Show simple item record

CBK model composition using paired web services and executable functions: A demonstration for individualizing preventive services

dc.contributor.authorFlynn, Allen
dc.contributor.authorTaksler, Glen
dc.contributor.authorCaverly, Tanner
dc.contributor.authorBeck, Adam
dc.contributor.authorBoisvert, Peter
dc.contributor.authorBoonstra, Philip
dc.contributor.authorGittlen, Nate
dc.contributor.authorMeng, George
dc.contributor.authorRaths, Brooke
dc.contributor.authorFriedman, Charles P.
dc.date.accessioned2023-05-01T19:09:32Z
dc.date.available2024-05-01 15:09:30en
dc.date.available2023-05-01T19:09:32Z
dc.date.issued2023-04
dc.identifier.citationFlynn, Allen; Taksler, Glen; Caverly, Tanner; Beck, Adam; Boisvert, Peter; Boonstra, Philip; Gittlen, Nate; Meng, George; Raths, Brooke; Friedman, Charles P. (2023). "CBK model composition using paired web services and executable functions: A demonstration for individualizing preventive services." Learning Health Systems 7(2): n/a-n/a.
dc.identifier.issn2379-6146
dc.identifier.issn2379-6146
dc.identifier.urihttps://hdl.handle.net/2027.42/176242
dc.description.abstractIntroductionLearning health systems are challenged to combine computable biomedical knowledge (CBK) models. Using common technical capabilities of the World Wide Web (WWW), digital objects called Knowledge Objects, and a new pattern of activating CBK models brought forth here, we aim to show that it is possible to compose CBK models in more highly standardized and potentially easier, more useful ways.MethodsUsing previously specified compound digital objects called Knowledge Objects, CBK models are packaged with metadata, API descriptions, and runtime requirements. Using open-source runtimes and a tool we developed called the KGrid Activator, CBK models can be instantiated inside runtimes and made accessible via RESTful APIs by the KGrid Activator. The KGrid Activator then serves as a gateway and provides a means to interconnect CBK model outputs and inputs, thereby establishing a CBK model composition method.ResultsTo demonstrate our model composition method, we developed a complex composite CBK model from 42 CBK submodels. The resulting model called CM-IPP is used to compute life-gain estimates for individuals based their personal characteristics. Our result is an externalized, highly modularized CM-IPP implementation that can be distributed and made runnable in any common server environment.DiscussionCBK model composition using compound digital objects and the distributed computing technologies is feasible. Our method of model composition might be usefully extended to bring about large ecosystems of distinct CBK models that can be fitted and re-fitted in various ways to form new composites. Remaining challenges related to the design of composite models include identifying appropriate model boundaries and organizing submodels to separate computational concerns while optimizing reuse potential.ConclusionLearning health systems need methods for combining CBK models from a variety of sources to create more complex and useful composite models. It is feasible to leverage Knowledge Objects and common API methods in combination to compose CBK models into complex composite models.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherdecentralized web technology
dc.subject.othermodel composition
dc.subject.othercomputable biomedical knowledge
dc.titleCBK model composition using paired web services and executable functions: A demonstration for individualizing preventive services
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Health Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176242/1/lrh210325_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176242/2/lrh210325.pdf
dc.identifier.doi10.1002/lrh2.10325
dc.identifier.sourceLearning Health Systems
dc.identifier.citedreferenceFlynn AJ, Huang C, Lampa N, et al. An experiment to convert structured product labels into computable prescribing information. Paper presented at: Proceedings, 9th IEEE International Conference on Healthcare Informatics; 2021.
dc.identifier.citedreferenceDrexl H, Hilty R, Beneke F, et al., Technical aspects of artificial intelligence: an understanding from an intellectual property law perspective, Version 10, October 2019, Available at: https://ssrn.com/abstract=3465577
dc.identifier.citedreferenceMüller ME. Relational knowledge discovery. New York, NY: Cambridge University Press; 2012.
