Show simple item record

Control of Host-Matrix Morphology Enables Efficient Deep-Blue Organic Light-Emitting Devices

dc.contributor.authorZhao, Haonan
dc.contributor.authorKim, Jongchan
dc.contributor.authorDing, Kan
dc.contributor.authorJung, Mina
dc.contributor.authorLi, Yongxi
dc.contributor.authorAde, Harald
dc.contributor.authorLee, Jun Yeob
dc.contributor.authorForrest, Stephen R.
dc.date.accessioned2023-04-04T17:44:09Z
dc.date.available2024-04-04 13:44:05en
dc.date.available2023-04-04T17:44:09Z
dc.date.issued2023-03
dc.identifier.citationZhao, Haonan; Kim, Jongchan; Ding, Kan; Jung, Mina; Li, Yongxi; Ade, Harald; Lee, Jun Yeob; Forrest, Stephen R. (2023). "Control of Host-Matrix Morphology Enables Efficient Deep-Blue Organic Light-Emitting Devices." Advanced Materials 35(12): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/176109
dc.description.abstractMixing a sterically bulky, electron-transporting host material into a conventional single host–guest emissive layer is demonstrated to suppress phase separation of the host matrix while increasing the efficiency and operational lifetime of deep-blue phosphorescent organic light-emitting diodes (PHOLEDs) with chromaticity coordinates of (0.14, 0.15). The bulky host enables homogenous mixing of the molecules comprising the emissive layer while suppressing single host aggregation; a significant loss channel of nonradiative recombination. By controlling the amorphous phase of the host-matrix morphology, the mixed-host device achieves a significant reduction in nonradiative exciton decay, resulting in 120 ± 6% increase in external quantum efficiency relative to an analogous, single-host device. In contrast to single host PHOLEDs where electrons are transported by the host and holes by the dopants, both charge carriers are conducted by the mixed host, reducing the probability of exciton annihilation, thereby doubling of the deep-blue PHOLED operational lifetime. These findings demonstrate that the host matrix morphology affects almost every aspect of PHOLED performance.Mixing a sterically bulky, electron-transporting host material into a conventional single host–guest emissive layer is demonstrated to suppress phase separation of the host matrix while increasing the efficiency by 120% and the operational lifetime of deep-blue phosphorescent organic light-emitting diodes with chromaticity coordinates of (0.14, 0.15).
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectrophosphorescence
dc.subject.otherelectroplax
dc.subject.othermorphology
dc.subject.othertriplet annihilation
dc.titleControl of Host-Matrix Morphology Enables Efficient Deep-Blue Organic Light-Emitting Devices
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176109/1/adma202210794_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176109/2/adma202210794-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176109/3/adma202210794.pdf
dc.identifier.doi10.1002/adma.202210794
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceW. Song, J. Y. Lee, Y. J. Cho, H. Yu, H. Aziz, K. M. Lee, Adv. Sci. 2018, 5, 1700608.
dc.identifier.citedreferenceS. Reineke, G. Schwartz, K. Walzer, K. Leo, Phys. Status Solidi RRL – Rapid Res. Lett. 2009, 3, 67.
dc.identifier.citedreferenceY. Zhang, H. Aziz, ACS Appl. Mater. Interfaces 2017, 9, 636.
dc.identifier.citedreferenceY. Wang, J. H. Yun, L. Wang, J. Y. Lee, Adv. Funct. Mater. 2021, 31, 2008332.
dc.identifier.citedreferenceJ. Sun, H. Ahn, S. Kang, S.-B. Ko, D. Song, H. A. Um, S. Kim, Y. Lee, P. Jeon, S.-H. Hwang, Y. You, C. Chu, S. Kim, Nat. Photonics 2022, 16, 212.
dc.identifier.citedreferenceE. Kim, J. Park, M. Jun, H. Shin, J. Baek, T. Kim, S. Kim, J. Lee, H. Ahn, J. Sun, S.-B. Ko, S.-H. Hwang, J. Y. Lee, C. Chu, S. Kim, Sci. Adv. 2022, 8, eabq1641.
dc.identifier.citedreferenceM. Jung, K. H. Lee, J. Y. Lee, T. Kim, Mater. Horiz. 2020, 7, 559.
dc.identifier.citedreferenceR. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, S. R. Forrest, J. Appl. Phys. 2009, 105, 053711.
dc.identifier.citedreferenceR. R. Lunt, J. B. Benziger, S. R. Forrest, Adv. Mater. 2010, 22, 1233.
dc.identifier.citedreferenceJ. Kwak, Y.-Y. Lyu, S. Noh, H. Lee, M. Park, B. Choi, K. Char, C. Lee, Thin Solid Films 2012, 520, 7157.
dc.identifier.citedreferenceJ. Kim, H. Zhao, S. Hou, M. Khatoniar, V. Menon, S. R. Forrest, Phys. Rev. Appl. 2020, 14, 034048.
dc.identifier.citedreferenceY. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Phys. Rev. Lett. 2006, 96, 017404.
dc.identifier.citedreferenceY. Q. Zhang, G. Y. Zhong, X. A. Cao, J. Appl. Phys. 2010, 108, 083107.
