Show simple item record

Scale-free dynamics of core-periphery topography

dc.contributor.authorKlar, Philipp
dc.contributor.authorÇatal, Yasir
dc.contributor.authorLangner, Robert
dc.contributor.authorHuang, Zirui
dc.contributor.authorNorthoff, Georg
dc.date.accessioned2023-04-04T17:43:36Z
dc.date.available2024-05-04 13:43:34en
dc.date.available2023-04-04T17:43:36Z
dc.date.issued2023-04-01
dc.identifier.citationKlar, Philipp; Çatal, Yasir ; Langner, Robert; Huang, Zirui; Northoff, Georg (2023). "Scale- free dynamics of core- periphery topography." Human Brain Mapping 44(5): 1997-2017.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/176099
dc.description.abstractThe human brain’s cerebral cortex exhibits a topographic division into higher-order transmodal core and lower-order unimodal periphery regions. While timescales between the core and periphery region diverge, features of their power spectra, especially scale-free dynamics during resting-state and their mdulation in task states, remain unclear. To answer this question, we investigated the ~1/f-like pink noise manifestation of scale-free dynamics in the core-periphery topography during rest and task states applying infra-slow inter-trial intervals up to 1 min falling inside the BOLD’s infra-slow frequency band. The results demonstrate (1) higher resting-state power-law exponent (PLE) in the core compared to the periphery region; (2) significant PLE increases in task across the core and periphery regions; and (3) task-related PLE increases likely followed the task’s atypically low event rates, namely the task’s periodicity (inter-trial interval = 52–60 s; 0.016–0.019 Hz). A computational model and a replication dataset that used similar infra-slow inter-trial intervals provide further support for our main findings. Altogether, the results show that scale-free dynamics differentiate core and periphery regions in the resting-state and mediate task-related effects.Scale-free dynamics are investigated in the cerebral cortex’s core-periphery division in fMRI. Both rest and task states were assessed. We demonstrate that the brain’s scale-free dynamics are modulated by the task’s periodicity in the infra-slow band.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercerebral cortex topography
dc.subject.otherperiodicity
dc.subject.otherinput processing
dc.subject.otherspontaneous activity
dc.subject.otherpower-law
dc.subject.otherpink noise
dc.titleScale-free dynamics of core-periphery topography
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176099/1/hbm26187_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176099/2/hbm26187.pdf
dc.identifier.doi10.1002/hbm.26187
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferenceSchaefer, A., Kong, R., Gordon, E. M., Laumann TO, Zuo, X. N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. ( 2018 ). Local-global Parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 28 ( 9 ), 3095 – 3114. https://doi.org/10.1093/cercor/bhx179
dc.identifier.citedreferencePoil, S. S., van Ooyen, A., & Linkenkaer-Hansen, K. ( 2008 ). Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations. Human Brain Mapping, 29, 770 – 777. https://doi.org/10.1002/hbm.20590
dc.identifier.citedreferenceRocca, D., Zilber, N., Abry, P., van Wassenhove, V., & Ciuciu, P. ( 2018 ). Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics. Journal of Neuroscience Methods, 309 ( 1 ), 175 – 187. https://doi.org/10.1016/j.jneumeth.2018.09.010
dc.identifier.citedreferenceRoisen, D. A., & Shew, W. L. ( 2020 ). Fractal brain dynamics: From Mandelbrot to marmosets. The Journal of Physiology, 598 ( 8 ), 1425 – 1426. https://doi.org/10.1113/jp279556
dc.identifier.citedreferenceScalabrini, A., Ebisch, S. J. H., Huang, Z., Di Plinio, S., Perrucci, M. G., Romani, G. L., Mucci, C., & Northoff, G. ( 2019 ). Spontaneous brain activity predicts task-evoked activity during animate versus inanimate touch. Cerebral Cortex, 29 ( 11 ), 4628 – 4645. https://doi.org/10.1093/cercor/bhy340
dc.identifier.citedreferenceScalabrini, A., Huang, Z., Mucci, C., Perrucci, M. G., Ferretti, A., Fossati, A., Romani, G. L., Northoff, G., & Ebisch, S. J. H. ( 2017 ). How spontaneous brain activity and narcissistic features shape social interaction. Scientific Reports, 7 ( 1 ), 9986. https://doi.org/10.1038/s41598-017-10389-9
dc.identifier.citedreferenceSchroeder, M. ( 2009 ). Fractals, chaos, power Laws: Minutes from an infinite paradise. Dover Publications.
