Show simple item record

Characterization of visual processing in temporomandibular disorders using functional magnetic resonance imaging

dc.contributor.authorHarper, Daniel E.
dc.contributor.authorGopinath, Kaundinya
dc.contributor.authorSmith, Jeremy L.
dc.contributor.authorGregory, Mia
dc.contributor.authorIchesco, Eric
dc.contributor.authorAronovich, Sharon
dc.contributor.authorHarris, Richard E.
dc.contributor.authorHarte, Steven E.
dc.contributor.authorClauw, Daniel J.
dc.contributor.authorFleischer, Candace C.
dc.date.accessioned2023-04-04T17:43:32Z
dc.date.available2024-04-04 13:43:30en
dc.date.available2023-04-04T17:43:32Z
dc.date.issued2023-03
dc.identifier.citationHarper, Daniel E.; Gopinath, Kaundinya; Smith, Jeremy L.; Gregory, Mia; Ichesco, Eric; Aronovich, Sharon; Harris, Richard E.; Harte, Steven E.; Clauw, Daniel J.; Fleischer, Candace C. (2023). "Characterization of visual processing in temporomandibular disorders using functional magnetic resonance imaging." Brain and Behavior 13(3): n/a-n/a.
dc.identifier.issn2162-3279
dc.identifier.issn2162-3279
dc.identifier.urihttps://hdl.handle.net/2027.42/176098
dc.description.abstractBackground and PurposeMany patients with chronic pain report hypersensitivity not only to noxious stimuli, but also to other modalities including innocuous touch, sound, and light, possibly due to differences in the processing of these stimuli. The goal of this study was to characterize functional connectivity (FC) differences between subjects with temporomandibular disorders (TMD) and pain-free controls during a visual functional magnetic resonance imaging (fMRI) task that included an unpleasant, strobing visual stimulus. We hypothesized the TMD cohort would exhibit maladaptations in brain networks consistent with multisensory hypersensitivities observed in TMD patients.MethodsThis pilot study included 16 subjects, 10 with TMD and 6 pain-free controls. Clinical pain was characterized using self-reported questionnaires. Visual task-based fMRI data were collected on a 3T MR scanner and used to determine differences in FC via group independent component analysis.ResultsCompared to controls, subjects with TMD exhibited abnormally increased FC between the default mode network and lateral prefrontal areas involved in attention and executive function, and impaired FC between the frontoparietal network and higher order visual processing areas.ConclusionsThe results indicate maladaptation of brain functional networks, likely due to deficits in multisensory integration, default mode network function, and visual attention and engendered by chronic pain mechanisms.Using a visual task-based paradigm combined with functional magnetic resonance imaging, we observed individuals with temporomandibular disorders (TMD) and chronic pain exhibited abnormally increased functional connectivity between the default mode network and lateral prefrontal areas involved in attention and executive function compared to pain-free healthy controls (HC). Impaired functional connectivity in subjects with TMD was also observed between the frontoparietal network and higher order visual processing areas.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer-Verlag
dc.subject.otherfMRI
dc.subject.othervisual processing
dc.subject.otherchronic pain
dc.subject.otherTMD
dc.subject.otherMRI
dc.titleCharacterization of visual processing in temporomandibular disorders using functional magnetic resonance imaging
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176098/1/brb32916.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176098/2/brb32916_am.pdf
dc.identifier.doi10.1002/brb3.2916
dc.identifier.sourceBrain and Behavior
dc.identifier.citedreferenceMichael, E. S., & Burns, J. W. ( 2004 ). Catastrophizing and pain sensitivity among chronic pain patients: Moderating effects of sensory and affect focus. Annals of Behavioral Medicine, 27, 185 – 194. https://doi.org/10.1207/s15324796abm2703_6
dc.identifier.citedreferenceGeisser, M. E., Glass, J. M., Rajcevska, L. D., Clauw, D. J., Williams, D. A., Kileny, P. R., & Gracely, R. H. ( 2008 ). A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls. The Journal of Pain, 9, 417 – 422. https://doi.org/10.1016/j.jpain.2007.12.006
dc.identifier.citedreferenceGlasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. ( 2013 ). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105 – 124. https://doi.org/10.1016/j.neuroimage.2013.04.127
