Show simple item record

Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions

dc.contributor.authorXie, Yan
dc.contributor.authorHuang, Xianglei
dc.contributor.authorChen, Xiuhong
dc.contributor.authorL’Ecuyer, Tristan S.
dc.contributor.authorDrouin, Brian J.
dc.date.accessioned2023-04-04T17:43:43Z
dc.date.available2024-04-04 13:43:41en
dc.date.available2023-04-04T17:43:43Z
dc.date.issued2023-03
dc.identifier.citationXie, Yan; Huang, Xianglei; Chen, Xiuhong; L’Ecuyer, Tristan S. ; Drouin, Brian J. (2023). "Joint Use of Far- Infrared and Mid- Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far- Infrared Missions." Earth and Space Science 10(3): n/a-n/a.
dc.identifier.issn2333-5084
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/2027.42/176101
dc.description.abstractAtmosphere and surface properties are routinely retrieved from satellite measurements and extensively used in weather forecast and climate analysis. Satellite missions dedicated to fill the gap of far-infrared (far-IR) observations are scheduled to be launched this decade. To explore mid-infrared (mid-IR) and far-IR joint retrievals for the future far-IR satellite missions, this study uses an optimal-estimation-based method to retrieve atmospheric specific humidity and temperature profiles, surface skin temperature, and surface spectral emissivity from the Infrared Interferometer Sounder-D (IRIS-D) measurements in 1970, the only existing spaceborne far-IR spectral observations with global coverage. Based on a set of criteria, two cases in the Arctic, which are most likely under clear-sky conditions, are chosen for the retrieval experiments. Information content analysis suggests that the retrieved surface skin temperature and the mid-IR surface spectral emissivity are highly sensitive to the true values while the retrieval estimates of far-IR surface emissivity are subject to the variation of water vapor abundance. Results show that radiances based on the retrieved state variables are more consistent with the IRIS-D observations compared to those based on the reanalysis data. Retrieval estimates of the state variables along with retrieval uncertainties generally fall within reasonable ranges. The relative uncertainties of retrieved state variables decrease compared to the a priori relative uncertainties. In addition, the necessity to retrieve surface emissivity is corroborated by a parallel retrieval experiment assuming a blackbody surface emissivity that has revealed significant distortions of retrieved specific humidity and temperature profiles in the Arctic lower troposphere.Key PointsAtmospheric profiles and surface properties are simultaneously retrieved from satellite observations made 50 years agoCompared to reanalysis data, the retrieval estimates produce radiances which are more consistent with the observationsRetrievals of humidity and temperature profiles in the lower troposphere can be considerably affected by the surface spectral emissivity
dc.publisherWORLD SCIENTIFIC
dc.publisherWiley Periodicals, Inc.
dc.subject.otheratmospheric retrieval
dc.subject.othersatellite observation
dc.subject.otherfar-infrared
dc.titleJoint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelSpace Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176101/1/ess21415.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176101/2/ess21415_am.pdf
dc.identifier.doi10.1029/2022EA002684
dc.identifier.sourceEarth and Space Science
dc.identifier.citedreferencePlokhenko, Y., & Menzel, W. P. ( 2000 ). The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements. Journal of Applied Meteorology, 39 ( 1 ), 3 – 14. https://doi.org/10.1175/1520-0450(2000)039<0003:TEOSRO>2.0.CO;2
dc.identifier.citedreferenceL’Ecuyer, T. S., Drouin, B. J., Anheuser, J., Grames, M., Henderson, D., Huang, X., et al. ( 2021 ). The polar radiant energy in the far infrared experiment: A new perspective on polar longwave energy exchanges. Bulletin of the American Meteorological Society, 102, ( 7 ), 1 – 46. https://doi.org/10.1175/BAMS-D-20-0155.1
dc.identifier.citedreferenceL’Ecuyer, T. S., & Stephens, G. L. ( 2002 ). An estimation-based precipitation retrieval algorithm for attenuating radars. Journal of Applied Meteorology, 41 ( 3 ), 272 – 285. https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2
