Show simple item record

Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges

dc.contributor.authorLibes, Jaime
dc.contributor.authorHol, Janna
dc.contributor.authorNeto, Joaquim Caetano de Aguirre
dc.contributor.authorVallance, Kelly L.
dc.contributor.authorTinteren, Harm van
dc.contributor.authorBenedetti, Daniel J.
dc.contributor.authorVillar, Gema Lucia Ramirez
dc.contributor.authorDuncan, Catriona
dc.contributor.authorEhrlich, Peter F.
dc.date.accessioned2023-05-01T19:10:14Z
dc.date.available2024-06-01 15:10:13en
dc.date.available2023-05-01T19:10:14Z
dc.date.issued2023-05
dc.identifier.citationLibes, Jaime; Hol, Janna; Neto, Joaquim Caetano de Aguirre; Vallance, Kelly L.; Tinteren, Harm van; Benedetti, Daniel J.; Villar, Gema Lucia Ramirez; Duncan, Catriona; Ehrlich, Peter F. (2023). "Pediatric renal tumor epidemiology: Global perspectives, progress, and challenges." Pediatric Blood & Cancer 70: n/a-n/a.
dc.identifier.issn1545-5009
dc.identifier.issn1545-5017
dc.identifier.urihttps://hdl.handle.net/2027.42/176257
dc.description.abstractPediatric renal tumors account for 3%–11% of childhood cancers, the most common of which is Wilms tumor or nephroblastoma. Epidemiology plays a key role in cancer prevention and control by describing the distribution of cancer and discovering risk factors for cancer. Large pediatric research consortium trials have led to a clearer understanding of pediatric renal tumors, identification of risk factors, and development of more risk-adapted therapies. These therapies have improved event-free and overall survival for children. However, several challenges remain and not all children have benefited from the improved outcomes. In this article, we review the global epidemiology of pediatric renal tumors, including key consortium and global studies. We identify current knowledge gaps and challenges facing both high and low middle-incomes countries.
dc.publisherWiley Periodicals, Inc.
dc.publisherInternational Agency for Research on Cancer
dc.subject.otherpediatric renal cell carcinoma
dc.subject.otherrhabdoid tumor
dc.subject.otherWilms tumor
dc.subject.otherclear cell sarcoma of kidney
dc.subject.otherepidemiology
dc.subject.otherglobal
dc.titlePediatric renal tumor epidemiology: Global perspectives, progress, and challenges
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176257/1/pbc30343.pdf
dc.identifier.doi10.1002/pbc.30343
dc.identifier.sourcePediatric Blood & Cancer
dc.identifier.citedreferenceYost S, de Wolf B, Hanks S, et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet. 2017; 49 ( 7 ): 1148 - 1151.
dc.identifier.citedreferenceFukuzawa R, Holman SK, Chow CW, Savarirayan R, Reeve AE, Robertson SP. WTX mutations can occur both early and late in the pathogenesis of Wilms tumour. J Med Genet. 2010; 47 ( 11 ): 791 - 794.
dc.identifier.citedreferenceCunniff C, Djavid AR, Carrubba S, et al. Health supervision for people with Bloom syndrome. Am J Med Genet A. 2018; 176 ( 9 ): 1872 - 1881.
dc.identifier.citedreferenceFoulkes WD, Bahubeshi A, Hamel N, et al. Extending the phenotypes associated with DICER1 mutations. Hum Mutat. 2011; 32 ( 12 ): 1381 - 1384.
dc.identifier.citedreferenceKhan NE, Ling A, Raske ME, et al. Structural renal abnormalities in the DICER1 syndrome: a family-based cohort study. Pediatr Nephrol. 2018; 33 ( 12 ): 2281 - 2288.
dc.identifier.citedreferenceKratz CP, Achatz MI, Brugières L, et al. Cancer screening recommendations for individuals with Li–Fraumeni syndrome. Clin Cancer Res. 2017; 23 ( 11 ): e38 - e45.
dc.identifier.citedreferenceStay EJ, Vawter G. The relationship between nephroblastoma and neurofibromatosis (Von Recklinghausen’s disease). Cancer. 1977; 39 ( 6 ): 2550 - 2555.