dc.identifier.citedreferenceGlover, G. H., Li, T.-Q., & Ress, D. ( 2000 ). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44, 162 – 167. https://doi.org/10.1002/1522-2594(200007)44:1%3c162::AID-MRM23%3e3.0.CO;2-E
dc.identifier.citedreferenceGopinath, K., Krishnamurthy, V., Cabanban, R., & Crosson, B. A. ( 2015 ). Hubs of anticorrelation in high-resolution resting-state functional connectivity network architecture. Brain Connect, 5, 267 – 275. https://doi.org/10.1089/brain.2014.0323
dc.identifier.citedreferenceGopinath, K., Krishnamurthy, V., & Sathian, K. ( 2018 ). Accounting for non-gaussian sources of spatial correlation in parametric functional magnetic resonance imaging paradigms I: Revisiting cluster-based inferences. Brain Connect, 8, 1 – 9. https://doi.org/10.1089/brain.2017.0521
dc.identifier.citedreferenceGreenspan, J. D., Slade, G. D., Bair, E., Dubner, R., Fillingim, R. B., Ohrbach, R., Knott, C., Diatchenko, L., Liu, Q., & Maixner, W. ( 2013 ). Pain sensitivity and autonomic factors associated with development of TMD: The OPPERA prospective cohort study. The Journal of Pain, 14, T63.e6 – T74.e6. https://doi.org/10.1016/j.jpain.2013.06.007
dc.identifier.citedreferenceHarfeldt, K., Alexander, L., Lam, J., Månsson, S., Westergren, H., Svensson, P., Sundgren, P. C., & Alstergren, P. ( 2018 ). Spectroscopic differences in posterior insula in patients with chronic temporomandibular pain. Scandinavian Journal of Pain, 18, 351 – 361. https://doi.org/10.1515/sjpain-2017-0159
dc.identifier.citedreferenceHarper, D. E., Schrepf, A., & Clauw, D. J. ( 2016 ). Pain mechanisms and centralized pain in temporomandibular disorders. Journal of Dental Research, 95, 1102 – 1108. https://doi.org/10.1177/0022034516657070
dc.identifier.citedreferenceHarte, S. E., Ichesco, E., Hampson, J. P., Peltier, S. J., Schmidt-Wilcke, T., Clauw, D. J., & Harris, R. E. ( 2016 ). Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula. Pain, 157, 1933 – 1945. https://doi.org/10.1097/j.pain.0000000000000593
dc.identifier.citedreferenceHollins, M., Harper, D., Gallagher, S., Owings, E. W., Lim, P. F., Miller, V., Siddiqi, M. Q., & Maixner, W. ( 2009 ). Perceived intensity and unpleasantness of cutaneous and auditory stimuli: An evaluation of the generalized hypervigilance hypothesis. Pain, 141, 215 – 221. https://doi.org/10.1016/j.pain.2008.10.003
dc.identifier.citedreferenceKmiecik, M. J., Tu, F. F., Silton, R. L., Dillane, K. E., Roth, G. E., Harte, S. E., & Hellman, K. M. ( 2022 ). Cortical mechanisms of visual hypersensitivity in women at risk for chronic pelvic pain. Pain, 163 ( 6 ), 1035 – 1048.
dc.identifier.citedreferenceKucyi, A., Moayedi, M., Weissman-Fogel, I., Goldberg, M. B., Freeman, B. V., Tenenbaum, H. C., & Davis, K. D. ( 2014 ). Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. Journal of Neuroscience, 34, 3969 – 3975. https://doi.org/10.1523/JNEUROSCI.5055-13.2014
dc.identifier.citedreferenceLópez-Solà, M., Woo, C.-W., Pujol, J., Deus, J., Harrison, B. J., Monfort, J., & Wager, T. D. ( 2017 ). Towards a neurophysiological signature for fibromyalgia. Pain, 158, 34 – 47. https://doi.org/10.1097/j.pain.0000000000000707
dc.identifier.citedreferenceMaixner, W., Fillingim, R. B., Williams, D. A., Smith, S. B., & Slade, G. D. ( 2016 ). Overlapping chronic pain conditions: Implications for diagnosis and classification. The Journal of Pain, 17, T93 – T107. https://doi.org/10.1016/j.jpain.2016.06.002
dc.identifier.citedreferenceManfredini, D., Guarda-Nardini, L., Winocur, E., Piccotti, F., Ahlberg, J., & Lobbezoo, F. ( 2011 ). Research diagnostic criteria for temporomandibular disorders: A systematic review of axis I epidemiologic findings. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 112, 453 – 462. https://doi.org/10.1016/j.tripleo.2011.04.021
dc.identifier.citedreferenceMartenson, M. E., Halawa, O. I., Tonsfeldt, K. J., Maxwell, C. A., Hammack, N., Mist, S. D., Pennesi, M. E., Bennett, R. M., Mauer, K. M., Jones, K. D., & Heinricher, M. M. ( 2016 ). A possible neural mechanism for photosensitivity in chronic pain. Pain, 157, 868 – 878. https://doi.org/10.1097/j.pain.0000000000000450
dc.identifier.citedreferenceOng, W.-Y., Stohler, C. S., & Herr, D. R. ( 2019 ). Role of the prefrontal cortex in pain processing. Molecular Neurobiology, 56, 1137 – 1166. https://doi.org/10.1007/s12035-018-1130-9
dc.identifier.citedreferencePennebaker, J. E. ( 1982 ). The psychology of physical symptoms. Springer-Verlag.
