Show simple item record

Set-theoretic localization for mobile robots with infrastructure-based sensing

dc.contributor.authorLi, Xiao
dc.contributor.authorLi, Yutong
dc.contributor.authorLi, Nan
dc.contributor.authorGirard, Anouck
dc.contributor.authorKolmanovsky, Ilya
dc.date.accessioned2023-04-04T17:43:29Z
dc.date.available2024-04-04 13:43:27en
dc.date.available2023-04-04T17:43:29Z
dc.date.issued2023-03
dc.identifier.citationLi, Xiao; Li, Yutong; Li, Nan; Girard, Anouck; Kolmanovsky, Ilya (2023). "Set-theoretic localization for mobile robots with infrastructure-based sensing." Advanced Control for Applications: Engineering and Industrial Systems 5(1): n/a-n/a.
dc.identifier.issn2578-0727
dc.identifier.issn2578-0727
dc.identifier.urihttps://hdl.handle.net/2027.42/176097
dc.description.abstractIn this article, we propose a set-membership based localization approach for mobile robots using infrastructure-based sensing. Under an assumption of known uncertainties bounds of the noise in the sensor measurement and robot motion models, the proposed method computes uncertainty sets that over-bound the robot 2D body and orientation via set-valued motion propagation and subsequent measurement update from infrastructure-based sensing. We establish theoretical properties and computational approaches for this set-theoretic localization method and illustrate its application to an automated valet parking example in simulations, and to omnidirectional robot localization problems in real-world experiments. With deteriorating uncertainties in system parameters and initialization parameters, we conduct sensitivity analysis and demonstrate that the proposed method, in comparison to the FastSLAM, has a milder performance degradation, thus is more robust against the changes in the parameters. Meanwhile, the proposed method can provide estimates with smaller standard deviation values.
dc.publisherWiley Periodicals, Inc.
dc.publisherMIT Press
dc.subject.othermobile robot
dc.subject.otherlocalization
dc.subject.otherset-membership
dc.titleSet-theoretic localization for mobile robots with infrastructure-based sensing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176097/1/adc2117_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176097/2/adc2117.pdf
dc.identifier.doi10.1002/adc2.117
dc.identifier.sourceAdvanced Control for Applications: Engineering and Industrial Systems
dc.identifier.citedreferenceLeutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–Inertial odometry using nonlinear optimization. Int J Robot Res. 2015; 34 ( 3 ): 314 - 334.
dc.identifier.citedreferenceDavison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell. 2007; 29 ( 6 ): 1052 - 1067.
dc.identifier.citedreferenceWhelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ, McDonald J. Real-time large-scale dense RGB-D SLAM with volumetric fusion. Int J Robot Res. 2015; 34 ( 4-5 ): 598 - 626.
dc.identifier.citedreferenceWolcott RW, Eustice RM. Fast LIDAR localization using multiresolution Gaussian mixture maps; 2014: 2814 - 2821; IEEE.
dc.identifier.citedreferenceYoneda K, Tehrani H, Ogawa T, Hukuyama N, Mita S. Lidar scan feature for localization with highly precise 3-D map; 2014:1345-1350; IEEE.
dc.identifier.citedreferencePomerleau F, Colas F, Siegwart R. A review of point cloud registration algorithms for mobile robotics. Found Trends Robot. 2015; 4 ( 1 ): 1 - 104.
dc.identifier.citedreferenceNistér D, Naroditsky O, Bergen J. Visual odometry; 2004:I; IEEE.
dc.identifier.citedreferenceLowry S, Sünderhauf N, Newman P, et al. Visual place recognition: a survey. IEEE Trans Robot. 2016; 32 ( 1 ): 1 - 19. doi: 10.1109/TRO.2015.2496823
dc.identifier.citedreferenceNaseer T, Oliveira GL, Brox T, Burgard W. Semantics-aware visual localization under challenging perceptual conditions; 2017:2614-2620.
dc.identifier.citedreferencePirker K, Rüther M, Bischof H. CD SLAM-continuous localization and mapping in a dynamic world; 2011:3990-3997.
dc.identifier.citedreferenceArandjelović R, Gronat P, Torii A, Pajdla T, Sivic J. NetVLAD: CNN architecture for weakly supervised place recognition; 2016.
dc.identifier.citedreferenceDebeunne C, Vivet D. A review of visual-LiDAR fusion based simultaneous localization and mapping. Sensors. 2020; 20 ( 7 ): 2068.
dc.identifier.citedreferenceDevarajan D, Cheng Z, Radke RJ. Calibrating distributed camera networks. Proc IEEE. 2008; 96 ( 10 ): 1625 - 1639.
dc.identifier.citedreferenceBostanci B, Tekkok S, Soyunmez E, Oguz-Ekim P, Yeganli F. The lidar and UWB based source localization and initialization algorithms for autonomous robotic systems; 2019: 900 - 904; IEEE.
dc.identifier.citedreferenceRublee E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to SIFT or SURF; 2011: 2564 - 2571.
dc.identifier.citedreferenceLowe DG. Object recognition from local scale-invariant features; 1999: 1150 - 1157.
dc.identifier.citedreferencePapageorgiou C, Poggio T. A trainable system for object detection. Int J Comput Vis. 2000; 38 ( 1 ): 15 - 33.
dc.identifier.citedreferenceAchler O, Trivedi MM. Camera based vehicle detection, tracking, and wheel baseline estimation approach; 2004: 743 - 748.
dc.identifier.citedreferenceAchler O, Trivedi MM. Vehicle wheel detector using 2D filter banks; 2004: 25 - 30.