dc.identifier.citedreferenceShew, W. L., Clawson, W. P., Pobst, J., Karimipanah, Y., Wright, N. C., & Wessel, R. ( 2015 ). Adaptation to sensory input tunes visual cortex to criticality. Nature Physics, 11, 659 – 663. https://doi.org/10.1038/nphys3370
dc.identifier.citedreferenceShew, W. L., & Plenz, D. ( 2013 ). The functional benefits of criticality in the cortex. The Neuroscientist, 19 ( 1 ), 88 – 100. https://doi.org/10.1177/1073858412445487
dc.identifier.citedreferenceSporns, O. ( 2011 ). Networks of the brain. MIT Press.
dc.identifier.citedreferenceStephens, G. J., Honey, C. J., & Hasson, U. ( 2013 ). A place for time: The spatiotemporal structure of neural dynamics during natural audition. Journal of Neurophysiology, 110 ( 9 ), 2019 – 2026. https://doi.org/10.1152/jn.00268.2013
dc.identifier.citedreferenceStoev, S., Taqqu, M. S., Park, C., Michailidis, G., & Marron, J. S. ( 2006 ). LASS: A tool for the local analysis of self-similarity. Computational Statistics & Data Analysis, 50 ( 9 ), 2447 – 2471. https://doi.org/10.1016/j.csda.2004.12.014
dc.identifier.citedreferenceSzendro, P., Vincze, G., & Szasz, A. ( 2001 ). Pink-noise behaviour of biosystems. European Biophysics Journal, 30 ( 3 ), 227 – 231. https://doi.org/10.1007/s002490100143
dc.identifier.citedreferenceTagliazucchi, E., Balenzuela, P., Fraiman, D., & Chiavlo, D. R. ( 2012 ). Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology, 3, 15. https://doi.org/10.3389/fphys.2012.00015
dc.identifier.citedreferenceTagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke, K., & Laufs, H. ( 2013 ). Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 38 ), 15419 – 15424. https://doi.org/10.1073/pnas.1312848110
dc.identifier.citedreferencevan den Heuvel, M. P., & Sporns, O. ( 2013 ). Network hubs in the human brain. Trends in Cognitive Sciences, 17 ( 12 ), 683 – 696. https://doi.org/10.1016/j.tics.2013.09.012
dc.identifier.citedreferenceWainio-Theberge, S., Wolff, A., Gomez-Pilar, J., Zhang, J., & Northoff, G. ( 2022 ). Variability and task-responsiveness of electrophysiological dynamics: Scale-free stability and oscillatory flexibility. NeuroImage, 256, 119245. https://doi.org/10.1016/j.neuroimage.2022.119245
dc.identifier.citedreferenceWainio-Theberge, S., Wolff, A., & Northoff, G. ( 2021 ). Dynamic relationships between spontaneous and evoked electrophysiological activity. Community Biology, 4 ( 1 ), 741. https://doi.org/10.1038/s42003-021-02240-9
dc.identifier.citedreferenceWang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., van den Heuvel, M. P., & Yeo, B. T. T. ( 2019 ). Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 5 ( 1 ), eaat7854. https://doi.org/10.1126/sciadv.aat7854
dc.identifier.citedreferenceWen, H., & Liu, Z. ( 2016 ). Separating fractal and oscillatory components in the power Spectrum of neurophysiological signal. Brain Topography, 29 ( 1 ), 13 – 26. https://doi.org/10.1007/s10548-015-0448-0
dc.identifier.citedreferenceWilliams, G. P. ( 1997 ). Chaos Theory Tamed. Joseph Henry Press.
