Show simple item record

Bringing light onto the Raunkiæran shortfall: A comprehensive review of traits used in functional animal ecology

dc.contributor.authorGonçalves-Souza, Thiago
dc.contributor.authorChaves, Leonardo S.
dc.contributor.authorBoldorini, Gabriel X.
dc.contributor.authorFerreira, Natália
dc.contributor.authorGusmão, Reginaldo A. F.
dc.contributor.authorPerônico, Phamela Bernardes
dc.contributor.authorSanders, Nathan J.
dc.contributor.authorTeresa, Fabrício B.
dc.date.accessioned2023-05-01T19:10:17Z
dc.date.available2024-05-01 15:10:14en
dc.date.available2023-05-01T19:10:17Z
dc.date.issued2023-04
dc.identifier.citationGonçalves-Souza, Thiago ; Chaves, Leonardo S.; Boldorini, Gabriel X.; Ferreira, Natália ; Gusmão, Reginaldo A. F. ; Perônico, Phamela Bernardes ; Sanders, Nathan J.; Teresa, Fabrício B. (2023). "Bringing light onto the Raunkiæran shortfall: A comprehensive review of traits used in functional animal ecology." Ecology and Evolution (4): n/a-n/a.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/176258
dc.description.abstractTrait-based approaches elucidate the mechanisms underlying biodiversity response to, or effects on, the environment. Nevertheless, the Raunkiæran shortfall—the dearth of knowledge on species traits and their functionality—presents a challenge in the application of these approaches. We conducted a systematic review to investigate the trends and gaps in trait-based animal ecology in terms of taxonomic resolution, trait selection, ecosystem type, and geographical region. In addition, we suggest a set of crucial steps to guide trait selection and aid future research to conduct within and cross-taxon comparisons. We identified 1655 articles using virtually all animal groups published from 1999 to 2020. Studies were concentrated in vertebrates, terrestrial habitats, the Palearctic realm, and mostly investigated trophic and habitat dimensions. Additionally, they focused on response traits (79.4%) and largely ignored intraspecific variation (94.6%). Almost 36% of the data sets did not provide the rationale behind the selection of morphological traits. The main limitations of trait-based animal ecology were the use of trait averages and a rare inclusion of intraspecific variability. Nearly one-fifth of the studies based only on response traits conclude that trait diversity impacts ecosystem processes or services without justifying the connection between them or measuring them. We propose a guide for standardizing trait collection that includes the following: (i) determining the type of trait and the mechanism linking the trait to the environment, ecosystem, or the correlation between the environment, trait, and ecosystem, (ii) using a “periodic table of niches” to select the appropriate niche dimension to support a mechanistic trait selection, and (iii) selecting the relevant traits for each retained niche dimension. By addressing these gaps, trait-based animal ecology can become more predictive. This implies that future research will likely focus on collaborating to understand how environmental changes impact animals and their capacity to provide ecosystem services and goods.Most studies investigated in this review concentrated in vertebrates, terrestrial habitats, the Palearctic realm. Almost 36% of the datasets did not provide the rationale behind the selection of morphological traits. The main limitations of trait-based animal ecology were the use of trait averages and a rare inclusion of intraspecific variability. Nearly one-fifth of the studies based only on response traits conclude that trait diversity impacts ecosystem processes or services without justifying the connection between them or measuring them.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfunctional traits
dc.subject.otherRaunkiæran shortfall
dc.subject.otherresponse and effect traits
dc.subject.othertrait-based ecology
dc.subject.otherknowledge shortfalls
dc.titleBringing light onto the Raunkiæran shortfall: A comprehensive review of traits used in functional animal ecology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176258/1/ece310016_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176258/2/ece310016.pdf
dc.identifier.doi10.1002/ece3.10016
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferencePianka, E. R. ( 1974 ). Evolutionary ecology. Harper & Row.
