis of prehension movements in young children with Autism Spectrum Disorder: New insights on motor impairment. Journal of Autism and Developmental Disorders, 46 ( 6 ), 1985 – 1999. https://doi.org/10.1007/s10803-016-2732-6
dc.identifier.citedreferenceCidav, Z., Lawer, L., Marcus, S. C., & Mandell, D. S. ( 2013 ). Age-related variation in health service use and associated expenditures among children with autism. Journal of Autism and Developmental Disorders, 43 ( 4 ), 924 – 931. https://doi.org/10.1007/s10803-012-1637-2
dc.identifier.citedreferenceCleworth, T. W., Inglis, J. T., & Carpenter, M. G. ( 2018 ). Postural threat influences the conscious perception of body position during voluntary leaning. Gait & Posture, 66, 21 – 25. https://doi.org/10.1016/j.gaitpost.2018.08.003
dc.identifier.citedreferenceCohen, H., Blatchly, C. A., & Gombash, L. L. ( 1993 ). A study of the clinical test of sensory interaction and balance. Physical Therapy, 73 ( 6 ), 346 – 351. https://doi.org/10.1093/ptj/73.6.346
dc.identifier.citedreferenceCuisinier, R., Olivier, I., Vaugoyeau, M., Nougier, V., & Assaiante, C. ( 2011 ). Reweighting of sensory inputs to control quiet standing in children from 7 to 11 and in adults. PLoS One, 6 ( 5 ), e19697. https://doi.org/10.1371/journal.pone.0019697
dc.identifier.citedreferenceDavidovitch, M., Stein, N., Koren, G., & Friedman, B. C. ( 2018 ). Deviations from typical developmental trajectories detectable at 9 months of age in low risk children later diagnosed with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48 ( 8 ), 2854 – 2869. https://doi.org/10.1007/s10803-018-3549-2
dc.identifier.citedreferenceDoumas, M., McKenna, R., & Murphy, B. ( 2016 ). Postural control deficits in Autism Spectrum Disorder: The role of sensory integration. Journal of Autism and Developmental Disorders, 46 ( 3 ), 853 – 861. https://doi.org/10.1007/s10803-015-2621-4
dc.identifier.citedreferenceFisher, A., Engel, C., Geist, R., Lillie, K., Lutman, S., & Travers, B. G. ( 2018 ). Brief report: Postural balance and daily living skills in children and adolescents with autism. Journal of Autism and Developmental Disorders, 48 ( 9 ), 3210 – 3215. https://doi.org/10.1007/s10803-018-3558-1
dc.identifier.citedreferenceFournier, K. A., Kimberg, C. I., Radonovich, K. J., Tillman, M. D., Chow, J. W., Lewis, M. H., Bodfish, J. W., & Hass, C. J. ( 2010 ). Decreased static and dynamic postural control in children with autism spectrum disorders. Gait & Posture, 32 ( 1 ), 6 – 9. https://doi.org/10.1016/j.gaitpost.2010.02.007
dc.identifier.citedreferenceFox, J., & Weisberg, S. ( 2019 ). An R companion to applied regression ( Third ed. ). Sage.
