Show simple item record

Statistical Study of Release Time and Its Energy Dependence of In Situ Energetic Electrons in Impulsive Solar Flares

dc.contributor.authorWu, Xiangyu
dc.contributor.authorLi, Gang
dc.contributor.authorZhao, Lulu
dc.contributor.authorEffenberger, Frederic
dc.contributor.authorWang, Linghua
dc.contributor.authorYao, Shuo
dc.date.accessioned2023-04-04T17:43:18Z
dc.date.available2024-04-04 13:43:16en
dc.date.available2023-04-04T17:43:18Z
dc.date.issued2023-03
dc.identifier.citationWu, Xiangyu; Li, Gang; Zhao, Lulu; Effenberger, Frederic; Wang, Linghua; Yao, Shuo (2023). "Statistical Study of Release Time and Its Energy Dependence of In Situ Energetic Electrons in Impulsive Solar Flares." Journal of Geophysical Research: Space Physics 128(3): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/176094
dc.description.abstractUsing the fraction velocity dispersion analysis method, it has been shown recently that in two impulsive solar energetic electron (SEE) events, the release times of near-relativistic electrons at the Sun for outward-propagating electrons are energy dependent and are delayed compared to those of the downward-propagating electrons. In this work, we perform a statistical study of the release time and its energy dependence of near-relativistic electrons in impulsive SEE events. We use in situ observations from the WIND spacecraft and remote hard X-ray observations from the RHESSI and/or Fermi spacecraft. The difference in the release times between outward electrons and downward electrons for 29 events is obtained. In all events, the release of the outward-propagating electrons is delayed from those precipitating downward. In 26 of the 29 events, the release times of outward-propagating electrons also show clear energy dependence. In 15 of these 26 events, in situ electron data from more than five energy channels were available. The delay time as a function of energy for nine of these can be fitted by a form proposed by G. Li et al. (2021, https://doi.org/10.1029/2021GL095138). The implication of this energy-dependent release on the Magnetohydrodynamics turbulence property at the electron acceleration site is discussed.Key PointsDelay of the release of in situ electrons from hard X-ray generating electrons in impulsive solar energetic particle events is examined for 29 eventsClear delays are seen in all events and in most events the delay is energy dependentThe delay shows no energy dependence in fewer than 20% events and the traditional velocity dispersion analysis method only applies in these events
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Netherlands
dc.titleStatistical Study of Release Time and Its Energy Dependence of In Situ Energetic Electrons in Impulsive Solar Flares
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176094/1/jgra57697.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176094/2/jgra57697_am.pdf
dc.identifier.doi10.1029/2022JA030939
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSmith, D. M., Lin, R. P., Turin, P., Curtis, D. W., Primbsch, J. H., Campbell, R. D., et al. ( 2003 ). The RHESSI spectrometer. In R. P. Lin, B. R. Dennis, & A. O. Benz (Eds.), The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) (pp. 33 – 60 ). Springer Netherlands. https://doi.org/10.1007/978-94-017-3452-3_2
dc.identifier.citedreferenceCarmichael, H. ( 1964 ). In physics of solar flares (451 pp.).
dc.identifier.citedreferenceMasson, S., Antiochos, S. K., & DeVore, C. R. ( 2013 ). A model for the escape of solar-flare-accelerated particles. The Astrophysical Journal, 771 ( 2 ), 82. https://doi.org/10.1088/0004-637X/771/2/82
dc.identifier.citedreferenceMeegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., et al. ( 2009 ). The Fermi gamma-ray burst monitor. The Astrophysical Journal, 702 ( 1 ), 791 – 804. https://doi.org/10.1088/0004-637X/702/1/791