dc.identifier.citedreferencePerronne, R., Munoz, F., Borgy, B., Reboud, X., & Gaba, S. ( 2017 ). How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review. Perspectives in Plant Ecology, Evolution and Systematics, 25, 29 – 44. https://doi.org/10.1016/j.ppees.2017.01.004
dc.identifier.citedreferencePey, B., Laporte, M.-A., Nahmani, J., Auclerc, A., Capowiez, Y., Caro, G., Cluzeau, D., Cortet, J., Decaëns, T., Dubs, F., Joimel, S., Guernion, M., Briard, C., Grumiaux, F., Laporte, B., Pasquet, A., Pelosi, C., Pernin, C., Ponge, J.-F., … Hedde, M. ( 2014 ). A thesaurus for soil invertebrate trait-based approaches. PLoS One, 9 ( 10 ), e108985. https://doi.org/10.1371/journal.pone.0108985
dc.identifier.citedreferenceWinemiller, K. O. ( 1989 ). Patterns of variation in life history among south American fishes in seasonal environments. Oecologia, 81 ( 2 ), 225 – 241. https://doi.org/10.1007/BF00379810
dc.identifier.citedreferenceRaffard, A., Lecerf, A., Cote, J., Buoro, M., Lassus, R., & Cucherousset, J. ( 2017 ). The functional syndrome: Linking individual trait variability to ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 284, 20171893. https://doi.org/10.1098/rspb.2017.1893
dc.identifier.citedreferenceRoquer-Beni, L., Alins, G., Arnan, X., Boreux, V., García, D., Hambäck, P. A., Happe, A., Klein, A., Miñarro, M., Mody, K., Porcel, M., Rodrigo, A., Samnegard, U., Tasin, M., & Bosch, J. ( 2021 ). Management-dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 58, 2843 – 2853. https://doi.org/10.1111/1365-2664.14022
dc.identifier.citedreferenceRosado, B. H. P., Figueiredo, M. S. L., de Mattos, E. A., & Grelle, C. E. V. ( 2016 ). Eltonian shortfall due to the Grinnellian view: Functional ecology between the mismatch of niche concepts. Ecography, 39 ( 11 ), 1034 – 1041. https://doi.org/10.1111/ecog.01678
dc.identifier.citedreferenceRuggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. ( 2015 ). A higher level classification of all living organisms. PLoS One, 10 ( 4 ), e0119248. https://doi.org/10.1371/journal.pone.0119248
dc.identifier.citedreferenceSchleuning, M., García, D., & Tobias, J. A. ( 2023 ). Animal functional traits: Towards a trait-based ecology for whole ecosystems. Functional Ecology, 37 ( 1 ), 4 – 12. https://doi.org/10.1111/1365-2435.14246
dc.identifier.citedreferenceSchmera, D., Podani, J., Heino, J., Erős, T., & Poff, N. L. ( 2015 ). A proposed unified terminology of species traits in stream ecology. Freshwater Science, 34 ( 3 ), 823 – 830. https://doi.org/10.1086/681623
dc.identifier.citedreferenceSiefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., Dantas, V., Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., … Wardle, D. A. ( 2015 ). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18 ( 12 ), 1406 – 1419. https://doi.org/10.1111/ele.12508
dc.identifier.citedreferenceSilva, V. E. L., Silva-Firmiano, L. P. S., Teresa, F. B., Batista, V. S., Ladle, R. J., & Fabré, N. N. ( 2019 ). Functional traits of fish species: Adjusting resolution to accurately express resource partitioning. Frontiers in Marine Science, 6, 303. https://doi.org/10.3389/fmars.2019.00303
dc.identifier.citedreferenceSimberloff, D., & Dayan, T. ( 1991 ). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22 ( 1 ), 115 – 143. https://doi.org/10.1146/annurev.es.22.110191.000555
dc.identifier.citedreferenceSternberg, D., & Kennard, M. J. ( 2014 ). Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish. Ecography, 37 ( 1 ), 54 – 64. https://doi.org/10.1111/j.1600-0587.2013.00362.x