dc.identifier.citedreferenceSzabó J, Heath B, Hill VM, et al. Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet. 1995; 56 ( 4 ): 944 - 950.
dc.identifier.citedreferenceKakinuma A, Morimoto I, Nakano Y, et al. Familial primary hyperparathyroidism complicated with Wilms’ tumor. Intern Med. 1994; 33 ( 2 ): 123 - 126.
dc.identifier.citedreferenceBrunner HG, van Tintelen JP, de Boer RJ. Bohring syndrome. Am J Med Genet. 2000; 92 ( 5 ): 366 - 368.
dc.identifier.citedreferenceRussell B, Johnston JJ, Biesecker LG, et al. Clinical management of patients with ASXL1 mutations and Bohring–Opitz syndrome, emphasizing the need for Wilms tumor surveillance. Am J Med Genet A. 2015; 167 ( 9 ): 2122 - 2131.
dc.identifier.citedreferenceLipska-Ziętkiewicz BS. In: Adam MP, ed. GeneReviews. WT1 Disorder. University of Washington; 1993.
dc.identifier.citedreferenceHol JA, Jewell R, Chowdhury T, et al. Wilms tumour surveillance in at-risk children: literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur J Cancer. 2021; 153: 51 - 63.
dc.identifier.citedreferenceHuff V. Wilms tumor genetics. Am J Med Genet. 1998; 79 ( 4 ): 260 - 267.
dc.identifier.citedreferenceDiller L, Ghahremani M, Morgan J, et al. Constitutional WT1 mutations in Wilms’ tumor patients. J Clin Oncol. 1998; 16 ( 11 ): 3634 - 3640.
dc.identifier.citedreferenceSegers H, Kersseboom R, Alders M, Pieters R, Wagner A, van den Heuvel-Eibrink MM. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients. Eur J Cancer. 2012; 48 ( 17 ): 3249 - 3256.
dc.identifier.citedreferenceWang H, Shen Y, Sun N, Jiang YP, Li ML, Sun L. Identification and analysis of mutations in WTX and WT1 genes in peripheral blood and tumor tissue of children with Wilms’ tumor. Chin Med J (Engl). 2012; 125 ( 10 ): 1733 - 1739.
dc.identifier.citedreferenceKaneko Y, Okita H, Haruta M, et al. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan, and the penetrance rates in children with WT1 germline mutation. Br J Cancer. 2015; 112 ( 6 ): 1121 - 1133.
dc.identifier.citedreferenceKramer S, Meadows AT, Jarrett P. Racial variation in incidence of Wilms’ tumor: relationship to congenital anomalies. Med Pediatr Oncol. 1984; 12 ( 6 ): 401 - 405.
dc.identifier.citedreferenceHaruta M, Arai Y, Watanabe N, et al. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci. 2012; 103 ( 6 ): 1129 - 1135.
dc.identifier.citedreferenceFukuzawa R, Breslow NE, Morison IM, et al. Epigenetic differences between Wilms’ tumours in white and East-Asian children. Lancet. 2004; 363 ( 9407 ): 446 - 451.
dc.identifier.citedreferenceLibes JM, Seeley EH, Li M, et al. Race disparities in peptide profiles of North American and Kenyan Wilms tumor specimens. J Am Coll Surg. 2014; 218 ( 4 ): 707 - 720.
dc.identifier.citedreferenceLovvorn HN, 3rd, Pierce J, Libes J, et al. Genetic and chromosomal alterations in Kenyan Wilms tumor. Genes Chromosomes Cancer. 2015; 54 ( 11 ): 702 - 715.
dc.identifier.citedreferenceNemes K. In: Adams MP, ed. GeneReviews. Rhabdoid Tumor Predisposition Syndrome. University of Washington; 1993.
dc.identifier.citedreferenceSchultz KAP, Williams GM, Kamihara J, et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 2018; 24 ( 10 ): 2251 - 2261.
dc.identifier.citedreferenceJongmans MC, Loeffen JL, Waanders E, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016; 59 ( 3 ): 116 - 125.
dc.identifier.citedreferenceMenko FH, Maher ER, Schmidt LS, et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Fam Cancer. 2014; 13 ( 4 ): 637 - 644.
dc.identifier.citedreferenceKauffman EC, Ricketts CJ, Rais-Bahrami S, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol. 2014; 11 ( 8 ): 465 - 475.