dc.identifier.citedreferenceFuentes, C. T., Mostofsky, S. H., & Bastian, A. J. ( 2009 ). Children with autism show specific handwriting impairments. Neurology, 73 ( 19 ), 1532 – 1537. https://doi.org/10.1212/wnl.0b013e3181c0d48c
dc.identifier.citedreferenceFulceri, F., Grossi, E., Contaldo, A., Narzisi, A., Apicella, F., Parrini, I., Tancredi, R., Calderoni, S., & Muratori, F. ( 2019 ). Motor skills as moderators of core symptoms in Autism Spectrum Disorders: Preliminary data from an exploratory analysis with artificial neural networks. Frontiers in Psychology, 9, 2683. https://doi.org/10.3389/fpsyg.2018.02683
dc.identifier.citedreferenceGeh, C. L., Beauchamp, M. R., Crocker, P. R., & Carpenter, M. G. ( 2011 ). Assessed and distressed: White-coat effects on clinical balance performance. Journal of Psychosomatic Research, 70 ( 1 ), 45 – 51. https://doi.org/10.1016/j.jpsychores.2010.09.008
dc.identifier.citedreferenceGeorge, S., Duran, N., & Norris, K. ( 2014 ). A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. American Journal of Public Health, 104 ( 2 ), e16 – e31. https://doi.org/10.2105/AJPH.2013.301706
dc.identifier.citedreferenceGillis, J. M., Hammond Natof, T., Lockshin, S. B., & Romanczyk, R. G. ( 2009 ). Fear of routine physical exams in children with Autism Spectrum Disorders: Prevalence and intervention effectiveness. Focus on Autism and Other Developmental Disabilities, 24 ( 3 ), 156 – 168. https://doi.org/10.1177/1088357609338477
dc.identifier.citedreferenceGlazebrook, C. M., Elliott, D., & Lyons, J. ( 2006 ). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control, 10, 244 – 264. https://doi.org/10.1123/mcj.10.3.244
dc.identifier.citedreferenceGoh, K. L., Morris, S., Parsons, R., Ring, A., & Tan, T. ( 2018 ). Postural and cortical responses following visual occlusion in adults with and without ASD. Journal of Autism and Developmental Disorders, 48 ( 5 ), 1446 – 1457. https://doi.org/10.1007/s10803-017-3405-9
dc.identifier.citedreferenceGoulème, N., Debue, M., Spruyt, K., Vanderveken, C., De Siati, R. D., Ortega-Solis, J., Petrossi, J., Wiener-Vacher, S., Bucci, M. P., Ionescu, E., Thai-Van, H., & Deggouj, N. ( 2018 ). Changes of spatial and temporal characteristics of dynamic postural control in children with typical neurodevelopment with age: Results of a multicenter pediatric study. International Journal of Pediatric Otorhinolaryngology, 113, 272 – 280. https://doi.org/10.1016/j.ijporl.2018.08.005
dc.identifier.citedreferenceGranacher, U., & Gollhofer, A. ( 2011 ). Is there an association between variables of postural control and strength in adolescents? The Journal of Strength & Conditioning Research, 25 ( 6 ), 1718 – 1725. https://doi.org/10.1519/JSC.0b013e3181dbdb08
dc.identifier.citedreferenceGreen, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., & Baird, G. ( 2009 ). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine & Child Neurology, 51 ( 4 ), 311 – 316. https://doi.org/10.1111/j.1469-8749.2008.03242.x
dc.identifier.citedreferenceHaddad, J. M., Rietdyk, S., Claxton, L. J., & Huber, J. E. ( 2013 ). Task-dependent postural control throughout the lifespan. Exercise and Sport Science Reviews, 41 ( 2 ), 123 – 132. https://doi.org/10.1097/JES.0b013e3182877cc8
dc.identifier.citedreferenceHanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Azuma, J., Matsuzaki, J., Watanabe, Y., Fujita, N., & Taniike, M. ( 2013 ). Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum, 12 ( 5 ), 645 – 656. https://doi.org/10.1007/s12311-013-0475-x
dc.identifier.citedreferenceHarrison, A. J., Long, K. A., Tommet, D. C., & Jones, R. N. ( 2017 ). Examining the role of race, ethnicity, and gender on social and behavioral ratings within the Autism Diagnostic Observation Schedule. Journal of Autism and Developmental Disorders, 47 ( 9 ), 2770 – 2782. https://doi.org/10.1007/s10803-017-3176-3
dc.identifier.citedreferenceHau, J., Kohli, J. S., Shryock, I., Kinnear, M. K., Schadler, A., Müller, R. A., & Carper, R. A. ( 2021 ). Supplementary and premotor aspects of the corticospinal tract show links with restricted and repetitive behaviors in middle-aged adults with autism Spectrum Disorder. Cerebral Cortex, 31, 3962 – 3972. https://doi.org/10.1093/cercor/bhab062