dc.identifier.citedreferenceStreit, R. P., & Bellwood, D. R. ( 2022 ). To harness traits for ecology, let’s abandon ‘functionality’. Trends in Ecology & Evolution, in press. https://doi.org/10.1016/j.tree.2022.11.009
dc.identifier.citedreferenceSuding, K. N., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D. U., Jackson, S. T., & Navas, M.-L. ( 2008 ). Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Change Biology, 14 ( 5 ), 1125 – 1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x
dc.identifier.citedreferenceTilman, D. ( 1999 ). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80 ( 5 ), 1455. https://doi.org/10.2307/176540
dc.identifier.citedreferenceTobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. ( 2022 ). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25 ( 3 ), 581 – 597. https://doi.org/10.1111/ele.13898
dc.identifier.citedreferencevan der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., Barnard, R. L., Buchmann, N., de Kroon, H., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Gleixner, G., Hildebrandt, A., Koller-France, E., Leimer, S., Milcu, A., Mommer, L., … Wirth, C. ( 2020 ). Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology & Evolution, 4, 1602 – 1611. https://doi.org/10.1038/s41559-020-01316-9
dc.identifier.citedreferenceVasconcelos, T. ( 2023 ). A trait-based approach to the rules of plant biogeography. American Journal of Botany, 110, e16127. https://doi.org/10.1002/ajb2.16127
dc.identifier.citedreferenceVilléger, S., Brosse, S., Mouchet, M., Mouillot, D., & Vanni, M. J. ( 2017 ). Functional ecology of fish: Current approaches and future challenges. Aquatic Sciences, 79, 783 – 801. https://doi.org/10.1007/s00027-017-0546-z
dc.identifier.citedreferenceViolle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. ( 2012 ). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27 ( 4 ), 244 – 252. https://doi.org/10.1016/j.tree.2011.11.014
dc.identifier.citedreferenceViolle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. ( 2007 ). Let the concept of trait be functional! Oikos, 116 ( 5 ), 882 – 892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
dc.identifier.citedreferenceVitule, J. R. S., Agostinho, A. A., Azevedo-Santos, V. M., Daga, V. S., Darwall, W. R. T., Fitzgerald, D. B., Frehse, F. A., Hoeinghaus, D. J., Lima-Junior, D. P., Magalhães, A. L. B., Orsi, M. L., Padial, A. A., Pelicice, F. M., Petrere, M., Pompeu, P. S., & Winemiller, K. O. ( 2017 ). We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation, 26 ( 3 ), 757 – 762. https://doi.org/10.1007/s10531-016-1258-8
dc.identifier.citedreferenceWarzecha, D., Diekötter, T., Wolters, V., & Jauker, F. ( 2016 ). Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecology, 31 ( 7 ), 1449 – 1455. https://doi.org/10.1007/s10980-016-0349-y
dc.identifier.citedreferenceWilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. ( 2014 ). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals: Ecological archives E095-178. Ecology, 95 ( 7 ), 2027. https://doi.org/10.1890/13-1917.1
dc.identifier.citedreferenceWinemiller, K. O., Fitzgerald, D. B., Bower, L. M., & Pianka, E. R. ( 2015 ). Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18 ( 8 ), 737 – 751. https://doi.org/10.1111/ele.12462
dc.identifier.citedreferenceZhu, L., Fu, B., Zhu, H., Wang, C., Jiao, L., & Zhou, J. ( 2017 ). Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Scientific Reports, 7, 3643. https://doi.org/10.1038/s41598-017-03812-8
dc.identifier.citedreferenceZuk, M. ( 2016 ). Temperate assumptions: How where we work influences how we think. The American Naturalist, 188 ( S1 ), S1 – S7. https://doi.org/10.1086/687546