dc.identifier.citedreferenceWolff, A., Berberian, N., Golesorkhi, M., Gomez-Pilar, J., Zilio, F., & Northoff, G. ( 2022 ). Intrinsic neural timescales: Temporal integration and segregation. Trends in Cognitive Sciences, 26 ( 2 ), 159 – 173. https://doi.org/10.1016/j.tics.2021.11.007
dc.identifier.citedreferenceYacoub, E., Ugurbil, K., & Harel, N. ( 2006 ). The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. Journal of Cerebral Blood Flow & Metabolism, 26 ( 5 ), 634 – 644. https://doi.org/10.1038/sj.jcbfm.9600239
dc.identifier.citedreferenceYeshurun, Y., Nguyen, M., & Hasson, U. ( 2021 ). The default mode network: Where the idiosyncratic self meets the shared social world. Nature Reviews Neuroscience, 22 ( 3 ), 181 – 192. https://doi.org/10.1038/s41583-020-00420-w
dc.identifier.citedreferenceZhang, J, Huang, Z, Chen, Y, Zhang J, Ghinda, D, Nikolova, Y, Wu J, Xu, J, Bai, W, Mao, Y, Yang, Z, Duncan, N, Qin, P, Wang, H, Chen, B, Weng, X, Northoff, G. ( 2018 ). Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia. Hum. Brain Mapp. 39 ( 5 ): 2035 – 2046. https://doi.org/10.1002/hbm.23984
dc.identifier.citedreferenceZilio, F., Gomez-Pilar, J., Cao, S., Zhang, J., Zang, D., Qi, Z., Tan, J., Hiromi, T., Wu, X., Fogel, S., Huang, Z., Hohmann, M. R., Fomina, T., Synofziki, M., Grosse-Wentrup, M., Owen, A. M., & Northoff, G. ( 2021 ). Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. NeuroImage, 226, 117579. https://doi.org/10.1016/j.neuroimage.2020.117579
dc.identifier.citedreferenceBak, P., Tang, C., & Wiesenfeld, K. ( 1987 ). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59 ( 4 ), 381 – 384. https://doi.org/10.1103/PhysRevLett.59.381
dc.identifier.citedreferenceBaldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. ( 2017 ). Discovering event structure in continuous narrative perception and memory. Neuron, 95, 709 – 721. https://doi.org/10.1016/j.neuron.2017.06.041
dc.identifier.citedreferenceBarnes, A., Bullmore, E. T., & Suckling, J. ( 2009 ). Endogenous human brain dynamics recover slowly following cognitive effort. PLoS One, 4 ( 8 ), e6626. https://doi.org/10.1371/journal.pone.0006626
dc.identifier.citedreferenceBassett, D. S., Bullmore, E., Verchinski, B. A., Venkata, S. M., Weinberger, D. R., & Meyer-Lindenberg, A. ( 2008 ). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28 ( 37 ), 9239 – 9248. https://doi.org/10.1523/JNEUROSCI.1929-08.2008
dc.identifier.citedreferenceBassingthwaighte, J. B., Liebovitch, L. S., West, B. J. ( 1994 ). Fractal Physiology. Oxford University Press.
dc.identifier.citedreferenceBeggs, J. M., & Plenz, D. ( 2003 ). Neuronal avalanches in neocortical circuits. The Journal of Neuroscience, 23 ( 35 ), 11167 – 11177. https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
dc.identifier.citedreferenceBénar, C. G., Grova, C., Jirsa, V. K., & Lina, J. M. ( 2019 ). Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: A simulation study. Journal of Computational Neuroscience, 47 ( 1 ), 31 – 41. https://doi.org/10.1007/s10827-019-00721-9
dc.identifier.citedreferenceBeran, J. ( 1994 ). Statistics for long-memory processes. CRC Press.
dc.identifier.citedreferenceBertschinger, N., & Natschläger, T. ( 2004 ). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 16 ( 7 ), 1413 – 1436. https://doi.org/10.1162/089976604323057443
dc.identifier.citedreferenceBorgatti, S. P., & Everett, M. G. ( 2000 ). Models of core/periphery structures. Social Networks, 21 ( 4 ), 375 – 395. https://doi.org/10.1016/S0378-8733(99)00019-2
dc.identifier.citedreferenceBoynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. ( 1996 ). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16 ( 13 ), 4207 – 4221. https://doi.org/10.1523/JNEUROSCI.16-13-04207.1996
dc.identifier.citedreferenceBroido, A. D., & Clauset, A. ( 2019 ). Scale-free networks are rare. Nature Communications, 10 ( 1 ), 1017. https://doi.org/10.1038/s41467-019-08746-5