dc.identifier.citedreferenceMaher ER. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J Urol. 2018; 36 ( 12 ): 1891 - 1898.
dc.identifier.citedreferencePritchard-Jones K, Gatta G. Benchmarking International Survival by Toronto Stage Initiative. University College London; 2022. Accessed June 27, 2022. https://www.ucl.ac.uk/child-health/research/developmental-biology-and-cancer/benchista
dc.identifier.citedreferenceMadanat-Harjuoja LM, Renfro LA, Klega K, et al. Circulating tumor DNA as a biomarker in patients with stage III and IV Wilms tumor: analysis from a Children’s Oncology Group trial, AREN0533. J Clin Oncol. 2022; 40 ( 26 ): 3047 - 3056.
dc.identifier.citedreferenceNakata K, Colombet M, Stiller CA, Pritchard-Jones K, Steliarova-Foucher E, Contributors I. Incidence of childhood renal tumours: an international population-based study. Int J Cancer. 2020; 147 ( 12 ): 3313 - 3327.
dc.identifier.citedreferenceQureshi SS, Bhagat M, Verma K, et al. Incidence, treatment, and outcomes of primary and recurrent non-Wilms renal tumors in children: report of 109 patients treated at a single institution. J Pediatr Urol. 2020; 16 ( 4 ): 475.e1 - 475.e9.
dc.identifier.citedreferenceSteliarova-Foucher E, Colombet M, Ries LAG, Hesseling P, Moreno F, Shin HY, Stiller CA, eds. 2017. International Incidence of Childhood Cancer, Volume III (electronic version). Lyon, France: International Agency for Research on Cancer. Accessed November 12, 2020. Available from: http://iicc.iarc.fr/results/
dc.identifier.citedreferencede Camargo B, de Oliveira Ferreira JM, de Souza Reis R, Ferman S, de Oliveira Santos M, Pombo-de-Oliveira MS. Socioeconomic status and the incidence of non-central nervous system childhood embryonic tumours in Brazil. BMC Cancer. 2011; 11: 160.
dc.identifier.citedreferenceStiller CA, Parkin DM. International variations in the incidence of childhood renal tumours. Br J Cancer. 1990; 62 ( 6 ): 1026 - 1030.
dc.identifier.citedreferenceBreslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993; 21: 172 - 181.
dc.identifier.citedreferenceChu A, Heck JE, Ribeiro KB, et al. Wilms’ tumour: a systematic review of risk factors and meta-analysis. Paediatr Perinat Epidemiol. 2010; 24 ( 5 ): 449 - 469.
dc.identifier.citedreferenceScott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006; 43 ( 9 ): 705 - 715.
dc.identifier.citedreferenceWard ZJ, Yeh JM, Bhakta N, Frazier AL, Atun R. Estimating the total incidence of global childhood cancer: a simulation-based analysis. Lancet Oncol. 2019; 20 ( 4 ): 483 - 493.
dc.identifier.citedreferenceCoppes MJ, de Kraker J, van Dijken PJ. Bilateral Wilms’ tumor: long-term survival and some epidemiological features. J Clin Oncol. 1989; 7 ( 3 ): 310 - 315.
dc.identifier.citedreferenceDome JS, Mullen EA, Dix DB, et al. Impact of the first generation of Children’s Oncology Group clinical trials on clinical practice for Wilms tumor. J Natl Compr Canc Netw. 2021; 19 ( 8 ): 978 - 985.
dc.identifier.citedreferencede Aguirre-Neto JC, de Camargo B, van Tinteren H, et al. International comparisons of clinical demographics and outcomes in the International Society of Pediatric Oncology Wilms Tumor 2001 Trial and Study. JCO Glob Oncol. 2022; 8: e2100425.
dc.identifier.citedreferenceHol JA, Lopez-Yurda MI, Van Tinteren H, et al. Prognostic significance of age in 5631 patients with Wilms tumour prospectively registered in International Society of Paediatric Oncology (SIOP) 93-01 and 2001. PLoS One. 2019; 14 ( 8 ): e0221373.