dc.identifier.citedreferenceLi, J., Li, J., Weisz, E., & Zhou, D. K. ( 2007 ). Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophysical Research Letters, 34 ( 16 ), L16812. https://doi.org/10.1029/2007GL030543
dc.identifier.citedreferenceLi, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H., & Achtor, T. H. ( 2000 ). Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. Journal of Applied Meteorology, 39 ( 8 ), 1248 – 1268. https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2
dc.identifier.citedreferenceLiu, X., Smith, W. L., Zhou, D. K., & Larar, A. ( 2006 ). Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Applied Optics, 45 ( 1 ), 201 – 209. https://doi.org/10.1364/AO.45.000201
dc.identifier.citedreferenceLiu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., et al. ( 2009 ). Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmospheric Chemistry and Physics, 9 ( 23 ), 9121 – 9142. https://doi.org/10.5194/acp-9-9121-2009
dc.identifier.citedreferenceMa, X., Wan, Z., Moeller, C., Menzel, W., Gumley, L., & Zhang, Y. ( 2000 ). Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Applied Optics, 39 ( 5 ), 3537 – 3550. https://doi.org/10.1364/AO.41.000909
dc.identifier.citedreferenceMaahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., & Comstock, J. M. ( 2020 ). Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know. Bulletin of the American Meteorological Society, 101 ( 9 ), E1512 – E1523. https://doi.org/10.1175/bams-d-19-0027.1
dc.identifier.citedreferenceMasiello, G., Serio, C., Venafra, S., Liuzzi, G., Poutier, L., & Göttsche, F.-M. ( 2018 ). Physical retrieval of land surface emissivity spectra from hyper-spectral infrared observations and validation with in situ measurements. Remote Sensing, 10 ( 6 ), 976. https://doi.org/10.3390/rs10060976
dc.identifier.citedreferenceMurray, J. E., Brindley, H. E., Fox, S., Bellisario, C., Pickering, J. C., Fox, C., et al. ( 2020 ). Retrievals of high-latitude surface emissivity across the infrared from high-Altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125 ( 22 ), e2020JD033672. https://doi.org/10.1029/2020JD033672
dc.identifier.citedreferencePalchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., et al. ( 2020 ). FORUM: Unique far-infrared satellite observations to better understand how earth radiates energy to space. Bulletin of the American Meteorological Society, 101 ( 12 ), E2030 – E2046. https://doi.org/10.1175/bams-d-19-0322.1
dc.identifier.citedreferenceRidolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., et al. ( 2020 ). FORUM Earth explorer 9: Characteristics of level 2 products and synergies with IASI-NG. Remote Sensing, 12 ( 9 ), 1496. https://doi.org/10.3390/rs12091496
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2, p. 256 ). WORLD SCIENTIFIC.
dc.identifier.citedreferenceScarlat, R. C., Heygster, G., & Pedersen, L. T. ( 2017 ). Experiences with an optimal estimation algorithm for surface and atmospheric parameter retrieval from passive microwave data in the Arctic. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 ( 9 ), 3934 – 3947. https://doi.org/10.1109/JSTARS.2017.2739858
dc.identifier.citedreferenceSgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., et al. ( 2022 ). The FORUM end-to-end simulator project: Architecture and results. Atmospheric Measurement Techniques, 15 ( 3 ), 573 – 604. https://doi.org/10.5194/amt-15-573-2022
dc.identifier.citedreferenceSusskind, J., Barnet, C. D., & Blaisdell, J. M. ( 2003 ). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 390 – 409. https://doi.org/10.1109/TGRS.2002.808236
dc.identifier.citedreferenceTans, P., & Keeling, R. ( 2022 ). Atmospheric carbon dioxide dry air mole fractions from quasi-continuous measurements at Mauna Loa, Hawaii, 1971–2021, version 2022-05 [Dataset]. National Oceanic and Atmospheric Administration (NOAA)/Global Monitoring Laboratory (GML). https://doi.org/10.15138/yaf1-bk21
dc.identifier.citedreferenceTurner, D. D., & Löhnert, U. ( 2014 ). Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based atmospheric emitted radiance interferometer (AERI). Journal of Applied Meteorology and Climatology, 53 ( 3 ), 752 – 771. https://doi.org/10.1175/jamc-d-13-0126.1