dc.identifier.citedreferenceMitchell, J. G., de Nolfo, G. A., Hill, M. E., Christian, E. R., McComas, D. J., Schwadron, N. A., et al. ( 2020 ). Small electron events observed by Parker solar probe/IS⊙IS during encounter 2. The Astrophysical Journal, 902 ( 1 ), 20. https://doi.org/10.3847/1538-4357/abb2a4
dc.identifier.citedreferenceMoradi, A., & Li, G. ( 2019 ). Propagation of scatter-free solar energetic electrons in a meandering interplanetary magnetic field. The Astrophysical Journal, 887 ( 1 ), 102. https://doi.org/10.3847/1538-4357/ab4f68
dc.identifier.citedreferenceSavitzky, A., & Golay, M. J. E. ( 1964 ). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36 ( 8 ), 1627 – 1639. https://doi.org/10.1021/ac60214a047
dc.identifier.citedreferenceSharma, R., Battaglia, M., Luo, Y., Chen, B., & Yu, S. ( 2020 ). Radio and X-ray observations of short-lived episodes of electron acceleration in a solar microflare. The Astrophysical Journal, 904 ( 2 ), 94. https://doi.org/10.3847/1538-4357/abbd96
dc.identifier.citedreferenceSimnett, G. M., Roelof, E. C., & Haggerty, D. K. ( 2002 ). The acceleration and release of near-relativistic electrons by coronal mass ejections. The Astrophysical Journal, 579 ( 2 ), 854 – 862. https://doi.org/10.1086/342871
dc.identifier.citedreferenceCane, H. V. ( 2003 ). Near-relativistic solar electrons and type III radio bursts. The Astrophysical Journal, 598 ( 2 ), 1403 – 1408. https://doi.org/10.1086/379007
dc.identifier.citedreferenceSturrock, P. A. ( 1966 ). Model of the high-energy phase of solar flares. Nature, 211 ( 5050 ), 695 – 697. https://doi.org/10.1038/211695a0
dc.identifier.citedreferenceTan, L. C., Malandraki, O. E., Reames, D. V., Ng, C. K., Wang, L., & Dorrian, G. ( 2012 ). Use of incident and reflected solar particle beams to trace the topology of magnetic clouds. The Astrophysical Journal, 750 ( 2 ), 146. https://doi.org/10.1088/0004-637X/750/2/146
dc.identifier.citedreferenceTan, L. C., Reames, D. V., Ng, C. K., Saloniemi, O., & Wang, L. ( 2009 ). Observational evidence on the presence of an outer reflecting boundary in solar energetic particle events. The Astrophysical Journal, 701 ( 2 ), 1753 – 1764. https://doi.org/10.1088/0004-637X/701/2/1753
dc.identifier.citedreferenceTan, L. C., Reames, D. V., Ng, C. K., Shao, X., & Wang, L. ( 2011 ). What causes scatter-free transport of non-relativistic solar electrons? The Astrophysical Journal, 728 ( 2 ), 133. https://doi.org/10.1088/0004-637X/728/2/133
dc.identifier.citedreferenceVech, D., Mallet, A., Klein, K. G., & Kasper, J. C. ( 2018 ). Magnetic reconnection may control the ion-scale spectral break of solar wind turbulence. The Astrophysical Journal, 855 ( 2 ), L27. https://doi.org/10.3847/2041-8213/aab351
dc.identifier.citedreferenceVršnak, B., Warmuth, A., Maričić, D., Otruba, W., & Ruždjak, V. ( 2003 ). Interaction of an erupting filament with the ambient magnetoplasma and escape of electron beams. Solar Physics, 217 ( 1 ), 187 – 198. https://doi.org/10.1023/A:1027388929859
dc.identifier.citedreferenceWang, L., Krucker, S., Mason, G. M., Lin, R. P., & Li, G. ( 2016 ). The injection of ten electron/ 3 He-rich SEP events. Astronomy & Astrophysics, 585, A119. https://doi.org/10.1051/0004-6361/201527270
dc.identifier.citedreferenceWang, L., Lin, R. P., & Krucker, S. ( 2011 ). Pitch-angle distributions and temporal variations of 0.3–300 keV solar impulsive electron events. The Astrophysical Journal, 727 ( 2 ), 121. https://doi.org/10.1088/0004-637X/727/2/121
dc.identifier.citedreferenceWang, L., Lin, R. P., Krucker, S., & Gosling, J. T. ( 2006 ). Evidence for double injections in scatter-free solar impulsive electron events. Geophysical Research Letters, 33, L03106. https://doi.org/10.1029/2005GL024434
dc.identifier.citedreferenceWang, L., Lin, R. P., Krucker, S., & Mason, G. M. ( 2012 ). A statistical study of solar electron events over one solar cycle. The Astrophysical Journal, 759 ( 1 ), 69. https://doi.org/10.1088/0004-637X/759/1/69