dc.identifier.citedreferenceAlbert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Violle, C. ( 2011 ). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics, 13 ( 3 ), 217 – 225. https://doi.org/10.1016/j.ppees.2011.04.003
dc.identifier.citedreferenceAlmeida, T. C., Tessarolo, G., Nabout, J. C., & Teresa, F. B. ( 2021 ). Non-stationary drivers on fish sampling efforts in Brazilian freshwaters. Diversity and Distributions, 27 ( 7 ), 1224 – 1234. https://doi.org/10.1111/ddi.13269
dc.identifier.citedreferenceAraújo, M. S., Bolnick, D. I., & Layman, C. A. ( 2011 ). The ecological causes of individual specialisation: The causes of individual specialisation. Ecology Letters, 14 ( 9 ), 948 – 958. https://doi.org/10.1111/j.1461-0248.2011.01662.x
dc.identifier.citedreferenceArnold, S. J. ( 1983 ). Morphology, performance and fitness. American Zoologist, 23 ( 2 ), 347 – 361. https://doi.org/10.1093/icb/23.2.347
dc.identifier.citedreferenceBolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. ( 2011 ). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26 ( 4 ), 183 – 192. https://doi.org/10.1016/j.tree.2011.01.009
dc.identifier.citedreferenceBrousseau, P.-M., Gravel, D., & Handa, I. T. ( 2018 ). On the development of a predictive functional trait approach for studying terrestrial arthropods. Journal of Animal Ecology, 87 ( 5 ), 1209 – 1220. https://doi.org/10.1111/1365-2656.12834
dc.identifier.citedreferenceBujan, J., Roeder, K. A., Yanoviak, S. P., & Kaspari, M. ( 2020 ). Seasonal plasticity of thermal tolerance in ants. Ecology, 101, e03051. https://doi.org/10.1002/ecy.3051
dc.identifier.citedreferenceButterfield, B. J., & Suding, K. N. ( 2013 ). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101 ( 1 ), 9 – 17. https://doi.org/10.1111/1365-2745.12013
dc.identifier.citedreferenceCam, E., Link, W. A., Cooch, E. G., Monnat, J., & Danchin, E. ( 2002 ). Individual covariation in life-history traits: Seeing the trees despite the forest. The American Naturalist, 159 ( 1 ), 96 – 105. https://doi.org/10.1086/324126
dc.identifier.citedreferenceCarmona, C. P., De Bello, F., Mason, N. W. H., & Lepš, J. ( 2016 ). Traits without Borders: Integrating functional diversity across scales. Trends in Ecology & Evolution, 31, 382 – 394. https://doi.org/10.1016/j.tree.2016.02.003
dc.identifier.citedreferenceChalmandrier, L., Münkemüller, T., Colace, M.-P., Renaud, J., Aubert, S., Carlson, B. Z., Clément, J.-C., Legay, N., Pellet, G., Saillard, A., Lavergne, S., & Thuiller, W. ( 2017 ). Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. Journal of Ecology, 105 ( 1 ), 277 – 287. https://doi.org/10.1111/1365-2745.12658
dc.identifier.citedreferenceChick, L. D., Lessard, J.-P., Dunn, R. R., & Sanders, N. J. ( 2020 ). The coupled influence of thermal physiology and biotic interactions on the distribution and density of ant species along an elevational gradient. Diversity, 12, 456. https://doi.org/10.3390/d12120456
dc.identifier.citedreferenceCianciaruso, M. V., Batalha, M. A., Gaston, K. J., & Petchey, O. L. ( 2009 ). Including intraspecific variability in functional diversity. Ecology, 90 ( 1 ), 81 – 89. https://doi.org/10.1890/07-1864.1
dc.identifier.citedreferenceClarke, D. A., York, P. H., Rasheed, M. A., & Northfield, T. D. ( 2017 ). Does biodiversity–ecosystem function literature neglect tropical ecosystems? Trends in Ecology & Evolution, 32 ( 5 ), 320 – 323. https://doi.org/10.1016/j.tree.2017.02.012