dc.identifier.citedreferenceS. Lee, H. Koo, O. Kwon, Y. Jae Park, H. Choi, K. Lee, B. Ahn, Y. Min Park, Sci. Rep. 2017, 7, 11995.
dc.identifier.citedreferenceH. Shin, S. Lee, K.-H. Kim, C.-K. Moon, S.-J. Yoo, J.-H. Lee, J.-J. Kim, Adv. Mater. 2014, 26, 4730.
dc.identifier.citedreferenceY. Zhang, J. Lee, S. R. Forrest, Nat. Commun. 2014, 5, 5008.
dc.identifier.citedreferenceY.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 4914.
dc.identifier.citedreferenceS. Lee, K.-H. Kim, D. Limbach, Y.-S. Park, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 4105.
dc.identifier.citedreferenceJ. S. Price, B. Wang, T. Kim, A. J. Grede, J. M. Sandoval, R. Xie, Y. Shen, D. R. Adams, M. J. Eller, A. Sokolov, S. Mukhopadhyay, P. Trefonas, E. D. Gomez, E. A. Schweikert, N. C. Giebink, Appl. Phys. Lett. 2018, 113, 263302.
dc.identifier.citedreferenceH.-N. Yang, S.-J. He, T. Zhang, J.-X. Man, N. Jiang, D.-K. Wang, Z.-H. Lu, Org. Electron. 2018, 60, 45.
dc.identifier.citedreferenceJ. L. Keddie, R. A. L. Jones, R. A. Cory, Faraday Discuss. 1994, 98, 219.
dc.identifier.citedreferenceX. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780.
dc.identifier.citedreferenceM. Sarma, K.-T. Wong, ACS Appl. Mater. Interfaces 2018, 10, 19279.
dc.identifier.citedreferenceM. Wang, Y.-H. Huang, K.-S. Lin, T.-H. Yeh, J. Duan, T.-Y. Ko, S.-W. Liu, K.-T. Wong, B. Hu, Adv. Mater. 2019, 31, 1904114.
dc.identifier.citedreferenceJ. Niederhausen, P. Amsalem, J. Frisch, A. Wilke, A. Vollmer, R. Rieger, K. Müllen, J. P. Rabe, N. Koch, Phys. Rev. B 2011, 84, 165302.
dc.identifier.citedreferenceZ. Liu, O. V. Salata, N. Male, Synth. Met. 2002, 128, 211.
dc.identifier.citedreferenceS. R. Forrest, D. D. C. Bradley, M. E. Thompson, Adv. Mater. 2003, 15, 1043.
dc.identifier.citedreferenceA. Hexemer, W. Bras, J. Glossinger, E. Schaible, E. Gann, R. Kirian, A. MacDowell, M. Church, B. Rude, H. Padmore, J. Phys. Conf. Ser. 2010, 247, 012007.
dc.identifier.citedreferenceZ. Hadidi, M. Ansari-Rad, S. H. Pilehrood, Appl. Phys. Lett. 2021, 119, 233301.
dc.identifier.citedreferenceS. Reineke, K. Walzer, K. Leo, Phys. Rev. B 2007, 75, 125328.
dc.identifier.citedreferenceM. Furno, R. Meerheim, S. Hofmann, B. Lüssem, K. Leo, Phys. Rev. B 2012, 85, 115205.
dc.identifier.citedreferenceE. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev. 1946, 69, 37.
dc.identifier.citedreferenceM. A. Fusella, R. Saramak, R. Bushati, V. M. Menon, M. S. Weaver, N. J. Thompson, J. J. Brown, Nature 2020, 585, 379.
dc.identifier.citedreferenceS. Reineke, G. Schwartz, K. Walzer, M. Falke, K. Leo, Appl. Phys. Lett. 2009, 94, 163305.
dc.identifier.citedreferenceN. C. Giebink, S. R. Forrest, Phys. Rev. B 2008, 77, 235215.
dc.identifier.citedreferenceN. C. Giebink, B. W. D’Andrade, M. S. Weaver, P. B. Mackenzie, J. J. Brown, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2008, 103, 044509.
dc.identifier.citedreferenceN. C. Giebink, B. W. D’Andrade, M. S. Weaver, J. J. Brown, S. R. Forrest, J. Appl. Phys. 2009, 105, 124514.
dc.identifier.citedreferenceY. Divayana, X. W. Sun, Phys. Rev. Lett. 2007, 99, 143003.
dc.identifier.citedreferenceD. R. Lutz, K. A. Nelson, C. R. Gochanour, M. D. Fayer, Chem. Phys. 1981, 58, 325.
dc.identifier.citedreferenceS. R. Forrest, Organic Electronics: Foundations to Applications, Oxford University Press, Oxford, UK 2020.
dc.identifier.citedreferenceJ. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, S. Reineke, Sci. Adv. 2018, 4, eaar8332.
dc.identifier.citedreferenceC. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801.
dc.identifier.citedreferenceJ.-R. Gong, L.-J. Wan, S.-B. Lei, C.-L. Bai, X.-H. Zhang, S.-T. Lee, J. Phys. Chem. B 2005, 109, 1675.
dc.identifier.citedreferenceS. K. Shin, S. H. Han, J. Y. Lee, J. Mater. Chem. C 2018, 6, 10308.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.