dc.identifier.citedreferencePhillips, K., & Clauw, D. J. ( 2011 ). Central pain mechanisms in chronic pain states – Maybe it is all in their head. Best Practice & Research. Clinical Rheumatology, 25, 141 – 154. https://doi.org/10.1016/j.berh.2011.02.005
dc.identifier.citedreferenceScholz, J. ( 2014 ). Mechanisms of chronic pain. Mol Molecular Pain, 10, O15. https://doi.org/10.1186/1744-8069-10-S1-O15
dc.identifier.citedreferenceSchrepf, A., Williams, D. A., Gallop, R., Naliboff, B. D., Basu, N., Kaplan, C., Harper, D. E., Landis, J. R., Clemens, J. Q., Strachan, E., Griffith, J. W., Afari, N., Hassett, A., Pontari, M. A., Clauw, D. J., & Harte, S. E. ( 2018 ). Sensory sensitivity and symptom severity represent unique dimensions of chronic pain: A MAPP Research Network study. Pain, 159, 2002 – 2011. https://doi.org/10.1097/j.pain.0000000000001299
dc.identifier.citedreferenceShen, W., Tu, Y., Gollub, R. L., Ortiz, A., Napadow, V., Yu, S., Wilson, G., Park, J., Lang, C., Jung, M., Gerber, J., Mawla, I., Chan, S. -T., Wasan, A. D., Edwards, R. R., Kaptchuk, T., Li, S., Rosen, B., & Kong, J. ( 2019 ). Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. NeuroImage: Clinical, 22, 101775. https://doi.org/10.1016/j.nicl.2019.101775
dc.identifier.citedreferenceTen Brink, A. F., & Bultitude, J. H. ( 2022 ). Visual sensitivity in complex regional pain syndrome and fibromyalgia: An online study. Perception, 51 ( 3 ), 187 – 209.
dc.identifier.citedreferenceTen Brink, A. F., Proulx, M. J., & Bultitude, J. H. ( 2021 ). Validation of the Leiden Visual Sensitivity Scale and Visual Discomfort Scale in chronic pain conditions. Perception, 50, 399 – 417. https://doi.org/10.1177/03010066211005327
dc.identifier.citedreferenceTracey, I., & Bushnell, M. C. ( 2009 ). How neuroimaging studies have challenged us to rethink: Is chronic pain a disease? The Journal of Pain, 10, 1113 – 1120. https://doi.org/10.1016/j.jpain.2009.09.001
dc.identifier.citedreferenceVillemure, C., & Bushnell, M. C. ( 2009 ). Mood influences supraspinal pain processing separately from attention. Journal of Neuroscience, 29, 705 – 715. https://doi.org/10.1523/JNEUROSCI.3822-08.2009
dc.identifier.citedreferenceWeissman-Fogel, I., Moayedi, M., Tenenbaum, H. C., Goldberg, M. B., Freeman, B. V., & Davis, K. D. ( 2011 ). Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain, 152, 384 – 396. https://doi.org/10.1016/j.pain.2010.10.046
dc.identifier.citedreferenceWolfe, F., Clauw, D. J., Fitzcharles, M.-A., Goldenberg, D. L., Häuser, W., Katz, R. S., Mease, P., Russell, A. S., Russell, I. J., & Winfield, J. B. ( 2011 ). Fibromyalgia criteria and severity scales for clinical and epidemiological studies: A modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. Journal of Rheumatology, 38, 1113 – 1122. https://doi.org/10.3899/jrheum.100594
dc.identifier.citedreferenceYin, Y., He, S., Xu, J., You, W., Li, Q., Long, J., Luo, L., Kemp, G. J., Sweeney, J. A., Li, F., Chen, S., & Gong, Q. ( 2020 ). The neuro-pathophysiology of temporomandibular disorders-related pain: A systematic review of structural and functional MRI studies. The Journal of Headache and Pain, 21, 78. https://doi.org/10.1186/s10194-020-01131-4
dc.identifier.citedreferenceAllen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J., Clark, V. P., Feldstein Ewing, S. W., … Calhoun, V. D. ( 2011 ). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2. https://doi.org/10.3389/fnsys.2011.00002