dc.identifier.citedreferenceCordlandwehr, V., Meredith, R. L., Ozinga, W. A., Bekker, R. M., Groenendael, J. M., & Bakker, J. P. ( 2013 ). Do plant traits retrieved from a database accurately predict on-site measurements? Journal of Ecology, 101 ( 3 ), 662 – 670. https://doi.org/10.1111/1365-2745.12091
dc.identifier.citedreferenceCornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Steege, H., Morgan, H. D., Heijden, M. G. A., Pausas, J. G., & Poorter, H. ( 2003 ). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51 ( 4 ), 335. https://doi.org/10.1071/BT02124
dc.identifier.citedreferenceCostello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., & Chaudhary, C. ( 2017 ). Marine biogeographic realms and species endemicity. Nature Communications, 8 ( 1 ), 1057. https://doi.org/10.1038/s41467-017-01121-2
dc.identifier.citedreferenceCulumber, Z. W., Anaya-Rojas, J. M., Booker, W. W., Hooks, A. P., Lange, E. C., Pluer, B., Ramírez-Bullón, N., & Travis, J. ( 2019 ). Widespread biases in ecological and evolutionary studies. Bioscience, 69 ( 8 ), 631 – 640. https://doi.org/10.1093/biosci/biz063
dc.identifier.citedreferencede Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., Martins da Silva, P., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A., & Harrison, P. A. ( 2010 ). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19 ( 10 ), 2873 – 2893. https://doi.org/10.1007/s10531-010-9850-9
dc.identifier.citedreferencede Castro-Arrazola, I., Andrew, N. R., Berg, M. P., Curtsdotter, A., Lumaret, J. P., Menéndez, R., Moretti, M., Nervo, B., Nichols, E. S., Sánchez-Piñero, F., Santos, A. M. C., Sheldon, K. S., Slade, E. M., & Hortal, J. ( 2023 ). A trait-based framework for dung beetle functional ecology. Journal of Animal Ecology, 92 ( 1 ), 44 – 65. https://doi.org/10.1111/1365-2656.13829
dc.identifier.citedreferenceDehling, D. M., & Stouffer, D. B. ( 2018 ). Bringing the Eltonian niche into functional diversity. Oikos, 127, 1711 – 1723. https://doi.org/10.1111/oik.05415
dc.identifier.citedreferenceDelhaye, G., Bauman, D., Séleck, M., Ilunga, E. I. W., Mahy, G., & Meerts, P. ( 2020 ). Interspecific trait integration increases with environmental harshness: A case study along a metal toxicity gradient. Functional Ecology, 34, 1428 – 1437. https://doi.org/10.1111/1365-2435.13570
dc.identifier.citedreferenceDíaz, S., & Cabido, M. ( 2001 ). Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16 ( 11 ), 646 – 655. https://doi.org/10.1016/S0169-5347(01)02283-2
dc.identifier.citedreferenceDíaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. ( 2016 ). The global spectrum of plant form and function. Nature, 529, 167 – 171. https://doi.org/10.1038/nature16489
dc.identifier.citedreferenceEtard, A., Morrill, S., & Newbold, T. ( 2020 ). Global gaps in trait data for terrestrial vertebrates. Global Ecology and Biogeography, 29 ( 12 ), 2143 – 2158. https://doi.org/10.1111/geb.13184
dc.identifier.citedreferenceFountain-Jones, N. M., Baker, S. C., & Jordan, G. J. ( 2015 ). Moving beyond the guild concept: Developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40 ( 1 ), 1 – 13. https://doi.org/10.1111/een.12158
dc.identifier.citedreferenceFrimpong, E. A., & Angermeier, P. L. ( 2009 ). Fish traits: A database of ecological and life-history traits of freshwater fishes of the United States. Fisheries, 34 ( 10 ), 487 – 495. https://doi.org/10.1577/1548-8446-34.10.487
dc.identifier.citedreferenceGarnier, E., Navas, M.-L., & Grigulis, K. ( 2016 ). Plant functional diversity: Organism traits, community structure, and ecosystem properties ( 1st ed. ). Oxford University Press.