dc.identifier.citedreferenceHausman-Kedem, M., Kosofsky, B. E., Ross, G., Yohay, K., Forrest, E., Dennin, M. H., Patel, R., Bennett, K., Holahan, J. P., & Ward, M. J. ( 2018 ). Accuracy of reported community diagnosis of Autism Spectrum Disorder. Journal of Psychopathology and Behavioral Assessment, 40, 367 – 375. https://doi.org/10.1007/s10862-018-9642-1
dc.identifier.citedreferenceHilton, C. L., Zhang, Y., Whilte, M. R., Klohr, C. L., & Constantino, J. ( 2012 ). Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism, 16 ( 4 ), 430 – 441. https://doi.org/10.1177/1362361311423018
dc.identifier.citedreferenceHolbein-Jenny, M. A., McDermott, K., Shaw, C., & Demchak, J. ( 2007 ). Validity of functional stability limits as a measure of balance in adults aged 23-73 years. Ergonomics, 50 ( 5 ), 631 – 646. https://doi.org/10.1080/00140130601154814
dc.identifier.citedreferenceHsieh, C. L., Sheu, C. F., Hsueh, I. P., & Wang, C. H. ( 2002 ). Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stroke, 33 ( 11 ), 2626 – 2630. https://doi.org/10.1161/01.str.0000033930.05931.93
dc.identifier.citedreferenceKaur, M., Srinivasan, S. M., & Bhat, A. N. ( 2018 ). Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD). Research in Developmental Disabilities, 72, 79 – 95. https://doi.org/10.1016/j.ridd.2017.10.025
dc.identifier.citedreferenceKim, Y., Todd, T., Fujii, T., Lim, J. C., Vrongistinos, K., & Jung, T. ( 2016 ). Effects of taekwondo intervention on balance in children with autism spectrum disorder. Journal of Exercise Rehabilitation, 12 ( 4 ), 314 – 319. doi: 10.12965/jer.1632634.317
dc.identifier.citedreferenceJones, D. R., & Mandell, D. S. (2020). To address racial disparities in autism research, we must think globally, act locally. Autism, 24 (7), 1587–1589. https://doi.org/10.1177/1362361320948313
dc.identifier.citedreferenceKohen-Raz, R., Volkmar, F. R., & Cohen, D. J. ( 1992 ). Postural control in children with autism. Journal of Autism and Developmental Disorders, 22 ( 3 ), 419 – 432. https://doi.org/10.1007/BF01048244
dc.identifier.citedreferenceLe Mouel, C., & Brette, R. ( 2017 ). Mobility as the purpose of postural control. Frontiers in Computational Neuroscience, 11, 67. https://doi.org/10.3389/fncom.2017.00067
dc.identifier.citedreferenceLeezenbaum, N. B., & Iverson, J. M. ( 2019 ). Trajectories of posture development in infants with and without familial risk for Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 49 ( 8 ), 3257 – 3277. https://doi.org/10.1007/s10803-019-04048-3
dc.identifier.citedreferenceLenth, R. ( 2020 ). Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.5. Retrieved from https://CRAN.R-project.org/package=emmeans
dc.identifier.citedreferenceLicari, M. K., Alvares, G. A., Varcin, K., Evans, K. L., Cleary, D., Reid, S. L., Glasson, E. J., Bebbington, K., Reynolds, J. E., Wray, J., & Whitehouse, A. J. O. ( 2019 ). Prevalence of motor difficulties in Autism Spectrum Disorder: Analysis of a population-based cohort. Autism Research, 13, 298 – 306. https://doi.org/10.1002/aur.2230
dc.identifier.citedreferenceLim, Y. H., Lee, H. C., Falkmer, T., Allison, G. T., Tan, T., Lee, W. L., & Morris, S. L. ( 2018 ). Effect of visual information on postural control in adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 49, 4731 – 4739. https://doi.org/10.1007/s10803-018-3634-6
dc.identifier.citedreferenceLim, Y. H., Partridge, K., Girdler, S., & Morris, S. L. ( 2017 ). Standing postural control in individuals with Autism Spectrum Disorder: Systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 47 ( 7 ), 2238 – 2253. https://doi.org/10.1007/s10803-017-3144-y
dc.identifier.citedreferenceLinke, A. C., Kinnear, M. K., Kohli, J. S., Fong, C. H., Lincoln, A. J., Carper, R. A., & Müller, R. A. ( 2020 ). Impaired motor skills and atypical functional connectivity of the sensorimotor system in 40-to 65-year-old adults with autism spectrum disorders. Neurobiology of Aging, 85, 104 – 112. https://doi.org/10.1016/j.neurobiolaging.2019.09.018