dc.identifier.citedreferenceReinhard H, Semler O, Bürger D, et al. Results of the SIOP 93-01/GPOH trial and study for the treatment of patients with unilateral nonmetastatic Wilms tumor. Klin Padiatr. 2004; 216 ( 3 ): 132 - 140.
dc.identifier.citedreferencePasqualini C, Furtwangler R, van Tinteren H, et al. Outcome of patients with stage IV high-risk Wilms tumour treated according to the SIOP2001 protocol: a report of the SIOP Renal Tumour Study Group. Eur J Cancer. 2020; 128: 38 - 46.
dc.identifier.citedreferencevan den Heuvel-Eibrink MM, Hol JA, Pritchard-Jones K, et al. Position paper: rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol. Nat Rev Urol. 2017; 14 ( 12 ): 743 - 752.
dc.identifier.citedreferencevan Peer SE, Hol JA, van der Steeg AFW, et al. Bilateral renal tumors in children: the first 5 years’ experience of national centralization in the Netherlands and a narrative review of the literature. J Clin Med. 2021; 10 ( 23 ): 5558.
dc.identifier.citedreferenceHol J, Lopez-Yurda M, Van Tinteren HI, et al. Prognostic significance of age in 5631 patients with Wilms tumour prospectively registered in International Society of Paediatric Oncology (SIOP) 93-01 and 2001. PLoS One. 2019; 14 ( 8 ): e0221373.
dc.identifier.citedreferenceChagtai T, Zill C, Dainese L, et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 trial: a SIOP Renal Tumours Biology Consortium Study. J Clin Oncol. 2016; 34 ( 26 ): 3195 - 3203.
dc.identifier.citedreferenceDix DB, Fernandez CV, Chi YY, et al. Augmentation of therapy for favorable-histology Wilms tumor with combined loss of heterozygosity of chromosomes 1p and 16q: a report from the Children’s Oncology Group studies AREN0532 and AREN0533. J Clin Oncol. 2015; 33 ( s ): 1009.
dc.identifier.citedreferenceDaw NC, Chi YY, Kalapurakal JA, et al. Activity of vincristine and irinotecan in diffuse anaplastic Wilms tumor and therapy outcomes of stage II to IV disease: results of the Children’s Oncology Group AREN0321 study. J Clin Oncol. 2020; 38 ( 14 ): 1558 - 1568.
dc.identifier.citedreferenceDaw NC, Chi YY, Kim Y, et al. Treatment of stage I anaplastic Wilms’ tumour: a report from the Children’s Oncology Group AREN0321 study. Eur J Cancer. 2019; 118: 58 - 66.
dc.identifier.citedreferenceFernandez CV, Mullen EA, Chi YY, et al. Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children’s Oncology Group study AREN0532. J Clin Oncol. 2018; 36 ( 3 ): 254 - 261.
dc.identifier.citedreferenceDix DB, Gratias EJ, Seibel NL, et al. Treatment of stage IV favorable histology Wilms tumor with incomplete lung metastasis response after chemotherapy: a report from Children’s Oncology Group study AREN0533. J Clin Oncol. 2014; 32 ( 15s ): 10001.
dc.identifier.citedreferenceDome J, Mullen E, Dix D, et al. Impact of the first generation of Children’s Oncology Group clinical trials on clinical practice for Wilms tumor. J Natl Compr Canc Netw. 2021; 19 ( 8 ): 978 - 985.
dc.identifier.citedreferenceEhrlich PF, Ferrer F, Ritchey ML, et al. Hepatic metastasis at diagnosis in patients with Wilms tumor is not an independent adverse prognostic factor for stage V Wilms tumor. A report from the Childrens Oncology Group/National Wilms Tumor Study group. Ann Surg. 2009; 250: 642 - 648.
dc.identifier.citedreferenceGratias EJ, JS D, Jennings LJ, et al. Association of chromosome 1q gain with inferior survival in favorable histology Wilms tumor: a report from the Children’s Oncology Group. J Clin Oncol. 2016; 34 ( 26 ): 3189 - 3194.
dc.identifier.citedreferenceEhrlich P, Chi YY, Chintagumpala MM, et al. Results of the first prospective multi–institutional treatment study in children with bilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Ann Surg. 2017; 266 ( 3 ): 470 - 478.
