Show simple item record

Multimarker omnibus tests by leveraging individual marker summary statistics from large biobanks

dc.contributor.authorZigarelli, Angela M.
dc.contributor.authorVenera, Hanna M.
dc.contributor.authorReceveur, Brody A.
dc.contributor.authorWolf, Jack M.
dc.contributor.authorWestra, Jason
dc.contributor.authorTintle, Nathan L.
dc.date.accessioned2023-05-01T19:10:05Z
dc.date.available2024-06-01 15:10:04en
dc.date.available2023-05-01T19:10:05Z
dc.date.issued2023-05
dc.identifier.citationZigarelli, Angela M.; Venera, Hanna M.; Receveur, Brody A.; Wolf, Jack M.; Westra, Jason; Tintle, Nathan L. (2023). "Multimarker omnibus tests by leveraging individual marker summary statistics from large biobanks." Annals of Human Genetics 87(3): 125-136.
dc.identifier.issn0003-4800
dc.identifier.issn1469-1809
dc.identifier.urihttps://hdl.handle.net/2027.42/176253
dc.description.abstractAs biobanks become increasingly popular, access to genotypic and phenotypic data continues to increase in the form of precomputed summary statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related to biobank data, including that of data privacy and confidentiality, as well as high computational costs. However, questions remain about how to maximally leverage PCSS for downstream statistical analyses. Here we present a novel method for testing the association of an arbitrary number of single nucleotide variants (SNVs) on a linear combination of phenotypes after adjusting for covariates for common multimarker tests (e.g., SKAT, SKAT-O) without access to individual patient-level data (IPD). We validate exact formulas for each method, and demonstrate their accuracy through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstatistical
dc.subject.othergenetic data banks
dc.subject.othergenetic markers
dc.subject.othergenetic privacy
dc.subject.othergenotype–phenotype associations
dc.titleMultimarker omnibus tests by leveraging individual marker summary statistics from large biobanks
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176253/1/ahg12495.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176253/2/ahg12495_am.pdf
dc.identifier.doi10.1111/ahg.12495
dc.identifier.sourceAnnals of Human Genetics
dc.identifier.citedreferenceTintle, N. L., Pottala, J. V., Lacey, S., Ramachandrane, V., Westra, J., Rogers, A., Clark, J., Olthoff, B., Larson, M., Harris, W., & Sheareri, G. C. ( 2015 ). A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the framingham heart offspring study. Prostaglandins, Leukotrienes and Essential Fatty Acids, 94, 65 – 72.
dc.identifier.citedreferenceCichonska, A., Rousu, J., Marttinen, P., Kangas, A., Soininen, P., Lehtimäki, T., Raitakari, O. T., Järvelin, M. R., Salomaa, V., Ala-Korpela, M., Ripatti, S., & Pirinen, M. ( 2016 ). metacca: Sum- mary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 32 ( 13 ), 1981 – 1989.
dc.identifier.citedreferenceDutta, D., Scott, L., Boehnke, M., & Lee, S. ( 2019 ). Multi-skat: General framework to test for rare-variant association with multiple phenotypes. Genetic Epidemiology, 43 ( 1 ), 4 – 23.
dc.identifier.citedreferenceGasdaska, A., Friend, D., Chen, R., Westra, J., Zawitowski, M., Lindsey, W., & Tintle, N. ( 2019 ). Leveraging summary statistics to make inferences about complex phenotypes in large biobanks. Pacific Symposium on Biocomputing, 24, 391 – 402.
dc.identifier.citedreferenceHeatherly, R. ( 2016 ). Privacy and security within biobanking: The role of information technology. Journal of Law, Medicine Ethics, 44 ( 1 ), 156 – 160.
dc.identifier.citedreferenceHuppertz, B., & Holzinger, A. ( 2014 ). Biobanks – a source of large biological data sets: Open problems and future challenges. In A. Holzinger, & I. Jurisica (Eds.), Interactive knowledge discovery and data mining in biomedical informatics. Springer.
dc.identifier.citedreferenceKalsbeek, A., Veenstra, J., Westra, J., Disselkoen, C., Koch, K., McKenzie, K. A., O’Bott, J., Vander Woude, J., Fischer, K., Shearer, G. C., Harris, W. S., & Tintle, N. L. ( 2018 ). A genome-wide asso- ciation study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham heart study offspring cohort. PLoS ONE, 13 ( 4 ), e0194882.
dc.identifier.citedreferenceKim, J., Bai, Y., & Pan, W. ( 2015 ). An adaptive association test for multiple phenotypes with gwas summary statistics. Genetic Epidemiology, 39 ( 8 ), 651 – 663.