dc.identifier.citedreferenceFloridi L. Semantic information and the network theory of account. Synthese. 2012; 184 ( 3 ): 431 - 454.
dc.identifier.citedreferenceSpeer R, Havasi C. ConceptNet 5: a large semantic network for relational knowledge. In the people’s web meets NLP. Berlin, Heidelberg: Springer; 2013: 161 - 176.
dc.identifier.citedreferenceMorris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011; 104 ( 12 ): 510 - 520.
dc.identifier.citedreferenceAlavi M, Leidner DE. Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 2001; 1: 107 - 136.
dc.identifier.citedreferenceKrishnamurthi S, Fisler K. Programming paradigms and beyond. The Cambridge handbook of computing education research. Vol 37. Cambridge, England: Cambridge University Press; 2019.
dc.identifier.citedreferenceHarrison R, Samaraweera LG, Dobie MR, Lewis PH. Comparing programming paradigms: an evaluation of functional and object-oriented programs. Softw Eng J. 1996; 11 ( 4 ): 247 - 254.
dc.identifier.citedreferenceNeal ML, Cooling MT, Smith LP, et al. A reappraisal of how to build modular, reusable models of biological systems. PLoS Comput Biol. 2014; 10 ( 10 ): e1003849.
dc.identifier.citedreferenceDe Meester B, Seymoens T, Dimou A, Verborgh R. Implementation-independent function reuse. Fut Gen Comput Syst. 2020; 1 ( 110 ): 946 - 959.
dc.identifier.citedreferenceGoswami P, Gupta S, Li Z, Meng N, Yao D. Investigating The Reproducibility of NPM Packages. Paper presented at: 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME); 2020. (pp. 677-681). IEEE.
dc.identifier.citedreferenceNiephaus F, Felgentreff T, Hirschfeld R. Towards polyglot adapters for the graalvm. Paper presented at: Proceedings of the Conference Companion of the 3rd International Conference on Art, Science, and Engineering of Programming; 2019. (pp. 1–3).
dc.identifier.citedreferenceTaksler GB, Keshner M, Fagerlin A, Hajizadeh N, Braithwaite RS. Personalized estimates of benefit from preventive care guidelines: a proof of concept. Ann Intern Med. 2013; 159 ( 3 ): 161 - 168.
dc.identifier.citedreferenceFlynn AJ, Boisvert P, Lagoze C, Meng G, Friedman CP. Architecture and initial development of a knowledge-as-a-service activator for computable knowledge objects for health. Stud Health Technol Inform. 2018; 247: 401.
dc.identifier.citedreferenceWittenburg P, Strawn G, Mons B, Boninho L, Schultes E. Digital objects as drivers towards convergence in data infrastructures. Technical Paper. 10.23728/b2share.b605d85809ca45679b110719b6c6cb11.
dc.identifier.citedreferenceFlynn AJ, Bahulekar N, Boisvert P, et al. Architecture and initial development of a digital library platform for computable knowledge objects for health. Paper presented at: Informatics for Health: Connected Citizen-Led Wellness and Population Health; 2017. (pp. 496-500). IOS Press.
dc.identifier.citedreferenceWilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016; 3 ( 1 ): 1 - 9.
dc.identifier.citedreferenceAlper BS, Flynn A, Bray BE, et al. Categorizing metadata to help mobilize computable biomedical knowledge. 2021.
dc.identifier.citedreferenceGarabed E. Adolphe Quetelet (1796–1874)—the average man and indices of obesity. Nephrol Dial Transp. 2008; 23 ( 1 ): 47 - 51. doi: 10.1093/ndt/gfm517
dc.identifier.citedreferenceDe Meester B, Dimou A, Verborgh R, Mannens E. An ontology to semantically declare and describe functions. In European Semantic Web Conference 2016 (pp. 46 – 49 ). Springer, Cham; 2016.
dc.identifier.citedreferenceFielding RT. REST: Architectural Styles and the Design of Network-Based Software Architectures. Doctoral dissertation. Irvine, CA: University of California Irvine; 2000.