dc.identifier.citedreferenceEhrlich PF, Chi YY, Chintagumpala MM, et al. Results of treatment for patients with multicentric or bilaterally predisposed unilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Cancer. 2020; 126 ( 15 ): 3516 - 3525.
dc.identifier.citedreferenceChagaluka G, Paintsil V, Renner L, et al. Improvement of overall survival in the Collaborative Wilms Tumour Africa Project. Pediatr Blood Cancer. 2020; 67 ( 9 ): e28383.
dc.identifier.citedreferenceAxt J, Abdallah F, Axt M, et al. Wilms tumor survival in Kenya. J Pediatr Surg. 2013; 48 ( 6 ): 1254 - 1262.
dc.identifier.citedreferenceLibes J, Oruko O, Abdallah F, et al. Risk factors for abandonment of Wilms tumor therapy in Kenya. Pediatr Blood Cancer. 2015; 62 ( 2 ): 252 - 256.
dc.identifier.citedreferenceDavidson A, Hartley P, Desai F, Daubenton J, Rode H, Millar A. Wilms tumour experience in a South African centre. Pediatr Blood Cancer. 2006; 46 ( 4 ): 465 - 471.
dc.identifier.citedreferenceValverde P. An analysis of treatment failure in Wilms tumor (WT): a report from the Central American Association of Pediatric Hematology/Oncology (AHOPCA). J Global Oncol. 2016; 2 ( 2 ): 2s.
dc.identifier.citedreferencePritchard-Jones K, Graf N, van TH, Craft A. Evidence for a delay in diagnosis of Wilms’ tumour in the UK compared with Germany: implications for primary care for children. Arch Dis Child. 2016; 101 ( 5 ): 417 - 420.
dc.identifier.citedreferenceVujanic G, Sandstedt B, Harms D. Rhabdoid tumour of the kidney: a clinicopathological study of 22 patients from the International Society of Paediatric Oncology (SIOP) nephroblastoma file. Histopathology. 1996; 28: 333 - 340.
dc.identifier.citedreferenceGeller JI. Current standards of care and future directions for “high-risk” pediatric renal tumors: anaplastic Wilms tumor and rhabdoid tumor. Urol Oncol. 2016; 34 ( 1 ): 50 - 56.
dc.identifier.citedreferencevan den Heuvel-Eibrink MM, van Tinteren H, Rehorst H, et al. Malignant rhabdoid tumours of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: a report of the SIOP renal tumour study group. Pediatr Blood Cancer. 2011; 56 ( 5 ): 733 - 737.
dc.identifier.citedreferenceKoshinaga T, Takimoto T, Oue T, et al. Outcome of renal tumors registered in Japan Wilms Tumor Study-2 (JWiTS-2): a report from the Japan Children’s Cancer Group (JCCG). Pediatr Blood Cancer. 2018; 65 ( 7 ): e27056.
dc.identifier.citedreferenceSaula PW, Hadley GP. Pediatric non-Wilms’ renal tumors: a third world experience. World J Surg. 2012; 36 ( 3 ): 565 - 572.
dc.identifier.citedreferenceArgani P, Perlman EJ, Breslow N. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms’ Tumour Study Pathology Center. Am J Surg Pathol. 2000; 24: 4 - 18.
dc.identifier.citedreferenceGooskens SL, Furtwangler R, Vujanic GM, Dome JS, Graf N, van den Heuvel-Eibrink MM. Clear cell sarcoma of the kidney: a review. Eur J Cancer. 2012; 48 ( 14 ): 2219 - 2226.
dc.identifier.citedreferenceGooskens SL, Graf N, Furtwangler R, et al. Position paper: rationale for the treatment of children with CCSK in the UMBRELLA SIOP-RTSG 2016 protocol. Nat Rev Urol. 2018; 15 ( 5 ): 309 - 319.
dc.identifier.citedreferenceSeibel NL, Chi YY, Perlman EJ, et al. Impact of cyclophosphamide and etoposide on outcome of clear cell sarcoma of the kidney treated on the National Wilms Tumor Study-5 (NWTS-5). Pediatr Blood Cancer. 2019; 66 ( 1 ): e27450.
dc.identifier.citedreferenceFurtwangler R, Gooskens SL, van Tinteren H, et al. Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumour Study Group. Eur J Cancer. 2013; 49 ( 16 ): 3497 - 3506.
