Show simple item record

Energy-efficient cabin climate control of electric vehicles using linear time-varying model predictive control

dc.contributor.authorChen, Youyi
dc.contributor.authorKwak, Kyoung Hyun
dc.contributor.authorKim, Jaewoong
dc.contributor.authorKim, Youngki
dc.contributor.authorJung, Dewey
dc.date.accessioned2023-04-04T17:43:47Z
dc.date.available2024-04-04 13:43:44en
dc.date.available2023-04-04T17:43:47Z
dc.date.issued2023-03
dc.identifier.citationChen, Youyi; Kwak, Kyoung Hyun; Kim, Jaewoong; Kim, Youngki; Jung, Dewey (2023). "Energy-efficient cabin climate control of electric vehicles using linear time-varying model predictive control." Optimal Control Applications and Methods 44(2): 773-797.
dc.identifier.issn0143-2087
dc.identifier.issn1099-1514
dc.identifier.urihttps://hdl.handle.net/2027.42/176102
dc.description.abstractA cabin climate control system, often referred to as a heating, ventilation, and air conditioning (HVAC) system, is one of the largest auxiliary loads of an electric vehicle (EV), and the real-time optimal control of HVAC brings a significant energy-saving potential. In this article, a linear-time-varying (LTV) model predictive control (MPC)-based approach is presented for energy-efficient cabin climate control of EVs. A modification is made to the cost function in the considered MPC problem to simplify the Hessian matrix in utilizing quadratic programming for real-time computation. A rigorous parametric study is conducted to determine optimal weighting factors that work robustly under various operating conditions. Then, the performance of the proposed LTV-MPC controller is compared against a rule-based (RB) controller and a nonlinear economic MPC (NEMPC) benchmark. Compared with the RB controller benchmark, the LTV-MPC reaches the target cabin temperature at least 69 s faster with 3.2% to 15% less HVAC system energy consumption, and the averaged cabin temperature difference is 0.7°C at most. Compared with the NEMPC, the LTV-MPC controller can achieve comparable performance in temperature regulation and energy consumption with fast computation time: the maximum differences in temperature and energy consumption are 0.4°C and 2.6%, respectively, and the computational time is reduced 72.4% on average with the LTV-MPC.
dc.publisherInternational Council on Clean Transportation
dc.publisherWiley Periodicals, Inc.
dc.subject.othervehicle thermal management
dc.subject.othermodel predictive control
dc.subject.otherheating, ventilation, and air-conditioning (HVAC) control
dc.subject.otherelectric vehicles
dc.titleEnergy-efficient cabin climate control of electric vehicles using linear time-varying model predictive control
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176102/1/oca2816.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176102/2/oca2816_am.pdf
dc.identifier.doi10.1002/oca.2816
dc.identifier.sourceOptimal Control Applications and Methods
dc.identifier.citedreferenceDocimo DJ, Pangborn HC, Alleyne AG. Hierarchical control for electro-thermal power management of an electric vehicle powertrain. Proceedings of the ASME Dynamic Systems and Control Conference; 2018:V002T19A010; Atlanta, Georgia.
dc.identifier.citedreferenceKhoury GE & Clodic D Method of test and measurements of fuel consumption due to air conditioning operation on the new prius II hybrid vehicle. SAE technical paper no. 2005-01-2049; 2005.
dc.identifier.citedreferenceLee JT, Kwon S, Lim Y, Chon MS & Kim D Effect of air-conditioning on driving range of electric vehicle for various driving modes. SAE technical paper no. 2013-01-0040; 2013.
dc.identifier.citedreferenceFarrington R, Rugh J. Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range; 2000.
dc.identifier.citedreferenceUematsu S, Uehara T, Uchida T, Mathur GD. Experimental investigation of factors affecting odors generating from mobile AC systems equipped with idling-time reduction systems. SAE Int J Passenger Cars Mech Syst. 2015; 8 ( 2 ): 399 - 404. doi: 10.4271/2015-01-0359
dc.identifier.citedreferenceMenken JC, Strasser K, Anzenberger T, Rebinger C. Evaluation of the energy consumption of a thermal management system of a plug-in hybrid electric vehicle using the example of the audi Q7 e-tron. SAE Int J Passenger Cars Mech Syst. 2018; 11 ( 3 ): 203 - 212. doi: 10.4271/06-11-03-0017
dc.identifier.citedreferenceSchaut S, Sawodny O. Thermal management for the cabin of a battery electric vehicle considering passengers’ comfort. IEEE Trans Control Syst Technol. 2020; 28 ( 4 ): 1476 - 1492. doi: 10.1109/TCST.2019.2914888
dc.identifier.citedreferenceIbrahim BSKK, Aziah MAN, Ahmad S, et al. Fuzzy-based temperature and humidity control for HV AC of electric vehicle. Proc Eng. 2012; 41: 904 - 910. doi: 10.1016/j.proeng.2012.07.261
dc.identifier.citedreferenceLajunen A, Yang Y, Emadi A. Review of cabin thermal management for electrified passenger vehicles. IEEE Trans Veh Technol. 2020; 69 ( 6 ): 6025 - 6040.