dc.identifier.citedreferenceGianuca, A. T., Pantel, J. H., & De Meester, L. ( 2016 ). Disentangling the effect of body size and phylogenetic distances on zooplankton top-down control of algae. Proceedings of the Royal Society B: Biological Sciences, 283 ( 1828 ), 20160487. https://doi.org/10.1098/rspb.2016.0487
dc.identifier.citedreferenceGibb, H., Bishop, T. R., Leahy, L., Parr, C. L., Lessard, J., Sanders, N. J., Shik, J. Z., Ibarra-Isassi, J., Narendra, A., Dunn, R. R., & Wright, I. J. ( 2023 ). Ecological strategies of (Pl)ants: Towards a world-wide worker economic spectrum for ants. Functional Ecology, 37, 13 – 25. https://doi.org/10.1111/1365-2435.14135
dc.identifier.citedreferenceGreen, S. J., Brookson, C. B., Hardy, N. A., & Crowder, L. B. ( 2022 ). Trait-based approaches to global change ecology: moving from description to prediction. Proceedings of the Royal Society B: Biological Sciences, 289, 20220071. https://doi.org/10.1098/rspb.2022.0071
dc.identifier.citedreferenceHall, M. A., Nimmo, D. G., Cunningham, S. A., Walker, K., & Bennett, A. F. ( 2019 ). The response of wild bees to tree cover and rural land use is mediated by species’ traits. Biological Conservation, 231, 1 – 12. https://doi.org/10.1016/j.biocon.2018.12.032
dc.identifier.citedreferenceHébert, M.-P., Beisner, B. E., & Maranger, R. ( 2017 ). Linking zooplankton communities to ecosystem functioning: Toward an effect-trait framework. Journal of Plankton Research, 39 ( 1 ), 3 – 12. https://doi.org/10.1093/plankt/fbw068
dc.identifier.citedreferenceHevia, V., Martín-López, B., Palomo, S., García-Llorente, M., de Bello, F., & González, J. A. ( 2017 ). Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecology and Evolution, 7 ( 3 ), 831 – 844. https://doi.org/10.1002/ece3.2692
dc.identifier.citedreferenceHolt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J., & Rahbek, C. ( 2013 ). An update of Wallace’s zoogeographic regions of the world. Science, 339 ( 6115 ), 74 – 78. https://doi.org/10.1126/science.1228282
dc.identifier.citedreferenceHordley, L. A., Gillings, S., Petchey, O. L., Tobias, J. A., & Oliver, T. H. ( 2021 ). Diversity of response and effect traits provides complementary information about avian community dynamics linked to ecological function. Functional Ecology, 35 ( 9 ), 1938 – 1950. https://doi.org/10.1111/1365-2435.13865
dc.identifier.citedreferenceHortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. ( 2015 ). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46 ( 1 ), 523 – 549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
dc.identifier.citedreferenceIbarra-Isassi, J., Handa, I. T., & Lessard, J. ( 2023 ). Community-wide trait adaptation, but not plasticity, explains ant community structure in extreme environments. Functional Ecology, 37 ( 1 ), 139 – 149. https://doi.org/10.1111/1365-2435.14185
dc.identifier.citedreferenceJacob, S., & Legrand, D. ( 2021 ). Phenotypic plasticity can reverse the relative extent of intra- and interspecific variability across a thermal gradient. Proceedings of the Royal Society B: Biological Sciences, 288 ( 1953 ), 20210428. https://doi.org/10.1098/rspb.2021.0428
dc.identifier.citedreferenceJung, V., Violle, C., Mondy, C., Hoffmann, L., & Muller, S. ( 2010 ). Intraspecific variability and trait-based community assembly: Intraspecific variability and community assembly. Journal of Ecology, 98 ( 5 ), 1134 – 1140. https://doi.org/10.1111/j.1365-2745.2010.01687.x