dc.identifier.citedreferenceSpreafico F, Gandola L, Melchionda F. Stage I clear cell sarcoma of the kidney: is it the time for a less intensive adjuvant treatment? Transl Pediatr. 2014; 3 ( 1 ): 1 - 3. https://doi.org/10.3978/j.issn.2224-4336.2013.12.03
dc.identifier.citedreferenceGeller JI, Ehrlich PF, Cost NG, et al. Characterization of adolescent and pediatric renal cell carcinoma: a report from the Children’s Oncology Group study AREN03B2. Cancer. 2015; 121 ( 14 ): 2457 - 2464.
dc.identifier.citedreferencevan der Beek JN, Geller JI, de Krijger RR, et al. Characteristics and outcome of children with renal cell carcinoma: a narrative review. Cancers (Basel). 2020; 12 ( 7 ): 1776.
dc.identifier.citedreferencevan der Beek J, Hol J, Coulomb-l’Hermine A, et al. Characteristics and outcome of pediatric renal cell carcinoma patients registered in the International Society of Pediatric Oncology (SIOP) 93-01, 2001 and UK-IMPORT database: a report of the SIOP-Renal Tumor Study Group. Int J Cancer. 2021; 148: 2724 - 2735.
dc.identifier.citedreferenceDavis CJ, Mostofi FK, Sesterhenn IA. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol. 1995; 19: 1 - 11.
dc.identifier.citedreferenceAlvarez O, Rodriguez MM, Jordan L, Sarnaik S. Renal medullary carcinoma and sickle cell trait: a systematic review. Pediatr Blood Cancer. 2015; 62 ( 10 ): 1694 - 1699.
dc.identifier.citedreferenceRao Q, Chen JY, Wang JD, et al. Renal cell carcinoma in children and young adults: clinicopathological, immunohistochemical, and VHL gene analysis of 46 cases with follow-up. Int J Surg Pathol. 2011; 19 ( 2 ): 170 - 179.
dc.identifier.citedreferenceGeller JI, Argani P, Adeniran A, et al. Translocation renal cell carcinoma: lack of negative impact due to lymph node spread. Cancer. 2008; 112 ( 7 ): 1607 - 1616.
dc.identifier.citedreferenceHol JA, Kuiper RP, van Dijk F, et al. Prevalence of (epi)genetic predisposing factors in a 5-year unselected National Wilms Tumor Cohort: a comprehensive clinical and genomic characterization. J Clin Oncol. 2022; 40 ( 17 ): 1892 - 1902.
dc.identifier.citedreferenceMahamdallie S, Yost S, Poyastro-Pearson E, et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc Health. 2019; 3 ( 5 ): 322 - 331.
dc.identifier.citedreferenceTreger TD, Chowdhury T, Pritchard-Jones K, Behjati S. The genetic changes of Wilms tumour. Nat Rev Nephrol. 2019; 15 ( 4 ): 240 - 251.
dc.identifier.citedreferenceMaciaszek JL, Oak N, Nichols KE. Recent advances in Wilms’ tumor predisposition. Hum Mol Genet. 2020; 29 ( R2 ): R138.
dc.identifier.citedreferenceRuteshouser EC, Huff V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet. 2004; 129C ( 1 ): 29 - 34.
dc.identifier.citedreferenceRahman N, Arbour L, Tonin P. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet. 1996; 13: 461 - 463.
dc.identifier.citedreferenceMussa A, Russo S, De Crescenzo A, et al. Prevalence of Beckwith–Wiedemann syndrome in North West of Italy. Am J Med Genet A. 2013; 161A ( 10 ): 2481 - 2486.
dc.identifier.citedreferenceChernin G, Vega-Warner V, Schoeb DS, et al. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin J Am Soc Nephrol. 2010; 5 ( 9 ): 1655 - 1662.
dc.identifier.citedreferenceKöhler B, Biebermann H, Friedsam V, et al. Analysis of the Wilms’ tumor suppressor gene (WT1) in patients 46,XY disorders of sex development. J Clin Endocrinol Metab. 2011; 96 ( 7 ): E1131 - E1136.
dc.identifier.citedreferenceLipska BS, Ranchin B, Iatropoulos P, et al. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 2014; 85 ( 5 ): 1169 - 1178.