dc.identifier.citedreferenceLuebbert, R., & Perez, A. ( 2016 ). Barriers to clinical research participation among African Americans. Journal of Transcultural Nursing, 27 ( 5 ), 456 – 463. https://doi.org/10.1177/1043659615575578
dc.identifier.citedreferenceMandell, D. S., Wiggins, L. D., Carpenter, L. A., Daniels, J., DiGuiseppi, C., Durkin, M. S., Giarelli, E., Morrier, M. J., Nicholas, J. S., Pinto-Martin, J. A., & Shattuck, P. T. ( 2009 ). Racial/ethnic disparities in the identification of children with autism spectrum disorders. American Journal of Public Health, 99 ( 3 ), 493 – 498. https://doi.org/10.2105/AJPH.2007.131243
dc.identifier.citedreferenceMelillo, F., Di Sapio, A., Martire, S., Malentacchi, M., Matta, M., & Bertolotto, A. ( 2017 ). Computerized posturography is more sensitive than clinical Romberg Test in detecting postural control impairment in minimally impaired Multiple Sclerosis patients. Multiple Sclerosis and Related Disorders, 14, 51 – 55. https://doi.org/10.1016/j.msard.2017.03.008
dc.identifier.citedreferenceMelzer, I., Benjuya, N., & Kaplanski, J. ( 2004 ). Postural stability in the elderly: A comparison between fallers and non-fallers. Age and Ageing, 33 ( 6 ), 602 – 607. https://doi.org/10.1093/ageing/afh218
dc.identifier.citedreferenceMiller, H. L., Caçola, P., Sherrod, G., Patterson, R. M., & Bugnariu, N. L. ( 2019 ). Children with Autism Spectrum Disorder, Developmental Coordination Disorder, and typical development differ in characteristics of dynamic postural control: A preliminary study. Gait & Posture, 67, 9 – 11. https://doi.org/10.1016/j.gaitpost.2018.08.038
dc.identifier.citedreferenceMiller, H. L., Sherrod, G. M., Mauk, J. E., Fears, N. E., Hynan, L. S., & Tamplain, P. M. ( 2021 ). Shared features or Co-occurrence? Evaluating symptoms of developmental coordination disorder in children and adolescents with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 1-13, 3443 – 3455. https://doi.org/10.1007/s10803-020-04766-z
dc.identifier.citedreferenceMiller, H. L., Templin, T. N., Fears, N. E., Sherrod, G. M., Patterson, R. M., & Bugnariu, N. L. ( 2022 ). Movement smoothness during dynamic postural control to a static target differs between autistic and neurotypical children. Gait & Posture, 99, 76–82. https://doi.org/10.1016/j.gaitpost.2022.10.015
dc.identifier.citedreferenceMing, X., Brimacombe, M., & Wagner, G. C. ( 2007 ). Prevalence of motor impairment in autism spectrum disorders. Brain and Development, 29 ( 9 ), 565 – 570.
dc.identifier.citedreferenceMinshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. ( 2004 ). Underdevelopment of the postural control system in autism. Neurology, 63 ( 11 ), 2056 – 2061. https://doi.org/10.1212/01.wnl.0000145771.98657.62
dc.identifier.citedreferenceMolloy, C. A., Dietrich, K. N., & Bhattacharya, A. ( 2003 ). Postural stability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 33 ( 6 ), 643 – 652. https://doi.org/10.1023/B:JADD.0000006001.00667.4c
dc.identifier.citedreferenceMorris, S. L., Foster, C. J., Parsons, R., Falkmer, M., Falkmer, T., & Rosalie, S. M. ( 2015 ). Differences in the use of vision and proprioception for postural control in autism spectrum disorder. Neuroscience, 307, 273 – 280. https://doi.org/10.1016/j.neuroscience.2015.08.040
dc.identifier.citedreferenceMosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. ( 2015 ). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in Autism Spectrum Disorder. Journal of Neuroscience, 35 ( 5 ), 2015 – 2025. https://doi.org/10.1523/jneurosci.2731-14.2015
dc.identifier.citedreferenceMostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. ( 2009 ). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132 ( 9 ), 2413 – 2425. https://doi.org/10.1093/brain/awp088
dc.identifier.citedreferenceOldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., Dell’Acqua, F., Brandeis, D., Banaschewski, T., Baumeister, S., & Moessnang, C. ( 2019 ). Altered connectivity between cerebellum, visual, and sensory-motor networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4 ( 3 ), 260 – 270. https://doi.org/10.1016/j.bpsc.2018.11.010
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.