dc.identifier.citedreferenceJunker, R. R., Albrecht, J., Becker, M., Keuth, R., Farwig, N., & Schleuning, M. ( 2023 ). Towards an animal economics spectrum for ecosystem research. Functional Ecology, 37 ( 1 ), 57 – 72. https://doi.org/10.1111/1365-2435.14051
dc.identifier.citedreferenceKattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. A., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar, C. C., Aleixo, I., Ali, H., … Wirth, C. ( 2020 ). TRY plant trait database – enhanced coverage and open access. Global Change Biology, 26 ( 1 ), 119 – 188. https://doi.org/10.1111/gcb.14904
dc.identifier.citedreferenceKearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. L. M., & Chown, S. L. ( 2021 ). Where do functional traits come from? The role of theory and models. Functional Ecology, 35 ( 7 ), 1385 – 1396. https://doi.org/10.1111/1365-2435.13829
dc.identifier.citedreferenceKeller, A., Ankenbrand, M. J., Bruelheide, H., Dekeyzer, S., Enquist, B. J., Erfanian, M. B., Falster, D. S., Gallagher, R. V., Hammock, J., Kattge, J., Leonhardt, S. D., Madin, J. S., Maitner, B., Neyret, M., Onstein, R. E., Pearse, W. D., Poelen, J. H., Salguero-Gomez, R., Schneider, F. D., … Penone, C. ( 2023 ). Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences. Methods in Ecology and Evolution, 14, 444 – 458. https://doi.org/10.1111/2041-210X.14033
dc.identifier.citedreferenceLaughlin, D. C., & Laughlin, D. E. ( 2013 ). Advances in modeling trait-based plant community assembly. Trends in Plant Science, 18, 584 – 593. https://doi.org/10.1016/j.tplants.2013.04.012
dc.identifier.citedreferenceLavorel, S., & Garnier, E. ( 2002 ). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Functional Ecology, 16 ( 5 ), 545 – 556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
dc.identifier.citedreferenceLefcheck, J. S., Bastazini, V. A. G., & Griffin, J. N. ( 2015 ). Choosing and using multiple traits in functional diversity research. Environmental Conservation, 42 ( 2 ), 104 – 107. https://doi.org/10.1017/S0376892914000307
dc.identifier.citedreferenceLitchman, E., Ohman, M. D., & Kiørboe, T. ( 2013 ). Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35 ( 3 ), 473 – 484. https://doi.org/10.1093/plankt/fbt019
dc.identifier.citedreferenceLoiseau, N., Mouquet, N., Casajus, N., Grenié, M., Guéguen, M., Maitner, B., Mouillot, D., Ostling, A., Renaud, J., Tucker, C., Velez, L., Thuiller, W., & Violle, C. ( 2020 ). Global distribution and conservation status of ecologically rare mammal and bird species. Nature Communications, 11 ( 1 ), 5071. https://doi.org/10.1038/s41467-020-18779-w
dc.identifier.citedreferenceLuck, G. W., Lavorel, S., McIntyre, S., & Lumb, K. ( 2012 ). Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. Journal of Animal Ecology, 81 ( 5 ), 1065 – 1076. https://doi.org/10.1111/j.1365-2656.2012.01974.x
dc.identifier.citedreferenceLuiza-Andrade, A., Montag, L. F. A., & Juen, L. ( 2017 ). Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics, 111 ( 3 ), 1643 – 1656. https://doi.org/10.1007/s11192-017-2315-0
dc.identifier.citedreferenceMalaterre, C., Dussault, A. C., Mermans, E., Barker, G., Beisner, B. E., Bouchard, F., Desjardins, E., Handa, I. T., Kembel, S. W., Lajoie, G., Maris, V., Munson, A. D., Odenbaugh, J., Poisot, T., Shapiro, B. J., & Suttle, C. A. ( 2019 ). Functional diversity: An epistemic roadmap. BioScience, 69, 800 – 811. https://doi.org/10.1093/biosci/biz089