dc.identifier.citedreferenceÇatal, Y., Gomez-Pilar, J., & Northoff, G. ( 2022 ). Intrinsic dynamics and topography of sensory input systems. Cerebral Cortex, 32, 4592 – 4604. https://doi.org/10.1093/cercor/bhab504
dc.identifier.citedreferenceChurchill, N. W., Spring, R., Grady, C., Cimprich, B., Askren, M. K., Reuter-Lorenz, P. A., Jung, M. S., Peltier, S., Strother, S. C., & Berman, M. G. ( 2016 ). The suppression of scale-free fMRI brain dynamics across three different sources of effort: Aging, task novelty and task difficulty. Scientific Reports, 6, 30985. https://doi.org/10.1038/srep30895
dc.identifier.citedreferenceCiuciu, P., Abry, P., & He, B. J. ( 2014 ). Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks. NeuroImage, 95, 248 – 263. https://doi.org/10.1016/j.neuroimage.2014.03.047
dc.identifier.citedreferenceCiuciu, P., Varoquaux, G., Abry, P., Sadaghiani, S., & Kleinschmidt, A. ( 2012 ). Scale-free and multifractal time dynamics of fMRI signals during rest and task. Frontiers in Physiology, 3, 186. https://doi.org/10.3389/fphys.2012.00186
dc.identifier.citedreferenceClauset, A., Shalizi, C. R., & Newman, M. E. J. ( 2009 ). Power-law distributions in empirical data. SIAM Review, 51 ( 4 ), 661 – 703. https://doi.org/10.1137/07071011
dc.identifier.citedreferenceCocchi, L., Gollo, L. L., Zalesky, A., & Breakspear, M. ( 2017 ). Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology, 158, 132 – 152. https://doi.org/10.1016/j.pneurobio.2017.07.002
dc.identifier.citedreferenceCox, R. W. ( 1996 ). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29 ( 3 ), 162 – 173. https://doi.org/10.1006/cbmr.1996.0014
dc.identifier.citedreferencede Pasquale, F., Corbetta, M., Betti, V., & Della, P. S. ( 2018 ). Cortical cores in network dynamics. NeuroImage, 15, 370 – 382. https://doi.org/10.1016/j.neuroimage.2017.09.063
dc.identifier.citedreferencede Pasquale, F., Della Penna, S., Snyder, A. Z., Marzetti, L., Pizzella, V., Romani, G. L., & Corbetta, M. ( 2012 ). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74 ( 4 ), 753 – 764. https://doi.org/10.1016/j.neuron.2012.03.031
dc.identifier.citedreferenceDong, J., Jing, B., Xiangyu, M., Han, L., Xiao, M., & Haiyun, L. ( 2018 ). Hurst exponent analysis of resting-state fMRI signal complexity across the adult lifespan. Frontiers in Neuroscience, 12, 34. https://doi.org/10.3389/fnins.2018.00034
dc.identifier.citedreferenceFox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. ( 2006 ). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9 ( 1 ), 23 – 25. https://doi.org/10.1038/nn1616
dc.identifier.citedreferenceFransson, P., Metsäranta, M., Blennow, M., Aden, U., Lagercrantz, H., & Vanhatalo, S. ( 2013 ). Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain. Cerebral Cortex, 23 ( 3 ), 638 – 646. https://doi.org/10.1093/cercor/bhs047
dc.identifier.citedreferenceFreeman, W. J., Rogers, L. J., Holmes, M. D., & Silbergeld, D. L. ( 2000 ). Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. Journal of Neuroscience Methods, 95 ( 2 ), 111 – 121. https://doi.org/10.1016/S0165-0270(99)00160-0
dc.identifier.citedreferenceGisiger, T. ( 2001 ). Scale invariance in biology: Coincidence or footprint of a universal mechanism? Biological Reviews of the Cambridge Philosophical Society, 76 ( 2 ), 161 – 209. https://doi.org/10.1017/s1464793101005607
dc.identifier.citedreferenceGolesorkhi, M., Gomez-Pilar, J., Catal, Y., Tumati, S., Yagoub, M. C. E., Stamatakis, E. A., & Northoff, G. ( 2022 ). From temporal to spatial topography: Hierarchy of neural dynamics in higher- and lower-order networks shapes their complexity. Cerebral Cortex, 32 ( 24 ), 5637 – 5653. https://doi.org/10.1093/cercor/bhac042
dc.identifier.citedreferenceGolesorkhi, M., Gomez-Pilar, J., Tumati, S., Fraser, M., & Northoff, G. ( 2021 ). Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization. Community Biology, 4 ( 1 ), 277. https://doi.org/10.1038/s42003-021-01785-z
dc.identifier.citedreferenceGollo, L. L., Roberts, J. A., & Cocchi, L. ( 2017 ). Mapping how local perturbations influence systems-level brain dynamics. NeuroImage, 160, 97 – 112. https://doi.org/10.1016/j.neuroimage.2017.01.057