dc.identifier.citedreferenceWan, Z. ( 2008 ). New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112 ( 1 ), 59 – 74. https://doi.org/10.1016/j.rse.2006.06.026
dc.identifier.citedreferenceWood, N. B., & L’Ecuyer, T. S. ( 2021 ). What millimeter-wavelength radar reflectivity reveals about snowfall: An information-centric analysis. Atmospheric Measurement Techniques, 14 ( 2 ), 869 – 888. https://doi.org/10.5194/amt-14-869-2021
dc.identifier.citedreferenceXie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., & Drouin, B. J. ( 2022 ). Joint use of far-infrared and mid-infrared observation for sounding retrievals: Learning from the past for upcoming far-infrared missions version 2 [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7552741
dc.identifier.citedreferenceXie, Y., Huang, X., Chen, X., L’Ecuyer, T. S., Drouin, B. J., & Wang, J. ( 2022 ). Retrieval of surface spectral emissivity in polar regions based on the optimal estimation method. Journal of Geophysical Research: Atmospheres, 127 ( 5 ), e2021JD035677. https://doi.org/10.1029/2021JD035677
dc.identifier.citedreferenceZhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., et al. ( 2011 ). Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 4 ), 1277 – 1290. https://doi.org/10.1109/TGRS.2010.2051036
dc.identifier.citedreferenceZhou, D. K., Smith, W. L., Liu, X., Larar, A. M., Mango, S. A., & Huang, H.-L. ( 2007 ). Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. Journal of the Atmospheric Sciences, 64 ( 3 ), 969 – 982. https://doi.org/10.1175/jas3877.1
dc.identifier.citedreferenceAckerman, S. A., Smith, W. L., Revercomb, H. E., & Spinhirne, J. D. ( 1990 ). The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Monthly Weather Review, 118 ( 11 ), 2377 – 2388. https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
dc.identifier.citedreferenceBackus, G., Gilbert, F., & Bullard, E. C. ( 1970 ). Uniqueness in the inversion of inaccurate gross Earth data. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 266 ( 1173 ), 123 – 192. https://doi.org/10.1098/rsta.1970.0005
dc.identifier.citedreferenceBantges, R. J., Brindley, H. E., Chen, X. H., Huang, X. L., Harries, J. E., & Murray, J. E. ( 2016 ). On the detection of robust multidecadal changes in Earth’s outgoing longwave radiation spectrum. Journal of Climate, 29 ( 13 ), 4939 – 4947. https://doi.org/10.1175/jcli-d-15-0713.1
dc.identifier.citedreferenceBecker, F., & Li, Z.-L. ( 1990 ). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11 ( 3 ), 369 – 393. https://doi.org/10.1080/01431169008955028
dc.identifier.citedreferenceBell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al. ( 2021 ). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147 ( 741 ), 4186 – 4227. https://doi.org/10.1002/qj.4174
dc.identifier.citedreferenceBellisario, C., Brindley, H. E., Murray, J. E., Last, A., Pickering, J., Harlow, R. C., et al. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland plateau using the tropospheric Airborne Fourier transform spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122 ( 22 ), 12152 – 112166. https://doi.org/10.1002/2017JD027328
dc.identifier.citedreferenceBen-Yami, M., Oetjen, H., Brindley, H., Cossich, W., Lajas, D., Maestri, T., et al. ( 2022 ). Emissivity retrievals with FORUM’s end-to-end simulator: Challenges and recommendations. Atmospheric Measurement Techniques, 15 ( 6 ), 1755 – 1777. https://doi.org/10.5194/amt-15-1755-2022
dc.identifier.citedreferenceBorel, C. C. ( 1998 ). Surface emissivity and temperature retrieval for a hyperspectral sensor. IEEE International Geoscience and Remote Sensing. Symposium Proceedings, 1, 546 – 549. https://doi.org/10.1109/IGARSS.1998.702966
dc.identifier.citedreferenceCarissimo, A., De Feis, I., & Serio, C. ( 2005 ). The physical retrieval methodology for IASI: The δ-IASI code. Environmental Modelling & Software, 20 ( 9 ), 1111 – 1126. https://doi.org/10.1016/j.envsoft.2004.07.003
dc.identifier.citedreferenceChen, X., Huang, X., Dong, X., Xi, B., Dolinar, E. K., Loeb, N. G., et al. ( 2018 ). Using AIRS and ARM SGP clear-sky observations to evaluate meteorological reanalyses: A hyperspectral radiance closure approach. Journal of Geophysical Research: Atmospheres, 123 ( 20 ), 11720 – 11734. https://doi.org/10.1029/2018JD028850