dc.identifier.citedreferenceWang, W., Wang, L., Krucker, S., Mason, G. M., Su, Y., & Bučík, R. ( 2021 ). Solar energetic electron events associated with hard X-ray flares. The Astrophysical Journal, 913 ( 2 ), 89. https://doi.org/10.3847/1538-4357/abefce
dc.identifier.citedreferenceWilliams, P. E., & Pesnell, W. D. ( 2011 ). Properties of supergranulation during the solar minima of cycles 22/23 and 23/24. Journal of Physics: Conference Series, 271 ( 1 ), 012082. https://doi.org/10.1088/1742-6596/271/1/012082
dc.identifier.citedreferenceZhao, L., Li, G., Zhang, M., Wang, L., Moradi, A., & Effenberger, F. ( 2019 ). Statistical analysis of interplanetary magnetic field path lengths from solar energetic electron events observed by WIND. The Astrophysical Journal, 878 ( 2 ), 107. https://doi.org/10.3847/1538-4357/ab2041
dc.identifier.citedreferenceAnderson, K. A., Sommers, J., Lin, R. P., Pick, M., Chaizy, P., Murphy, N., et al. ( 1995 ). Mirroring of fast solar flare electrons on a downstream corotating interaction region. Journal of Geophysical Research, 100 ( A1 ), 3 – 11. https://doi.org/10.1029/94JA01811
dc.identifier.citedreferenceBaba, K., Bahi, L., & Ouadif, L. ( 2014 ). Enhancing geophysical signals through the use of Savitzky-Golay filtering method. Geofísica Internacional, 53 ( 4 ), 399 – 409. https://doi.org/10.1016/S0016-7169(14)70074-1
dc.identifier.citedreferenceBattaglia, M., Sharma, R., Luo, Y., Chen, B., Yu, S., & Krucker, S. ( 2021 ). Multiple electron acceleration instances during a series of solar microflares observed simultaneously at X-rays and microwaves. The Astrophysical Journal, 922 ( 2 ), 134. https://doi.org/10.3847/1538-4357/ac2aa6
dc.identifier.citedreferenceBian, N. H., & Li, G. ( 2022 ). Transport of solar energetic particles along stochastic Parker spirals. The Astrophysical Journal, 924 ( 2 ), 120. https://doi.org/10.3847/1538-4357/ac2fab
dc.identifier.citedreferenceCairns, I. H., Lobzin, V. V., Donea, A., Tingay, S. J., McCauley, P. I., Oberoi, D., et al. ( 2018 ). Low altitude solar magnetic reconnection, type III solar radio bursts, and X-ray emissions. Scientific Reports, 8 ( 1 ), 1676. https://doi.org/10.1038/s41598-018-19195-3
dc.identifier.citedreferenceDröge, W., Kartavykh, Y. Y., Wang, L., Telloni, D., & Bruno, R. ( 2018 ). Transport modeling of interplanetary electrons in the 2002 October 20 solar particle event. The Astrophysical Journal, 869 ( 2 ), 168. https://doi.org/10.3847/1538-4357/aaec6c
dc.identifier.citedreferenceGuo, L., Li, G., Reeves, K., & Raymond, J. ( 2017 ). Solar flare termination shock and synthetic emission line profiles of the Fe XXI 1354.08 Å line. The Astrophysical Journal, 846 ( 1 ), L12. https://doi.org/10.3847/2041-8213/aa866a
dc.identifier.citedreferenceHaggerty, D. K., & Roelof, E. C. ( 2002 ). Impulsive near-relativistic solar electron events: Delayed injection with respect to solar electromagnetic emission. The Astrophysical Journal, 579 ( 2 ), 841 – 853. https://doi.org/10.1086/342870
dc.identifier.citedreferenceHaggerty, D. K., Roelof, E. C., & Simnett, G. M. ( 2003 ). Escaping near-relativistic electron beams from the solar corona. Advances in Space Research, 32 ( 12 ), 2673 – 2678. https://doi.org/10.1016/S0273-1177(03)00929-3
dc.identifier.citedreferenceHeyvaerts, J., Priest, E. R., & Rust, D. M. ( 1977 ). An emerging flux model for the solar phenomenon. The Astrophysical Journal, 216, 123 – 137. https://doi.org/10.1086/155453
dc.identifier.citedreferenceHirayama, T. ( 1974 ). Theoretical model of flares and prominences. I: Evaporating flare model. Solar Physics, 34 ( 2 ), 323 – 338. https://doi.org/10.1007/BF00153671
dc.identifier.citedreferenceJokipii, J. R. ( 1966 ). Cosmic-ray propagation. I. Charged particles in a random magnetic field. The Astrophysical Journal, 146, 480. https://doi.org/10.1086/148912