dc.identifier.citedreferenceGollo, L. L., Zalesky, A., Hutchison, R. M., van den Heuvel, M., & Breakspear, M. ( 2015 ). Dwelling quietly in the rich club: Brain network determinants of slow cortical fluctuations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370 ( 1668 ), 20140165. https://doi.org/10.1098/rstb.2014.0165
dc.identifier.citedreferenceHe, B. ( 2011 ). Scale-free properties of the functional magnetic resonance imaging signal during rest and task. The Journal of Neuroscience, 31 ( 39 ), 13786 – 13795. https://doi.org/10.1523/JNEUROSCI.2111-11.2011
dc.identifier.citedreferenceHe, B. J. ( 2014 ). Scale-free brain activity: Past, present, and future. Trends in Cognitive Sciences, 18 ( 9 ), 480 – 487. https://doi.org/10.1016/j.tics.2014.04.003
dc.identifier.citedreferenceHe, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. ( 2010 ). The temporal structures and functional significance of scale-free brain activity. Neuron, 66 ( 3 ), 353 – 369. https://doi.org/10.1016/j.neuron.2010.04.020
dc.identifier.citedreferenceHeiney, K., Ramstad, O. H., Fiskum, V., Christiansen, N., Sandvig, A., Nichele, S., & Sandvig, I. ( 2021 ). Criticality, connectivity, and neural disorder: A multifaceted approach to neural computation. Frontiers in Computational Neuroscience, 15, 61183. https://doi.org/10.3389/fncom.2021.611183
dc.identifier.citedreferenceHuang, Z., Dai, R., Wu, X., Yang, Z., Liu, D., Hu, J., Gao, L., Tang, W., Mao, Y., Jin, Y., Wu, X., Liu, B., Zhang, Y., Lu, L., Laureys, S., Weng, X., & Northoff, G. ( 2014 ). The self and its resting state in consciousness: An investigation of the vegetative state. Human Brain Mapping, 35 ( 5 ), 1997 – 2008. https://doi.org/10.1002/hbm.22308
dc.identifier.citedreferenceHuang, Z., Zhang, J., Longtin, A., Dumont, G., Duncan, N. W., Pokorny, J., Qin, P., Dai, R., Ferri, F., Weng, X., & Northoff, G. ( 2017 ). Is there a nonadditive interaction between spontaneous and evoked activity? Phase-dependence and its relation to the temporal structure of scale-free brain activity. Cerebral Cortex, 27, 1037 – 1059. https://doi.org/10.1093/cercor/bhv288
dc.identifier.citedreferenceHuang, Z., Zhang, J., Wu, J., Liu, X., Xu, J., Zhang, J., Qin, P., Dai, R., Yang, Z., Mao, Y., Hudetz, A. G., & Northoff, G. ( 2018 ). Disrupted neural variability during propofol-induced sedation and unconsciousness. Human Brain Mapping, 39 ( 11 ), 4533 – 4544. https://doi.org/10.1002/hbm.24304
dc.identifier.citedreferenceHuettel, S. A. ( 2012 ). Event-related fMRI in cognition. NeuroImage, 62 ( 2 ), 1152 – 1156. https://doi.org/10.1016/j.neuroimage.2011.08.113
dc.identifier.citedreferenceHuntenburg, J. M., Bazin, P. L., Goulas, A., Tardif, C. L., Villringer, A., & Margulies, D. S. ( 2017 ). A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cerebral Cortex, 27 ( 2 ), 981 – 997. https://doi.org/10.1093/cercor/bhx030
dc.identifier.citedreferenceHuntenburg, J. M., Bazin, P. L., & Margulies, D. S. ( 2018 ). Large-scale gradients in human cortical organization. Trends in Cognitive Sciences, 22 ( 1 ), 21 – 31. https://doi.org/10.1016/j.tics.2017.11.002
dc.identifier.citedreferenceIto, T., Hearne, L. J., & Cole, M. W. ( 2020 ). A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales. NeuroImage, 211, 117141. https://doi.org/10.1016/j.neuroimage.2020.117141
dc.identifier.citedreferenceJi, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. ( 2019 ). Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage, 185, 35 – 57. https://doi.org/10.1016/j.neuroimage.2018.10.006
dc.identifier.citedreferenceJo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A., Cox, R. W., & Saad, Z. S. ( 2013 ). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. Journal of Applied Mathematics, 2013, 1 – 9. https://doi.org/10.1155/2013/935154
