Show simple item record

Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T

dc.contributor.authorLee, Seongtaek
dc.contributor.authorMeyer, Briana P.
dc.contributor.authorHernandez-Garcia, Luis
dc.contributor.authorKurpad, Shekar N.
dc.contributor.authorSchmit, Brian D.
dc.contributor.authorBudde, Matthew D.
dc.date.accessioned2023-04-04T17:43:25Z
dc.date.available2024-07-04 13:43:22en
dc.date.available2023-04-04T17:43:25Z
dc.date.issued2023-06
dc.identifier.citationLee, Seongtaek; Meyer, Briana P.; Hernandez-Garcia, Luis ; Kurpad, Shekar N.; Schmit, Brian D.; Budde, Matthew D. (2023). "Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T." Magnetic Resonance in Medicine 89(6): 2305-2317.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/176096
dc.publisherWiley Periodicals, Inc.
dc.subject.othervelocity-selective arterial spin labeling
dc.subject.otherarterial spin labeling
dc.subject.othermultimodal MRI
dc.subject.otherpseudo-continuous arterial spin labeling
dc.subject.otherrat model
dc.subject.otherspinal cord injury
dc.titleComparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176096/1/mrm29603_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176096/2/mrm29603.pdf
dc.identifier.doi10.1002/mrm.29603
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceShin T, Qin Q. Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography. Magn Reson Med. 2018; 80: 1997 - 2005.
dc.identifier.citedreferenceQin Q, Qu Y, Li W, et al. Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains. Magn Reson Med. 2019; 81: 3544 - 3554.
dc.identifier.citedreferenceQin Q, van Zijl PC. Velocity-selective-inversion prepared arterial spin labeling. Magn Reson Med. 2016; 76: 1136 - 1148.
dc.identifier.citedreferenceQin Q, Alsop DC, Bolar DS, et al. Velocity-selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation. Magn Reson Med. 2022; 88: 1528 - 1547.
dc.identifier.citedreferenceLee SY, Meyer BP, Kurpad SN, Budde MD. Diffusion-prepared fast spin echo for artifact-free spinal cord imaging. Magn Reson Med. 2021; 86: 984 - 994.
dc.identifier.citedreferenceHartley CJ, Reddy AK, Madala S, Entman ML, Michael LH, Taffet GE. Doppler velocity measurements from large and small arteries of mice. Am J Physiol Heart Circ Physiol. 2011; 301: H269 - H278.
dc.identifier.citedreferenceHargreaves B. Bloch Equation Simulator. http://www-mrsrl.stanford.edu/˜brian/blochsim/.
dc.identifier.citedreferenceLauzon M. A Beginner’s guide to Bloch equation simulations of magnetic resonance imaging sequences. arXiv Preprint arXiv:200902789. 2020; 1 - 17.
dc.identifier.citedreferenceKarjalainen J, Henschel H, Nissi MJ, Nieminen MT, Hanni M. Dipolar relaxation of water protons in the vicinity of a collagen-like peptide. J Phys Chem B. 2022; 126: 2538 - 2551.
dc.identifier.citedreferenceDobre MC, Ugurbil K, Marjanska M. Determination of blood longitudinal relaxation time (T 1 ) at high magnetic field strengths. Magn Reson Imaging. 2007; 25: 733 - 735.
dc.identifier.citedreferenceLee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med. 1999; 42: 919 - 928.
dc.identifier.citedreferenceShin T, Qin Q, Park JY, Crawford RS, Rajagopalan S. Identification and reduction of image artifacts in non-contrast-enhanced velocity-selective peripheral angiography at 3T. Magn Reson Med. 2016; 76: 466 - 477.
dc.identifier.citedreferenceLiu D, Xu F, Li W, van Zijl PC, Lin DD, Qin Q. Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition. Magn Reson Med. 2020; 84: 2512 - 2522.
dc.identifier.citedreferenceLiu D, Li W, Xu F, Zhu D, Shin T, Qin Q. Ensuring both velocity and spatial responses robust to B 0 / B 1 + $$ {mathrm{B}}_1^{+} $$ field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling. Magn Reson Med. 2021; 85: 2723 - 2734.
dc.identifier.citedreferenceQin Q, Shin T, Schär M, Guo H, Chen H, Qiao Y. Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 tesla: improved immunity to B 0 /B 1 inhomogeneity. Magn Reson Med. 2016; 75: 1232 - 1241.
dc.identifier.citedreferenceBuxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998; 40: 383 - 396.
dc.identifier.citedreferenceJenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012; 62: 782 - 790.