dc.identifier.citedreferenceKim J, Rodriguez R, Kwak KH, Jung D, Kim Y. The effect of driver’s behavior and environmental conditions on thermal management of electric vehicles. SAE technical paper no. 2020-01-1382; 2020.
dc.identifier.citedreferenceRostiti C, Stockar S, Canova M. A rule-based control for fuel-efficient automotive air conditioning systems. SAE technical paper no. 2015-01-0366; 2015.
dc.identifier.citedreferenceZhang Q, Fiorentini L, Canova M. H∞ robust control of an automotive air conditioning system. Proceedings of the American Control Conference; 2014; Portland, OR.
dc.identifier.citedreferenceWang H, Amini MR, Hu Q, Kolmanovsky I, Sun J. Eco-cooling control strategy for automotive air-conditioning system: design and experimental validation. IEEE Trans Control Syst Technol. 2020; 1 - 12. doi: 10.1109/TCST.2020.3038746
dc.identifier.citedreferenceWang H, Meng Y, Zhang Q, et al. MPC-based precision cooling strategy (PCS) for efficient thermal management of automotive air conditioning system. Proceedings of the 3rd IEEE Conference on Control Technology and Applications (CCTA); 2019; Hong Kong, China.
dc.identifier.citedreferenceGlos J, Otava L, Václavek P. Non-linear model predictive control of cabin temperature and air quality in fully electric vehicles. IEEE Trans Veh Technol. 2021; 70 ( 2 ): 1216 - 1229. doi: 10.1109/TVT.2021.3054170
dc.identifier.citedreferenceKwak KH, Kim J, Chen Y, Kim Y, Jung D. Economic model predictive control of HVAC system in electric vehicles. Proceedings of the Modeling, Estimation and Control Conference; 2021; Austin TX.
dc.identifier.citedreferenceWang Y, Boyd S. Fast model predictive control using online optimization. IEEE Trans Control Syst Technol. 2010; 18 ( 2 ): 267 - 278. doi: 10.1109/TCST.2009.2017934
dc.identifier.citedreferenceBemporad A. A numerically stable solver for positive semidefinite quadratic programs based on nonnegative least squares. IEEE Trans Automat Contr. 2018; 63 ( 2 ): 525 - 531. doi: 10.1109/TAC.2017.2735938
dc.identifier.citedreferenceXie Y, Liu Z, Li K, et al. An improved intelligent model predictive controller for cooling system of electric vehicle. Appl Therm Eng. 2021; 182: 116084. doi: 10.1016/j.applthermaleng.2020.116084
dc.identifier.citedreferencePrášek J, Trnka P, Havlena V, McGahan P. Range control MPC with application to vapor compression cycles. Control Eng Pract. 2020; 96: 104309. doi: 10.1016/j.conengprac.2020.104309
dc.identifier.citedreferencePčolka M, Žáčeková E, Robinett R, Čelikovský S, Sebek M. From linear to nonlinear model predictive control of a building. IFAC Proc Vol. 2014; 47 ( 3 ): 587 - 592. doi: 10.3182/20140824-6-ZA-1003.02783
dc.identifier.citedreferenceAmini MR, Kolmanovsky I, Sun J. Hierarchical MPC for robust eco-cooling of connected and automated vehicles and its application to electric vehicle battery thermal management. IEEE Trans Control Syst Technol. 2021; 29 ( 1 ): 316 - 328. doi: 10.1109/TCST.2020.2975464
dc.identifier.citedreferenceKim JA. Study on Development of Simulation Model and Model-based Predictive Control Algorithm for Electric Vehicle Thermal Management System. Ph.D. Dissertation, Department of Mechanical Engineering. Sejong University, South Korea; 2019.
dc.identifier.citedreferenceFerreau H, Kirches C, Potschka A, Bock H, Diehl M. qpOASES: a parametric active-set algorithm for quadratic programming. Math Program Comput. 2014; 6 ( 4 ): 327 - 363.
dc.identifier.citedreferenceHemmati S, Doshi N, Hanover D, Morgan C, Shahbakhti M. Integrated cabin heating and powertrain thermal energy management for a connected hybrid electric vehicle. Appl Energy. 2021; 283: 116353. doi: 10.1016/j.apenergy.2020.116353
dc.identifier.citedreferenceHall D, Cui H, Lutsey N. Electric Vehicle Capitals: Showing the Path to a Mainstream Market. International Council on Clean Transportation; 2019.
dc.identifier.citedreferencePevec D, Babic J, Carvalho A, Ghiassi-Farrokhfal Y, Ketter W, Podobnik V. A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety. J Clean Prod. 2020; 276: 122779. doi: 10.1016/j.jclepro.2020.122779
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.