dc.identifier.citedreferenceAlshelh, Z., Marciszewski, K. K., Akhter, R., Di Pietro, F., Mills, E. P., Vickers, E. R., Peck, C. C., Murray, G. M., & Henderson, L. A. ( 2018 ). Disruption of default mode network dynamics in acute and chronic pain states. NeuroImage: Clinical, 17, 222 – 231. https://doi.org/10.1016/j.nicl.2017.10.019
dc.identifier.citedreferenceAnteraper, S. A., Gopinath, K., Hoch, M. J., Waldrop-Valverde, D., Franklin, D., Letendre, S. L., Whitfield-Gabrieli, S., & Anderson, A. M. ( 2021 ). A comprehensive data-driven analysis framework for detecting impairments in brain function networks with resting state fMRI in HIV-infected individuals on cART. Journal of Neurovirology, 27, 239 – 248. https://doi.org/10.1007/s13365-021-00943-7
dc.identifier.citedreferenceBroadbent, P., Liossi, C., & Schoth, D. E. ( 2021 ). Attentional bias to somatosensory stimuli in chronic pain patients: A systematic review and meta-analysis. Pain, 162, 332 – 352. https://doi.org/10.1097/j.pain.0000000000002040
dc.identifier.citedreferenceCalhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. ( 2001 ). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14, 140 – 151. https://doi.org/10.1002/hbm.1048
dc.identifier.citedreferenceÇetin, M. S., Christensen, F., Abbott, C. C., Stephen, J. M., Mayer, A. R., Cañive, J. M., Bustillo, J. R., Pearlson, G. D., & Calhoun, V. D. ( 2014 ). Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. Neuroimage, 97, 117 – 126. https://doi.org/10.1016/j.neuroimage.2014.04.009
dc.identifier.citedreferenceCottam, W. J., Iwabuchi, S. J., Drabek, M. M., Reckziegel, D., & Auer, D. P. ( 2018 ). Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain, 159, 929 – 938. https://doi.org/10.1097/j.pain.0000000000001209
dc.identifier.citedreferenceCox, R. W. ( 2019 ). Equitable thresholding and clustering: A novel method for functional magnetic resonance imaging clustering in AFNI. Brain Connect, 9, 529 – 538. https://doi.org/10.1089/brain.2019.0666
dc.identifier.citedreferenceDomin, M., Grimm, N. K., Klepzig, K., Schmidt, C. O., Kordass, B., & Lotze, M. ( 2021 ). Gray matter brain alterations in temporomandibular disorder tested in a population cohort and three clinical samples. The Journal of Pain, 22, 739 – 747. https://doi.org/10.1016/j.jpain.2021.01.003
dc.identifier.citedreferenceDworkin, S. F., & LeResche, L. ( 1992 ). Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique. Journal of Craniomandibular Disorders, 6, 301 – 355.
dc.identifier.citedreferenceEller-Smith, O. C., Nicol, A. L., & Christianson, J. A. ( 2018 ). Potential mechanisms underlying centralized pain and emerging therapeutic interventions. Frontiers in Cellular Neuroscience, 12, 35. https://doi.org/10.3389/fncel.2018.00035
dc.identifier.citedreferenceFesta, F., Rotelli, C., Scarano, A., Navarra, R., Caulo, M., & Macrì, M. ( 2021 ). Functional magnetic resonance connectivity in patients with temporomadibular joint disorders. Frontiers in Neurology, 12, 629211. https://doi.org/10.3389/fneur.2021.629211
dc.identifier.citedreferenceFitzcharles, M.-A., Cohen, S. P., Clauw, D. J., Littlejohn, G., Usui, C., & Häuser, W. ( 2021 ). Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet, 397, 2098 – 2110. https://doi.org/10.1016/S0140-6736(21)00392-5
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.