dc.identifier.citedreferenceKlein, K.-L., Krucker, S., Trottet, G., & Hoang, S. ( 2005 ). Coronal phenomena at the release of solar energetic electron events. Astronomy & Astrophysics, 431 ( 3 ), 1047 – 1060. https://doi.org/10.1051/0004-6361:20041258
dc.identifier.citedreferenceKopp, R. A., & Pneuman, G. W. ( 1976 ). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50 ( 1 ), 85 – 98. https://doi.org/10.1007/BF00206193
dc.identifier.citedreferenceKrucker, S., Kontar, E. P., Christe, S., & Lin, R. P. ( 2007 ). Solar flare electron spectra at the Sun and near the Earth. The Astrophysical Journal, 663 ( 2 ), L109 – L112. https://doi.org/10.1086/519373
dc.identifier.citedreferenceKrucker, S., Larson, D. E., Lin, R. P., & Thompson, B. J. ( 1999 ). On the origin of impulsive electron events observed at 1 AU. The Astrophysical Journal, 519 ( 2 ), 864 – 875. https://doi.org/10.1086/307415
dc.identifier.citedreferenceLaitinen, T., Huttunen-Heikinmaa, K., Valtonen, E., & Dalla, S. ( 2015 ). Correcting for interplanetary scattering in velocity dispersion analysis of solar energetic particles. The Astrophysical Journal, 806 ( 1 ), 114. https://doi.org/10.1088/0004-637X/806/1/114
dc.identifier.citedreferenceLi, G., Kong, X., Zank, G., & Chen, Y. ( 2013 ). On the spectral hardening at ≳300 keV in solar flares. The Astrophysical Journal, 769 ( 1 ), 22. https://doi.org/10.1088/0004-637X/769/1/22
dc.identifier.citedreferenceLi, G., Wu, X., Effenberger, F., Zhao, L., Lesage, S., Bian, N., & Wang, L. ( 2021 ). Constraints on the electron acceleration process in solar flare: A case study. Geophysical Research Letters, 48, e2021GL095138. https://doi.org/10.1029/2021GL095138
dc.identifier.citedreferenceLi, G., Wu, X., Zhao, L., & Yao, S. ( 2020 ). Observations of outward-propagating and mirroring of the same energetic electrons by wind. The Astrophysical Journal Letters, 905 ( 1 ), L1. https://doi.org/10.3847/2041-8213/abca87
dc.identifier.citedreferenceLi, G., Zhao, L., Wang, L., Liu, W., & Wu, X. ( 2020 ). Identification of two distinct electron populations in an impulsive solar energetic electron event. The Astrophysical Journal, 900 ( 2 ), L16. https://doi.org/10.3847/2041-8213/abb098
dc.identifier.citedreferenceLi, X., Guo, F., Li, H., & Li, G. ( 2017 ). Particle acceleration during magnetic reconnection in a low-beta plasma. The Astrophysical Journal, 843 ( 1 ), 21. https://doi.org/10.3847/1538-4357/aa745e
dc.identifier.citedreferenceLi, Y., Xue, J. C., Ding, M. D., Cheng, X., Su, Y., Feng, L., et al. ( 2018 ). Spectroscopic observations of a current sheet in a solar flare. The Astrophysical Journal, 853 ( 1 ), L15. https://doi.org/10.3847/2041-8213/aaa6c0
dc.identifier.citedreferenceLin, R. P. ( 1974 ). Non-relativistic solar electrons. Space Science Reviews, 16, 189.
dc.identifier.citedreferenceLin, R. P. ( 1985 ). Energetic solar electrons in the interplanetary medium. Solar Physics, 100 ( 1–2 ), 537 – 561. https://doi.org/10.1007/bf00158444
dc.identifier.citedreferenceLin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., et al. ( 1995 ). A three-dimensional plasma and energetic particle investigation for the WIND spacecraft. Space Science Reviews, 71 ( 1 ), 125 – 153. https://doi.org/10.1007/BF00751328
dc.identifier.citedreferenceLintunen, J., & Vainio, R. ( 2004 ). Solar energetic particle event onset as analyzed from simulated data. Astronomy & Astrophysics, 420 ( 1 ), 343 – 350. https://doi.org/10.1051/0004-6361:20034247
dc.identifier.citedreferenceLiu, W., Chen, Q., & Petrosian, V. ( 2013 ). Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: Evidence of particle acceleration and heating in magnetic reconnection outflows. The Astrophysical Journal, 767 ( 2 ), 168. https://doi.org/10.1088/0004-637X/767/2/168
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.