dc.identifier.citedreferenceLehnhardt A, Karnatz C, Ahlenstiel-Grunow T, et al. Clinical and molecular characterization of patients with heterozygous mutations in Wilms tumor suppressor gene 1. Clin J Am Soc Nephrol. 2015; 10 ( 5 ): 825 - 831.
dc.identifier.citedreferenceSun S, Xu L, Bi Y, et al. Early diagnosis of WT1 nephropathy and follow up in a Chinese multicenter cohort. Eur J Med Genet. 2020; 63 ( 11 ): 104047.
dc.identifier.citedreferenceMuto R, Yamamori S, Ohashi H, Osawa M. Prediction by FISH analysis of the occurrence of Wilms tumor in aniridia patients. Am J Med Genet. 2002; 108 ( 4 ): 285 - 289.
dc.identifier.citedreferenceFischbach BV, Trout KL, Lewis J, Luis CA, Sika M. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005; 116 ( 4 ): 984 - 988.
dc.identifier.citedreferencevan Heyningen V, Hoovers JM, de Kraker J, Crolla JA. Raised risk of Wilms tumour in patients with aniridia and submicroscopic WT1 deletion. J Med Genet. 2007; 44 ( 12 ): 787 - 790.
dc.identifier.citedreferenceMarakhonov AV, Vasilyeva TA, Voskresenskaya AA, et al. LMO2 gene deletions significantly worsen the prognosis of Wilms’ tumor development in patients with WAGR syndrome. Hum Mol Genet. 2019; 28 ( 19 ): 3323 - 3326.
dc.identifier.citedreferenceMaas SM, Vansenne F, Kadouch DJ, et al. Phenotype, cancer risk, and surveillance in Beckwith–Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. 2016; 170 ( 9 ): 2248 - 2260.
dc.identifier.citedreferenceBrioude F, Kalish JM, Mussa A, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018; 14 ( 4 ): 229 - 249.
dc.identifier.citedreferenceCoktu S, Spix C, Kaiser M, et al. Cancer incidence and spectrum among children with genetically confirmed Beckwith+Wiedemann spectrum in Germany: a retrospective cohort study. Br J Cancer. 2020; 123 ( 4 ): 619 - 623.
dc.identifier.citedreferencePerlman M, Goldberg GM, Bar-Ziv J, Danovitch G. Renal hamartomas and nephroblastomatosis with fetal gigantism: a familial syndrome. J Pediatr. 1973; 83 ( 3 ): 414 - 418.
dc.identifier.citedreferenceHenneveld HT, van Lingen RA, Hamel BC, Stolte-Dijkstra I, van Essen AJ. Perlman syndrome: four additional cases and review. Am J Med Genet. 1999; 86 ( 5 ): 439 - 446.
dc.identifier.citedreferenceNeri G, Martini-Neri ME, Katz BE, Opitz JM. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am J Med Genet. 1984; 19 ( 1 ): 195 - 207.
dc.identifier.citedreferencePostema FAM, Hopman SMJ, Deardorff MA, et al. Correspondence to Gripp et al. Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation. Am J Med Genet A. 2017; 173 ( 8 ): 2293 - 2295.
dc.identifier.citedreferencePeterman CM, Fevurly RD, Alomari AI, et al. Sonographic screening for Wilms tumor in children with CLOVES syndrome. Pediatr Blood Cancer. 2017; 64: e26684.
dc.identifier.citedreferenceBrioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol. 2019; 15 ( 5 ): 299 - 311.
dc.identifier.citedreferenceHalliday BJ, Fukuzawa R, Markie DM, et al. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour. PLoS Genet. 2018; 14 ( 6 ): e1007399.
dc.identifier.citedreferenceArmstrong AE, Gadd S, Huff V, Gerhard DS, Dome JS, Perlman EJ. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: a Children’s Oncology Group study. PLoS One. 2018; 13 ( 12 ): e0208936.
dc.identifier.citedreferenceDiets IJ, Hoyer J, Ekici AB, et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int J Cancer. 2019; 145 ( 4 ): 941 - 951.