dc.identifier.citedreferenceKasagi, M., Huang, Z., Narita, K., Shitara, H., Motegi, T., Suzuki, Y., Fujihara, K., Tanabe, S., Kosaka, H., Ujita, K., Fukuda, M., & Northoff, G. ( 2017 ). Association between scale-free brain dynamics and behavioral performance: Functional MRI study in resting state and face processing task. Behav. https://doi.org/10.1155/2017/2824615
dc.identifier.citedreferenceKasdin, N. J. ( 1995 ). Discrete simulation of colored noise and stochastic processes and 1/f power law noise generation. Proceedings of the IEEE, 83 ( 5 ), 802 – 827. https://doi.org/10.1109/5.381848
dc.identifier.citedreferenceKello, C. T., Brown, G. D. A., Ferrer-I-Cancho, R., Holden, J. G., Linkenkaer-Hansen, K., Rhodes, T., & Van Orden, G. C. ( 2010 ). Scaling laws in cognitive sciences. Trends in Cognitive Sciences, 14 ( 5 ), 223 – 232. https://doi.org/10.1016/j.tics.2010.02.005
dc.identifier.citedreferenceKolvoort, I. R., Wainio-Theberge, S., Wolff, A., & Northoff, G. ( 2020 ). Temporal integration as “common currency” of brain and self-scale-free activity in resting-state EEG correlates with temporal delay effects on self-relatedness. Human Brain Mapping, 41 ( 15 ), 4355 – 4374. https://doi.org/10.1002/hbm.25129
dc.identifier.citedreferenceLin, A., Maniscalco, B., & He, B. J. ( 2016 ). Scale-free neural and physiological dynamics in naturalistic stimuli processing. eNeuro, 3 ( 5 ), ENEURO.0191 – ENEU16.2016. https://doi.org/10.1523/ENEURO.0191-16.2016
dc.identifier.citedreferenceLinkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. ( 2001 ). Long-range temporal correlations and scaling behavior in human brain oscillations. The Journal of Neuroscience, 21 ( 4 ), 1370 – 1377. https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
dc.identifier.citedreferenceMargulies, D. S., Satrajit, S. G., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. ( 2016 ). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceeding of the National Academy of United States of America, 113, 12574 – 12579. https://doi.org/10.1073/pnas.1608282113
dc.identifier.citedreferenceMeisel, C., Klaus, A., Vyazovskiy, V. V., & Plenz, D. ( 2017 ). The interplay between long- and short-range temporal correlations shapes cortex dynamics across vigilance states. The Journal of Neuroscience, 37 ( 42 ), 10114 – 10124. https://doi.org/10.1523/JNEUROSCI.0448-17.2017
dc.identifier.citedreferenceMikkelsen, K. B., & Lund, T. E. ( 2013 ). Sampling rate dependence of correlation at long time lags in BOLD fMRI measurements on humans and gel phantoms. Frontiers in Physiology, 4, 106. https://doi.org/10.3389/fphys.2013.00106
dc.identifier.citedreferenceMorales, G. B., & Muñoz, M. A. ( 2021 ). Optimal input representation in neural Systems at the Edge of chaos. Biology (Basel), 10 ( 8 ), 702. https://doi.org/10.3390/biology10080702
dc.identifier.citedreferenceMuthukumaraswamy, S. D., & Liley, D. T. ( 2018 ). 1/f electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. NeuroImage, 179, 582 – 595. https://doi.org/10.1016/j.neuroimage.2018.06.068
dc.identifier.citedreferenceNorthoff, G., & Huang, Z. ( 2017 ). How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neuroscience and Biobehavioral Reviews, 80, 630 – 645. https://doi.org/10.1016/j.neubiorev.2017.07.013
dc.identifier.citedreferenceNorthoff, G., Wainio-Theberge, S., & Evers, K. ( 2020 ). Is temporo-spatial dynamics the "common currency" of brain and mind? In quest of "spatiotemporal neuroscience". Physics of Life Reviews, 33, 34 – 54. https://doi.org/10.1016/j.plrev.2019.05.002
dc.identifier.citedreferenceNorthoff, G., & Zilio, F. ( 2022 ). Temporo-spatial theory of consciousness (TTC) - bridging the gap of neuronal activity and phenomenal states. Behavioural Brain Research, 424, 113788. https://doi.org/10.1016/j.bbr.2022.113788
dc.identifier.citedreferencePetermann, T., Thiagarajan, T. C., Lebedev, M. A., Nicolelis, M. A. L., Chialvo, D. R., & Plenz, D. ( 2009 ). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings. National Academy of Sciences. United States of America, 106 ( 37 ), 15921 – 15926. https://doi.org/10.1073/pnas.0904089106
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.