dc.identifier.citedreferenceChen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far-IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41 ( 18 ), 6530 – 6537. https://doi.org/10.1002/2014GL061216
dc.identifier.citedreferenceChen, X., Huang, X., & Liu, X. ( 2013 ). Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. Journal of Geophysical Research: Atmospheres, 118 ( 13 ), 7309 – 7320. https://doi.org/10.1002/jgrd.50562
dc.identifier.citedreferenceClough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
dc.identifier.citedreferenceDavis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., et al. ( 2017 ). Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmospheric Chemistry and Physics, 17 ( 20 ), 12743 – 12778. https://doi.org/10.5194/acp-17-12743-2017
dc.identifier.citedreferenceFaysash, D. A., & Smith, E. A. ( 2000 ). Simultaneous retrieval of diurnal to seasonal surface temperatures and emissivities over SGP ARM–CART site using GOES split window. Journal of Applied Meteorology, 39 ( 7 ), 971 – 982. https://doi.org/10.1175/1520-0450(2000)039<0971:SRODTS>2.0.CO;2
dc.identifier.citedreferenceFeldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far-infrared surface emissivity and climate. Proceedings of the National Academy of Sciences, 111 ( 46 ), 16297 – 16302. https://doi.org/10.1073/pnas.1413640111
dc.identifier.citedreferenceGillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. ( 1998 ). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36 ( 4 ), 1113 – 1126. https://doi.org/10.1109/36.700995
dc.identifier.citedreferenceHanel, R. A., Conrath, B. J., Kunde, V. G., Prabhakara, C., Revah, I., Salomonson, V. V., & Wolford, G. ( 1972 ). The Nimbus 4 infrared spectroscopy experiment: 1. Calibrated thermal emission spectra. Journal of Geophysical Research, 77 ( 15 ), 2629 – 2641. https://doi.org/10.1029/JC077i015p02629
dc.identifier.citedreferenceHanel, R. A., Schlachman, B., Rogers, D., & Vanous, D. ( 1971 ). Nimbus 4 michelson interferometer. Applied Optics, 10 ( 6 ), 1376 – 1382. https://doi.org/10.1364/AO.10.001376
dc.identifier.citedreferenceHarries, J., Brindley, H., Sagoo, P., & Bantges, R. ( 2001 ). Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, 410 ( 6826 ), 355 – 357. https://doi.org/10.1038/35066553
dc.identifier.citedreferenceHaskins, R., Goody, R., & Chen, L. ( 1999 ). Radiance covariance and climate models. Journal of Climate, 12 ( 5 ), 1409 – 1422. https://doi.org/10.1175/1520-0442(1999)012<1409:RCACM>2.0.CO;2
dc.identifier.citedreferenceHaskins, R. D., Goody, R. M., & Chen, L. ( 1997 ). A statistical method for testing a general circulation model with spectrally resolved satellite data. Journal of Geophysical Research, 102 ( D14 ), 16563 – 16581. https://doi.org/10.1029/97JD00897
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018a ). ERA5 hourly data on pressure levels from 1959 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. ( 2018b ). ERA5 hourly data on single levels from 1959 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 – 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHuang, X., Chen, X., Flanner, M., Yang, P., Feldman, D., & Kuo, C. ( 2018 ). Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. Journal of Climate, 31 ( 9 ), 3711 – 3727. https://doi.org/10.1175/jcli-d-17-0125.1
dc.identifier.citedreferenceHuang, X., Chen, X., Soden, B. J., & Liu, X. ( 2014 ). The spectral dimension of longwave feedback in the CMIP3 and CMIP5 experiments. Geophysical Research Letters, 41 ( 22 ), 7830 – 7837. https://doi.org/10.1002/2014GL061938
dc.identifier.citedreferenceHuang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/jas-d-15-0355.1
dc.identifier.citedreferenceHuang, X., Farrara, J., Leroy, S. S., Yung, Y. L., & Goody, R. M. ( 2002 ). Cloud variability as revealed in outgoing infrared spectra: Comparing model to observation with spectral EOF analysis. Geophysical Research Letters, 29 ( 8 ), 111-1 – 111-4. https://doi.org/10.1029/2001GL014176
dc.identifier.citedreferenceHuang, X., Ramaswamy, V., & Schwarzkopf, M. D. ( 2006 ). Quantification of the source of errors in AM2 simulated tropical clear-sky outgoing longwave radiation. Journal of Geophysical Research, 111 ( D14 ), D14107. https://doi.org/10.1029/2005JD006576
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.