dc.identifier.citedreferenceAlthoff M. An introduction to CORA; 2015.
dc.identifier.citedreferenceAlthoff M, Grebenyuk D. Implementation of interval arithmetic in CORA; 2016.
dc.identifier.citedreferenceAlthoff M, Grebenyuk D, Kochdumper N. Implementation of Taylor models in CORA; 2018.
dc.identifier.citedreferenceAutomated parking valet toolbox; 2020; Mathworks Inc. https://www.mathworks.com/help/driving/ug/automated-parking-valet.html.
dc.identifier.citedreferenceRPLIDAR. A1 low cost 360 degree laser range scanner: introduction and datasheet. Slamtec; 2020. https://bucket-download.slamtec.com/d1e428e7efbdcd65a8ea111061794fb8d4ccd3a0/LD108_SLAMTEC_rplidar_datasheet_A1M8_v3.0_en.pdf
dc.identifier.citedreferenceThrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press; 2005.
dc.identifier.citedreferenceBoban M, Kousaridas A, Manolakis K, Eichinger J, Xu W. Connected roads of the future: use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Veh Technol Mag. 2018; 13 ( 3 ): 110 - 123.
dc.identifier.citedreferenceThrun S. Simultaneous localization and mapping; 2007: 13 - 41; Springer.
dc.identifier.citedreferenceTeixeira T, Jung D, Savvides A. Tasking networked CCTV cameras and mobile phones to identify and localize multiple people; 2010: 213 - 222.
dc.identifier.citedreferenceMontemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem. AAAI Innovat Appl Artif Intell. 2002; 593598.
dc.identifier.citedreferenceCeccarelli N, Di Marco M, Garulli A, Giannitrapani A. A set theoretic approach to path planning for mobile robots; 2004: 147 - 152.
dc.identifier.citedreferenceDi Marco M, Garulli A, Giannitrapani A, Vicino A. A set theoretic approach to dynamic robot localization and mapping. Auton Robots. 2004; 16 ( 1 ): 23 - 47.
dc.identifier.citedreferenceSong B. Cooperative lateral vehicle control for autonomous valet parking. Int J Autom Technol. 2013; 14 ( 4 ): 633 - 640.
dc.identifier.citedreferenceSung K, Choi J, Kwak D. Vehicle control system for automatic valet parking with infrastructure sensors; 2011: 567 - 568.
dc.identifier.citedreferenceKhalid M, Wang K, Aslam N, Cao Y, Ahmad N, Khan MK. From smart parking towards autonomous valet parking: a survey, challenges and future works. J Netw Comput Appl. 2020;175: 102935.
dc.identifier.citedreferenceBarfoot TD. State Estimation for Robotics. Cambridge University Press; 2017.
dc.identifier.citedreferenceSmith A. Sequential Monte Carlo Methods in Practice. Springer Science & Business Media; 2013.
dc.identifier.citedreferenceBarrau A, Bonnabel S. Invariant kalman filtering. Annu Rev Control Robot Auton Syst. 2018; 1: 237 - 257.
dc.identifier.citedreferenceHanebeck UD, Schmidt G. Set theoretic localization of fast mobile robots using an angle measurement technique; 1996:1.
dc.identifier.citedreferenceAlamo T, Bravo JM, Camacho EF. Guaranteed state estimation by zonotopes. Automatica. 2005; 41 ( 6 ): 1035 - 1043.
dc.identifier.citedreferenceMerhy D, Stoica Maniu C, Alamo T, et al. Guaranteed set-membership state estimation of an octorotor’s position for radar applications. Int J Control. 2020; 93 ( 11 ): 2760 - 2770.
dc.identifier.citedreferenceDi Marco M. Set-Membership Estimation Techniques for Mobile Robotics Applications. PhD thesis. Bologna University; 2001.
dc.identifier.citedreferenceWang H, Kolmanovsky I, Sun J. Zonotope-based recursive estimation of the feasible solution set for linear static systems with additive and multiplicative uncertainties. Automatica. 2018; 95: 236 - 245.
dc.identifier.citedreferenceKolmanovsky I, Sivergina I, Sun J. Simultaneous input and parameter estimation with input observers and set-membership parameter bounding: theory and an automotive application. Int J Adapt Control Signal Process. 2006; 20 ( 5 ): 225 - 246.
dc.identifier.citedreferenceMoutarlier P, Chatila R. An experimental system for incremental environment modelling by an autonomous mobile robot. Springer; 1990:327-346.
dc.identifier.citedreferenceMoutarilier P. Stochastic multisensory data fusion for mobile robot location and environment modeling. Proceedings of International Symposium on Robotics Research; 1989.
dc.identifier.citedreferenceGrisetti G, Kümmerle R, Stachniss C, Burgard W. A tutorial on graph-based SLAM. IEEE Intell Transp Syst Mag. 2010; 2 ( 4 ): 31 - 43.
dc.identifier.citedreferenceKaess M, Ranganathan A, Dellaert F. iSAM: incremental smoothing and mapping. IEEE Trans Robot. 2008; 24 ( 6 ): 1365 - 1378.
dc.identifier.citedreferenceDellaert F. Factor graphs and GTSAM: a hands-on introduction. Technical report, Georgia Institute of Technology; 2012.
dc.identifier.citedreferenceMur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot. 2015; 31 ( 5 ): 1147 - 1163.
dc.identifier.citedreferenceEngel J, Schöps T, Cremers D. LSD-SLAM: large-scale direct monocular SLAM; 2014: 834 - 849; Springer.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.