dc.identifier.citedreferenceMoore C, Monforte H, Teer JK, et al. TRIM28 congenital predisposition to Wilms’ tumor: novel mutations and presentation in a sibling pair. Cold Spring Harb Mol Case Stud. 2020; 6 ( 4 ): a004796.
dc.identifier.citedreferenceMahamdallie SS, Hanks S, Karlin KL, et al. Mutations in the transcriptional repressor REST predispose to Wilms tumor. Nat Genet. 2015; 47 ( 12 ): 1471 - 1474.
dc.identifier.citedreferenceCullinan N, Villani A, Mourad S, et al. An eHealth decision-support tool to prioritize referral practices for genetic evaluation of patients with Wilms tumor. Int J Cancer. 2020; 146 ( 4 ): 1010 - 1017.
dc.identifier.citedreferenceHyder Z, Fairclough A, Groom M, et al. Constitutional de novo deletion CNV encompassing REST predisposes to diffuse hyperplastic perilobar nephroblastomatosis (HPLN). J Med Genet. 2021; 58 ( 9 ): 581 - 585.
dc.identifier.citedreferenceHanks S, Perdeaux ER, Seal S, et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun. 2014; 5: 4398.
dc.identifier.citedreferenceMartins AG, Pinto AT, Domingues R, Cavaco BM. Identification of a novel CTR9 germline mutation in a family with Wilms tumor. Eur J Med Genet. 2018; 61 ( 5 ): 294 - 299.
dc.identifier.citedreferenceReid S, Renwick A, Seal S, et al. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet. 2005; 42 ( 2 ): 147 - 151.
dc.identifier.citedreferenceReid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007; 39 ( 2 ): 162 - 164.
dc.identifier.citedreferenceWagner JE, Tolar J, Levran O, et al. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood. 2004; 103 ( 8 ): 3226 - 3229.
dc.identifier.citedreferenceAlter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet. 2007; 44 ( 1 ): 1 - 9. https://doi.org/10.1136/jmg.2006.043257
dc.identifier.citedreferenceXia B, Dorsman JC, Ameziane N, et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet. 2007; 39 ( 2 ): 159 - 161.
dc.identifier.citedreferenceKarlberg N, Karlberg S, Karikoski R, Mikkola S, Lipsanen-Nyman M, Jalanko H. High frequency of tumours in Mulibrey nanism. J Pathol. 2009; 218 ( 2 ): 163 - 171.
dc.identifier.citedreferenceSivunen J, Karlberg S, Lohi J, Karlberg N, Lipsanen-Nyman M, Jalanko H. Renal findings in patients with Mulibrey nanism. Pediatr Nephrol. 2017; 32 ( 9 ): 1531 - 1536.
dc.identifier.citedreferenceJacquemont S, Bocéno M, Rival JM, Méchinaud F, David A. High risk of malignancy in mosaic variegated aneuploidy syndrome. Am J Med Genet. 2002; 109 ( 1 ): 17 - 21, discussion 16.
dc.identifier.citedreferenceHanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004; 36 ( 11 ): 1159 - 1161.
dc.identifier.citedreferenceMicale MA, Embrey B 4th, Macknis JK, Harper CE, Aughton DJ. Constitutional 560.49 kb chromosome 2p24.3 duplication including the MYCN gene identified by SNP chromosome microarray analysis in a child with multiple congenital anomalies and bilateral Wilms tumor. Eur J Med Genet. 2016; 59 ( 12 ): 618 - 623.
dc.identifier.citedreferenceWilliams RD, Chagtai T, Alcaide-German M, et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget. 2015; 6 ( 9 ): 7232 - 7243.
dc.identifier.citedreferenceFievet A, Belaud-Rotureau MA, Dugay F, et al. Involvement of germline DDX1-MYCN duplication in inherited nephroblastoma. Eur J Med Genet. 2013; 56 ( 12 ): 643 - 647.
dc.identifier.citedreferenceBach A, Mi J, Hunter M, et al. Wilms tumor in patients with osteopathia striata with cranial sclerosis. Eur J Hum Genet. 2021; 29 ( 3 ): 396 - 401.
dc.identifier.citedreferenceSperotto F, Bisogno G, Opocher E, et al. Osteopathia striata with cranial sclerosis and Wilms tumor: coincidence or consequence? Clin Genet. 2017; 92 ( 6 ): 674 - 675.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.