Show simple item record

A numerical study on warm deep drawing of polypropylene

dc.contributor.authorEmani, Chandra Kishore Reddy
dc.contributor.authorMallick, Pankaj K.
dc.date.accessioned2023-04-04T17:42:39Z
dc.date.available2024-04-04 13:42:36en
dc.date.available2023-04-04T17:42:39Z
dc.date.issued2023-03
dc.identifier.citationEmani, Chandra Kishore Reddy; Mallick, Pankaj K. (2023). "A numerical study on warm deep drawing of polypropylene." Polymer Engineering & Science 63(3): 908-920.
dc.identifier.issn0032-3888
dc.identifier.issn1548-2634
dc.identifier.urihttps://hdl.handle.net/2027.42/176084
dc.description.abstractWarm deep drawing of polypropylene, a semi-crystalline thermoplastic polymer, is studied using finite element analysis. In this process, a circular polypropylene blank is preheated to a temperature much below its melting temperature and deep drawn into the shape of a flat-bottom cylindrical cup using a punch-die combination, both initially at 25�C. The material model used for the analysis considers the effects of varying temperature and strain rate during the deep drawing process on the depth of draw. The effects of blank holder force, initial blank temperature, blank diameter, and die and punch corner radii on the depth of draw are determined. Thickness, temperature, and strain variations in the drawn cups, punch forces, and failure modes are also determined.Warm deep drawing of polypropylene, a semi-crystalline thermoplastic polymer, is studied using finite element analysis. In this process, a circular polypropylene blank is preheated to a temperature much below its melting temperature and deep drawn into the shape of a flat-bottom cylindrical cup using a punch-die combination, both initially at 25�C. The material model used for the analysis considers the effects of varying temperature and strain rate during the deep drawing process on the depth of draw. The effects of blank holder force, initial blank temperature, blank diameter, and die and punch corner radii on the depth of draw are determined. Thickness, temperature, and strain variations in the drawn cups, punch forces, and failure modes are also determined.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherthickness distribution
dc.subject.othermodeling
dc.subject.otherpolypropylene
dc.subject.otherdeep drawing
dc.subject.otherfailure modes
dc.titleA numerical study on warm deep drawing of polypropylene
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176084/1/pen26253_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176084/2/pen26253.pdf
dc.identifier.doi10.1002/pen.26253
dc.identifier.sourcePolymer Engineering & Science
dc.identifier.citedreferenceJ. A. Schey, Introduction to Manufacturing Processes, 3rd ed., McGraw-Hill, Boston 2000.
dc.identifier.citedreferenceL. Broutman, S. Kalpakjain, SPE J. 1969, 25, 46.
dc.identifier.citedreferenceR. E. Evans, Polym. Eng. Sci. 1973, 13, 65.
dc.identifier.citedreferenceM. J. Miles, N. J. Mills, Polym. Eng. Sci. 1977, 17, 101.
dc.identifier.citedreferenceL. J. Broutman, S. Kalpakjain, J. Chawla, Polym. Eng. Sci. 1972, 12, 150.
dc.identifier.citedreferenceD. Lee, P. C. Luken, Polym. Eng. Sci. 1986, 26, 612.
dc.identifier.citedreferenceT. Machida, D. Lee, Polym. Eng. Sci. 1988, 28 ( 7 ), 405.
dc.identifier.citedreferenceJ. L. Throne, Technology of Thermoforming, Hanser Gardner Publications, Cincinnati, OH 1996.
dc.identifier.citedreferenceT. A. Osswald, G. Menges, Materials Science of Polymers for Engineers, 2nd ed., Hanser Publishers, Munich/Cininnati 1923.
dc.identifier.citedreferenceY. Zhou, P. K. Mallick, Polym Eng. Sci. 2002, 42, 2461.
dc.identifier.citedreferenceY. Zhou, P. K. Mallick, Polym. Eng. Sci. 2002, 42, 2449.
dc.identifier.citedreferenceC. Donaldson, G. H. HeCain, V. C. Goold, Tool Design, 3rd ed., McGraw-Hill, New York 1973.
dc.identifier.citedreferenceJ. G. Kaufman, Fire Resistance of Aluminum and Aluminum Alloys and Measuring the Effects of Fire Exposure on the Properties of Aluminum Alloys, ASM International, Materials Park, OH 2016.
dc.identifier.citedreferenceT. A. Osswald, G. Menges, Material Science of Polymers for Engineers, 3rd ed., Hanser Publishers, Munich 2012, p. 83.
dc.identifier.citedreferenceC. I. Chung, W. K. Hennessey, M. H. Tusim, Polym. Eng. Sci. 1977, 17, 9.
dc.identifier.citedreferenceE. E. Marotta, L. S. Fletcher, J. Thermophys. Heat Transfer 1996, 10, 334.
dc.identifier.citedreferenceC. P. J. O’Connor, G. Menary, P. J. Martin, E. McConville, Int. J. Mater. Form. 2008, 1, 779.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.