dc.identifier.citedreferenceDai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008; 60: 1488 - 1497.
dc.identifier.citedreferenceLarkin JR, Simard MA, Khrapitchev AA, et al. Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging. J Cereb Blood Flow Metab. 2019; 39: 1557 - 1569.
dc.identifier.citedreferenceLuh WM, Talagala SL, Li TQ, Bandettini PA. Pseudo-continuous arterial spin labeling at 7 T for human brain: estimation and correction for off-resonance effects using a Prescan. Magn Reson Med. 2013; 69: 402 - 410.
dc.identifier.citedreferenceHickey R, Albin MS, Bunegin L, Gelineau J. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain? Stroke. 1986; 17: 1183 - 1189.
dc.identifier.citedreferenceRubinstein A, Arbit E. Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery. 1990; 27: 882 - 886.
dc.identifier.citedreferenceGuha A, Tator CH, Rochon J. Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke. 1989; 20: 372 - 377.
dc.identifier.citedreferenceHendrich KS, Kochanek PM, Melick JA, et al. Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied by arterial spin-labeled MRI. Magn Reson Med. 2001; 46: 202 - 206.
dc.identifier.citedreferenceEcheverria-Chasco R, Vidorreta M, Aramendia-Vidaurreta V, et al. Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging. Magn Reson Med. 2021; 85: 1507 - 1521.
dc.identifier.citedreferenceShao X, Liu D, Martin T, et al. Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3 T. J Magn Reson Imaging. 2018; 47: 1667 - 1676.
dc.identifier.citedreferenceSeith F, Pohmann R, Schwartz M, et al. Imaging pulmonary blood flow using Pseudocontinuous arterial spin labeling (PCASL) with balanced steady-state free-precession (bSSFP) readout at 1.5 T. J Magn Reson Imaging. 2020; 52: 1767 - 1782.
dc.identifier.citedreferencePan X, Qian T, Fernandez-Seara MA, et al. Quantification of liver perfusion using multidelay pseudocontinuous arterial spin labeling. J Magn Reson Imaging. 2016; 43: 1046 - 1054.
dc.identifier.citedreferenceDuhamel G, Callot V, Decherchi P, et al. Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: sensitivity optimization and first application. Magn Reson Med. 2009; 62: 430 - 439.
dc.identifier.citedreferenceMeyer BP, Hirschler L, Lee S, et al. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab. 2021; 41: 2010 - 2025.
dc.identifier.citedreferenceLee S, Wilkins N, Schmit BD, Kurpad SN, Budde MD. Relationships between spinal cord blood flow measured with flow-sensitive alternating inversion recovery (FAIR) and neurobehavioral outcomes in rat spinal cord injury. Magn Reson Imaging. 2021; 78: 42 - 51.
dc.identifier.citedreferenceAlsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015; 73: 102 - 116.
dc.identifier.citedreferenceWong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006; 55: 1334 - 1341.
dc.identifier.citedreferenceLandes V, Javed A, Jao T, Qin Q, Nayak K. Improved velocity-selective labeling pulses for myocardial ASL. Magn Reson Med. 2020; 84: 1909 - 1918.
dc.identifier.citedreferenceFranklin SL, Schmid S, Bos C, van Osch MJP. Influence of the cardiac cycle on velocity selective and acceleration selective arterial spin labeling. Magn Reson Med. 2020; 83: 872 - 882.
dc.identifier.citedreferenceBones IK, Franklin SL, Harteveld AA, et al. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med. 2021; 86: 131 - 142.
dc.identifier.citedreferenceZun Z, Limperopoulos C. Placental perfusion imaging using velocity-selective arterial spin labeling. Magn Reson Med. 2018; 80: 1036 - 1047.
dc.identifier.citedreferenceQiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging. 2012; 36: 110 - 119.
dc.identifier.citedreferenceDuhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med. 2003; 50: 145 - 153.
dc.identifier.citedreferenceWu WC, Wong EC. Intravascular effect in velocity-selective arterial spin labeling: the choice of inflow time and cutoff velocity. Neuroimage. 2006; 32: 122 - 128.
dc.identifier.citedreferenceMeakin JA, Jezzard P. An optimized velocity selective arterial spin labeling module with reduced eddy current sensitivity for improved perfusion quantification. Magn Reson Med. 2013; 69: 832 - 838.
dc.identifier.citedreferenceGuo J, Meakin JA, Jezzard P, Wong EC. An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses. Magn Reson Med. 2015; 73: 1085 - 1094.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.