Show simple item record

NIR-triggered Synergetic Photothermal and Chemotherapy Cancer Treatment Based on SiO2@Au@SiO2@QDs-DOX Composite Structural Particles

dc.contributor.authorJiang, Xinbing
dc.contributor.authorQiao, Lu
dc.contributor.authorYang, Huan
dc.contributor.authorLi, Ben Q
dc.contributor.authorDing, Shujiang
dc.date.accessioned2023-05-01T19:10:56Z
dc.date.available2024-05-01 15:10:55en
dc.date.available2023-05-01T19:10:56Z
dc.date.issued2023-04
dc.identifier.citationJiang, Xinbing; Qiao, Lu; Yang, Huan; Li, Ben Q; Ding, Shujiang (2023). "NIR-triggered Synergetic Photothermal and Chemotherapy Cancer Treatment Based on SiO2@Au@SiO2@QDs-DOX Composite Structural Particles." ChemNanoMat 9(4): n/a-n/a.
dc.identifier.issn2199-692X
dc.identifier.issn2199-692X
dc.identifier.urihttps://hdl.handle.net/2027.42/176277
dc.description.abstractThis paper reports the synthesis of multi-layer SiO2@Au@SiO2@QDs nanoparticles with a dual-functionality of simultaneous heating and temperature sensing and their applications to in vitro chemo-thermal therapy. The heating is activated by a NIR-light through resonance excitation of surface plasma while in-situ thermal sensing is accomplished by the QDs photoluminescent (PL) effect. These dual function nanoparticles are used as a drug carrier for in vitro chemotherapy-photothermal co-treatment for malignant cells. A comparative study of drug release profiles was performed with and without 808 nm laser irradiation. The drug release rate was accelerated by a rise of temperature, which is induced by plasmonic heat generation associated with Au nanoshells; while the temperature change is monitored by the QD nanoparticles at the same time. The results showed that SiO2@Au@SiO2@QDs-DOX platform enabled the combination of local specific chemotherapy with external near-infrared (NIR) photothermal therapy and significantly improved the efficacy of cancer treatment. This combined treatment demonstrated synergistic chemotherapeutic-thermal effects compared to chemotherapy or photothermal therapy alone, resulting in higher efficacy.SiO2@Au@SiO2@QDs nanocomposite with dual-functionality of simultaneous heating and temperature sensing were prepared. The heating is activated by a NIR laser through SPR effect while thermal sensing is accomplished by QDs PL thermometry. These nanocomposites are used as a drug carrier for in vitro chemotherapy-photothermal co-treatment for malignant cells.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPhotothermal therapy
dc.subject.otherBiological and Medicinal Chemistry
dc.subject.otherBiosensors
dc.subject.otherCancer
dc.subject.otherCell adhesion
dc.titleNIR-triggered Synergetic Photothermal and Chemotherapy Cancer Treatment Based on SiO2@Au@SiO2@QDs-DOX Composite Structural Particles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176277/1/cnma202200532_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176277/2/cnma202200532.pdf
dc.identifier.doi10.1002/cnma.202200532
dc.identifier.sourceChemNanoMat
dc.identifier.citedreferenceK. Nigoghossian, S. Ouellet, J. Plain, Y. Messaddeq, D. Boudreau, S. J. L. Ribeiro, J. Mater. Chem. B 2017, 5, 7109 – 7117.
dc.identifier.citedreferenceB. Xu, B. Cai, M. Liu, H. Fan, Nanotechnology 2013, 24, 205601.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. Ye, K. Y. Win, H. R. Tan, M. Lin, C. P. Teng, A. Mlayah, M.-Y. Han, JACS. 2011, 133, 8506 – 8509;
dc.identifier.citedreferenceC. P. Teng, T. Zhou, E. Ye, S. Liu, L. D. Koh, M. Low, X. J. Loh, K. Y. Win, L. Zhang, M.-Y. Han, Adv. Healthcare Mater. 2016, 5, 2122 – 2130.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. M. Rodríguez, J. García-Solé, D. Jaque, Nanoscale 2016, 8, 3057 – 3066;
dc.identifier.citedreferenceI. E. Kolesnikov, E. V. Golyeva, A. A. Kalinichev, M. A. Kurochkin, E. Lähderanta, M. D. Mikhailov, Sens. Actuators B 2017, 243, 338 – 345;
dc.identifier.citedreferenceC. L. West, A. C. V. Doughty, K. Liu, W. R. Chen, J. Bio-X Res. 2019, 2, 159 – 168.
dc.identifier.citedreferenceY. A. Cheon, J. H. Bae, B. G. Chung, Langmuir 2016, 32, 2731 – 2736.
dc.identifier.citedreferenceZ. Li, E. Ye, David, R. Lakshminarayanan, X. J. Loh, Small 2016, 12, 4782 – 4806.
dc.identifier.citedreferenceS. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Donà, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, G. Chirico, Nano Lett. 2013, 13 ( 5 ), 2004 – 2010.
dc.identifier.citedreferenceL. M. Maestro, P. Haro-González, M. C. I.-d. l. Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, D. Jaque, Nanomedicine 2013, 8, 379 – 388.
dc.identifier.citedreferenceE. N. Cerón, D. H. Ortgies, B. del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J. G. Solé, D. Jaque, E. M. Rodríguez, Adv. Mater. 2015, 27, 4781 – 4787.