dc.identifier.citedreferenceGómez A, Iglesias-Urkia M, Urbieta A, Cabot J. A model-based approach for developing event-driven architectures with AsyncAPI. Paper presented at: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems; 2020. (pp. 121–131).
dc.identifier.citedreferenceMicroservices. https://spring.io/microservices Accessed April 10, 2022.
dc.identifier.citedreferenceSpring. https://spring.io/ Accessed April 10, 2022.
dc.identifier.citedreferenceKnyazkov KV, Kovalchuk SV, Tchurov TN, Maryin SV, Boukhanovsky AV. CLAVIRE: e-science infrastructure for data-driven computing. J Comput Sci. 2012; 3 ( 6 ): 504 - 510.
dc.identifier.citedreferenceTreeage. https://www.treeage.com/ Accessed April 10, 2022.
dc.identifier.citedreferenceSerrano D, Stroulia E, Lau D, Ng T. Linked REST APIs: a middleware for semantic REST API integration. Paper presented at: 2017 IEEE International Conference on Web Services (ICWS); 2017. (pp. 138–145). IEEE.
dc.identifier.citedreferenceTsafnat G, Coiera EW. Computational reasoning across multiple models. J Am Med Inform Assoc. 2009; 16 ( 6 ): 768 - 774.
dc.identifier.citedreferenceBlaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: a Julia package for composable machine learning. arXiv Preprint arXiv:2007.12285. 2020.
dc.identifier.citedreferenceAllen R, Garlan D. A formal basis for architectural connection. ACM Trans Softw Eng Methodol. 1997; 6 ( 3 ): 213 - 249.
dc.identifier.citedreferenceBézivin J, Bouzitouna S, Del Fabro MD, et al. A canonical scheme for model composition. Paper presented at: European Conference on Model Driven Architecture-Foundations and Applications; 2006. (pp. 346–360). Springer, Berlin, Heidelberg.
dc.identifier.citedreferenceTang K, Liu X, Harper SL, Steevens JA, Xu R. NEIMiner: nanomaterial environmental impact data miner. Int J Nanomedicine. 2013; 8 ( Suppl 1 ): 15.
dc.identifier.citedreferencePurcell O, Jain B, Karr JR, Covert MW, Lu TK. Towards a whole-cell modeling approach for synthetic biology. Chaos: Interdiscip J Nonlinear Sci. 2013; 23 ( 2 ): 25112.
dc.identifier.citedreferenceMulder S, Hamidi H, Kretzler M, Ju W. An integrative systems biology approach for precision medicine in diabetic kidney disease. Diabetes Obes Metab. 2018; 20: 6 - 13.
dc.identifier.citedreferenceFriedman CP, Flynn AJ. Computable knowledge: an imperative for learning health systems. Learn Health Syst. 2019; 3 ( 4 ): e10203.
dc.identifier.citedreferenceZeigler BP, Mittal S, Traore MK. Fundamental requirements and DEVS approach for modeling and simulation of complex adaptive system of systems: Healthcare reform. Paper presented at: Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems; 2018. (pp. 1–12).
dc.identifier.citedreferenceSeidewitz E. What models mean. IEEE Softw. 2003; 20 ( 5 ): 26 - 32.
dc.identifier.citedreferenceFlynn AJ, Friedman CP, Boisvert P, Landis-Lewis Z, Lagoze C. The knowledge object reference ontology (KORO): a formalism to support management and sharing of computable biomedical knowledge for learning health systems. Learn Health Syst. 2018; 2 ( 2 ): e10054.
dc.identifier.citedreferenceLomotan EA, Meadows G, Michaels M, Michel JJ, Miller K. To share is human! Advancing evidence into practice through a national repository of interoperable clinical decision support. Appl Clin Inform. 2020; 11 ( 1 ): 112 - 121.
dc.identifier.citedreferenceDe Smedt K, Koureas D, Wittenburg P. FAIR digital objects for science: from data pieces to actionable knowledge units. Publications. 2020; 8 ( 2 ): 21.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.