dc.identifier.citedreferenceMcGill, B., Enquist, B., Weiher, E., & Westoby, M. ( 2006 ). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178 – 185. https://doi.org/10.1016/j.tree.2006.02.002
dc.identifier.citedreferenceMendes, M. F., Gottschalk, M. S., Corrêa, R. C., & Valente-Gaiesky, V. L. S. ( 2021 ). Functional traits for ecological studies: A review of characteristics of Drosophilidae (Diptera). Community Ecology, 22, 367 – 379. https://doi.org/10.1007/s42974-021-00060-9
dc.identifier.citedreferenceMiles, D. B., Ricklefs, R. E., & Travis, J. ( 1987 ). Concordance of ecomorphological relationships in three assemblages of passerine birds. The American Naturalist, 129 ( 3 ), 347 – 364. https://doi.org/10.1086/284641
dc.identifier.citedreferenceMlambo, M. C. ( 2014 ). Not all traits are ‘functional’: Insights from taxonomy and biodiversity-ecosystem functioning research. Biodiversity and Conservation, 23 ( 3 ), 781 – 790. https://doi.org/10.1007/s10531-014-0618-5
dc.identifier.citedreferenceMoretti, M., Dias, A. T. C., Bello, F., Altermatt, F., Chown, S. L., Azcárate, F. M., Bell, J. R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. P., Ellers, J., & Berg, M. P. ( 2017 ). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31 ( 3 ), 558 – 567. https://doi.org/10.1111/1365-2435.12776
dc.identifier.citedreferenceNaeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. ( 1994 ). Declining biodiversity can alter the performance of ecosystems. Nature, 368 ( 6473 ), 734 – 737. https://doi.org/10.1038/368734a0
dc.identifier.citedreferenceNoriega, J. A., Hortal, J., Azcárate, F. M., Berg, M. P., Bonada, N., Briones, M. J. I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D. A., Moretti, M., Potts, S. G., Slade, E. M., Stout, J. C., Ulyshen, M. D., Wackers, F. L., Woodcock, B. A., & Santos, A. M. C. ( 2018 ). Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26, 8 – 23. https://doi.org/10.1016/j.baae.2017.09.006
dc.identifier.citedreferenceNuñez, M. A., Chiuffo, M. C., Pauchard, A., & Zenni, R. D. ( 2021 ). Making ecology really global. Trends in Ecology & Evolution, 36 ( 9 ), 766 – 769. https://doi.org/10.1016/j.tree.2021.06.004
dc.identifier.citedreferenceOlenin, S., & Leppäkoski, E. ( 1999 ). Non-native animals in the Baltic Sea: Alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia, 393, 233 – 243. https://doi.org/10.1023/A:1003511003766
dc.identifier.citedreferenceOliveira, F. M. P., Silva, L. L., Leal, I. R., & Arnan, X. ( 2021 ). Morphology of four common and phylogenetically distant ant species varies along disturbance and aridity gradients in the caatinga dry forest. Biotropica, 54, 78 – 90. https://doi.org/10.1111/btp.13029
dc.identifier.citedreferencePakeman, R. J. ( 2014 ). Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution, 5 ( 1 ), 9 – 15. https://doi.org/10.1111/2041-210X.12136
dc.identifier.citedreferenceParr, C. L., Dunn, R. R., Sanders, N. J., Weiser, M. D., Photakis, M., Bishop, T. R., Fitzpatrick, M. C., Arnan, X., Baccaro, F., Brandão, C. R. F., Chick, L., Donoso, D. A., Fayle, T. M., Gómez, C., Grossman, B., Munyai, T. C., Pacheco, R., Retana, J., Robinson, A., … Gibb, H. ( 2017 ). Globalants: A new database on the geography of ant traits(Hymenoptera: Formicidae). Insect Conservation and Diversity, 10 ( 1 ), 5 – 20. https://doi.org/10.1111/icad.12211
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.