dc.identifier.citedreferenceA. O. Yalcin, B. Goris, R. J. A. van Dijk-Moes, Z. Fan, A. K. Erdamar, F. D. Tichelaar, T. J. H. Vlugt, G. Van Tendeloo, S. Bals, D. Vanmaekelbergh, H. W. Zandbergen, M. A. van Huis, Chem. Commun. 2015, 51, 3320 – 3323.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Li, H. Lin, C. Luo, Y. Wang, C. Jiang, R. Qi, R. Huang, J. Travas-sejdic, H. Peng, RSC Adv. 2017, 7, 32225 – 32228;
dc.identifier.citedreferenceJ. Liu, X. Yang, K. Wang, R. Yang, H. Ji, L. Yang, C. Wu, Chem. Commun. 2011, 47, 935 – 937;
dc.identifier.citedreferenceS. Patra, A. Samanta, J. Phys. Chem. C 2014, 118, 18187 – 18196.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J.-P. Hugonin, F. Marquier, J.-J. Greffet, B. Dubertret, Nat. Nanotechnol. 2015, 10, 170 – 175;
dc.identifier.citedreferenceN. Zhou, T. Liu, D. Li, D. Yang, Nanomater. Nanotechnol. 2016, 6, 16.
dc.identifier.citedreferenceW. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854 – 2860.
dc.identifier.citedreferenceX. Jiang, B. Q. Li, X. Qu, H. Yang, H. Liu, J. Mater. Chem. B 2017, 5, 8983 – 8990.
dc.identifier.citedreferenceA. Madhusudhan, G. B. Reddy, M. Venkatesham, G. Veerabhadram, D. A. Kumar, S. Natarajan, M.-Y. Yang, A. Hu, S. S. Singh, Int. J. Mol. Sci. 2014, 15, 8216 – 8234.
dc.identifier.citedreferenceY. Huang, F. Rosei, F. Vetrone, Nanoscale 2015, 7, 5178 – 5185.
dc.identifier.citedreferenceB. del Rosal, E. Carrasco, F. Ren, A. Benayas, F. Vetrone, F. Sanz-Rodríguez, D. Ma, Á. Juarranz, D. Jaque, Adv. Funct. Mater. 2016, 26, 6060 – 6068.
dc.identifier.citedreferenceX. Jiang, B. Q. Li, X. Qu, H. Yang, J. Shao, H. Zhang, Langmuir 2019, 35, 6367 – 6378.
dc.identifier.citedreferenceS. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, Langmuir 1998, 14, 5396 – 5401.
dc.identifier.citedreferenceB. Sadtler, A. Wei, Chem. Commun. 2002, 15, 1604 – 1605.
dc.identifier.citedreferenceX. Jiang, W. Yu, S. Ding, B. Q. Li, Colloids Surf. A 2013, 436, 579 – 588.
dc.identifier.citedreferenceL. Deng, L. Liu, C. Zhu, D. Li, S. Dong, Chem. Commun. 2013, 49, 2503 – 2505.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. C. Rogers, R. R. Davis, N. Said, T. Hollis, L. W. Daniel, Redox Biol. 2018, 15, 380 – 386;
dc.identifier.citedreferenceE. Pérez-Herrero, A. Fernández-Medarde, Eur. J. Pharm. Biopharm. 2015, 93, 52 – 79.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Wen, X. Chen, X. Zhu, Y. Gong, G. Yuan, X. Qin, J. Liu, ACS Appl. Mater. Interfaces 2019, 11, 43393 – 43408;
dc.identifier.citedreferenceJ. Gao, F. Wang, S. Wang, L. Liu, K. Liu, Y. Ye, Z. Wang, H. Wang, B. Chen, J. Jiang, J. Ou, J. C. M. van Hest, F. Peng, Y. Tu, Adv. Sci. 2020, 7, 1903642;
dc.identifier.citedreferenceW. Ni, J. Wu, H. Fang, Y. Feng, Y. Hu, L. Lin, J. Chen, F. Chen, H. Tian, Nano Lett. 2021, 21, 7796 – 7805.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Maiti, X. Tong, X. Mou, K. Yang, Front. Pharmacol. 2019, 9 ( 1401 );
dc.identifier.citedreferenceJ. B. Vines, J.-H. Yoon, N.-E. Ryu, D.-J. Lim, H. Park, Front. Chem. 2019, 7;
dc.identifier.citedreferenceD.-P. Yang, X. Liu, C. P. Teng, C. Owh, K. Y. Win, M. Lin, X. J. Loh, Y.-L. Wu, Z. Li, E. Ye, Nanoscale 2017, 9, 15753 – 15759;
dc.identifier.citedreferenceE. Qiu, X. Chen, D.-P. Yang, M. D. Regulacio, R. M. C. R. Ramos, Z. Luo, Y.-L. Wu, M. Lin, Z. Li, X. J. Loh, E. Ye, ACS Omega 2022, 7, 2031 – 2040.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Liao, W. Li, J. Peng, Q. Yang, H. Li, Y. Wei, X. Zhang, Z. Qian, Theranostics 2015, 5, 345 – 356;
dc.identifier.citedreferenceM. Abbasian, F. Mahmoodzadeh, R. Salehi, A. Amirshaghaghi, New J. Chem. 2017, 41, 12777 – 12788;
dc.identifier.citedreferenceJ. Nam, S. Son, L. J. Ochyl, R. Kuai, A. Schwendeman, J. J. Moon, Nat. Commun. 2018, 9, 1074.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.