dc.identifier.citedreferenceLee, S., Emond, M., Bamshad, M., Barnes, K., Rieder, M., & Nickerson, D. ( 2012 ). Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. American Journal of Human Genetics, 91 ( 2 ), 224 – 237.
dc.identifier.citedreferenceLee, S., Teslovich, T. M., Boehnke, M., & Lin, X. ( 2013 ). General framework for meta-analysis of rare variants in sequencing association studies. American Journal of Human Genetics, 93 ( 1 ), 42 – 53.
dc.identifier.citedreferenceLi, B., & SM, L. ( 2008 ). Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data. American Journal of Human Genetics, 83 ( 3 ), 311 – 321.
dc.identifier.citedreferenceLiu, Z., & Lin, X. ( 2018 ). Multiple phenotype association tests using summary statistics in genome-wide association studies. Biometrics, 74 ( 1 ), 165 – 175.
dc.identifier.citedreferenceNeale, B. M. ( 2018 ). Biobank gwas. Retrieved from http://www.nealelab.is/uk-biobank/
dc.identifier.citedreferenceNLM. (n.d.). Dbgene. https://www.ncbi.nlm.nih.gov/gene
dc.identifier.citedreferencePheweb. ( 2018 ). Retrieved from https://pheweb.sph.umich.edu/
dc.identifier.citedreferenceRay, D., & Boehnke, M. ( 2018 ). Methods for meta-analysis of multiple traits using gwas summary statistics. Genetic Epidemiology, 42 ( 2 ), 134 – 145.
dc.identifier.citedreferenceStephens, M. ( 2013 ). A unified framework for association analysis with multiple related phenotypes. PLoS ONE, 14 ( 3 ), e0213951.
dc.identifier.citedreferenceSudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. ( 2015 ). Uk biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12 ( 3 ), e1001779.
dc.identifier.citedreferenceSvishcheva, G. R., Belonogova, N. M., Zorkoltseva, I. V., Kirichenko, A. V., & Axenovich, T. I ( 2019 ). Gene-based association tests using gwas summary statistics. Bioinformatics, 35 ( 19 ), 3701 – 3708.
dc.identifier.citedreferencevan der Sluis, S., Posthuma, D., & Dolan, C. ( 2013 ). Tates: Efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLOS Genetics, 9, e1003235.
dc.identifier.citedreferenceVeenstra, J., Kalsbeek, A., Westra, J., Disselkoen, C., Smith, C. E., & Tintle, N. ( 2017 ). Genome-wide interaction study of omega-3 pufas and other fatty acids on inflammatory biomarkers of cardiovascular health in the framingham heart study. Nutrients, 9 ( 8 ), 900.
dc.identifier.citedreferenceVuckovic, D., Gasparini, P., Soranzo, N., & Iotchkova, V. ( 2015 ). Multimeta: An r package for meta-analyzing multi-phenotype genome-wide association studies. Bioinformatics, 31 ( 16 ), 2754 – 2756.
dc.identifier.citedreferenceWolf, J., Barnard, M., Xia, X., Ryder, N., Westra, J., & Tintle, N. ( 2020 ). Computationally efficient, exact, covariate-adjusted genetic principal component analysis by leveraging individual marker summary statistics from large biobanks. Pacific Symposium on Biocomputing, 25, 719 – 730.
dc.identifier.citedreferenceWolf, J., Westra, J., & Tintle, N. ( 2021 ). Using summary statistics to model multiplicative combinations of initially analyzed phenotypes with a flexible choice of covariates. Frontiers in Genetics, 12, https://doi.org/10.3389/fgene.2021.74590
dc.identifier.citedreferenceWu, M., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. ( 2011 ). Rare-variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics, 89 ( 1 ), 82 – 93.
dc.identifier.citedreferenceZhu, X., Feng, T., Tayo, B., Liang, J., Young, J., Franceschini, N., Smith, J. A., Yanek, L. R., Sun, Y. V., Edwards, T. L., Chen, W., Nalls, M., Fox, E., Sale, M., Bottinger, E., Rotimi, C., Liu, Y., McKnight, B., Liu, K., … Redline, S., COGENT BP Consortium. ( 2015 ). Meta-analysis of correlated traits via summary statistics from gwass with an application in hypertension. American Journal of Human Genetics, 96 ( 1 ), 21 – 36.
dc.identifier.citedreferenceCanela-Xandri, O., Rawlik, K., & Tenesa, A. ( 2018 ). An atlas of genetic associations in UK biobank. Nature Genetics, 50, 1593 – 1599.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.