Show simple item record

Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States

dc.contributor.authorAron, P. G.
dc.contributor.authorLi, S.
dc.contributor.authorBrooks, J. R.
dc.contributor.authorWelker, J. M.
dc.contributor.authorLevin, N. E.
dc.date.accessioned2023-05-01T19:11:01Z
dc.date.available2024-05-01 15:10:59en
dc.date.available2023-05-01T19:11:01Z
dc.date.issued2023-04
dc.identifier.citationAron, P. G.; Li, S.; Brooks, J. R.; Welker, J. M.; Levin, N. E. (2023). "Seasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States." Paleoceanography and Paleoclimatology 38(4): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/176279
dc.description.abstractTriple oxygen isotope ratios (∆′17O) offer new opportunities to improve reconstructions of past climate by quantifying evaporation, relative humidity, and diagenesis in geologic archives. However, the utility of ∆′17O in paleoclimate applications is hampered by a limited understanding of how precipitation ∆′17O values vary across time and space. To improve applications of ∆′17O, we present δ18O, d-excess, and ∆′17O data from 26 precipitation sites in the western and central United States and three streams from the Willamette River Basin in western Oregon. In this data set, we find that precipitation ∆′17O tracks evaporation but appears insensitive to many controls that govern variation in δ18O, including Rayleigh distillation, elevation, latitude, longitude, and local precipitation amount. Seasonality has a large effect on ∆′17O variation in the data set and we observe higher seasonally amount-weighted average precipitation ∆′17O values in the winter (40 ± 15 per meg [± standard deviation]) than in the summer (18 ± 18 per meg). This seasonal precipitation ∆′17O variability likely arises from a combination of sub-cloud evaporation, atmospheric mixing, moisture recycling, sublimation, and/or relative humidity, but the data set is not well suited to quantitatively assess isotopic variability associated with each of these processes. The seasonal ∆′17O pattern, which is absent in d-excess and opposite in sign from δ18O, appears in other data sets globally; it showcases the influence of seasonality on ∆′17O values of precipitation and highlights the need for further systematic studies to understand variation in ∆′17O values of precipitation.Key PointsPrecipitation δ′18O-δ′17O slopes often differ from the 0.528 reference valuePrecipitation ∆′17O values are typically higher in the winter and lower in the summerDifferent controls on ∆′17O and δ18O mean that ∆′17O provides new information for paleoclimate reconstructions
dc.publisherUSGS
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpaleoclimate
dc.subject.otherevaporation
dc.subject.otherprecipitation
dc.subject.othertriple oxygen isotopes
dc.titleSeasonal Variations in Triple Oxygen Isotope Ratios of Precipitation in the Western and Central United States
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176279/1/2022PA004458-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176279/2/palo21260_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176279/3/palo21260.pdf
dc.identifier.doi10.1029/2022PA004458
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceQuade, J., Rech, J. A., Latorre, C., Betancourt, J. L., Gleeson, E., & Kalin, M. T. K. ( 2007 ). Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochimica et Cosmochimica Acta, 71 ( 15 ), 3772 – 3795. https://doi.org/10.1016/j.gca.2007.02.016
dc.identifier.citedreferenceSengupta, S., & Pack, A. ( 2018 ). Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chemical Geology, 495, 18 – 26. https://doi.org/10.1016/j.chemgeo.2018.07.012
dc.identifier.citedreferenceSha, L., Mahata, S., Duan, P., Luz, B., Zhang, P., Baker, J., et al. ( 2020 ). A novel application of triple oxygen isotope ratios of speleothems. Geochimica et Cosmochimica Acta, 270, 360 – 378. https://doi.org/10.1016/j.gca.2019.12.003
dc.identifier.citedreferenceSharp, Z. D., Wostbrock, J. A. G., & Pack, A. ( 2018 ). Mass-dependent triple oxygen isotope variations in terrestrial materials. Geochemical Perspectives Letters, 7, 27 – 31. https://doi.org/10.7185/geochemlet.1815
dc.identifier.citedreferenceSurma, J., Assonov, S., Bolourchi, M. J., & Staubwasser, M. ( 2015 ). Triple oxygen isotope signatures in evaporated water bodies from the Sistan Oasis, Iran. Geophysical Research Letters, 42 ( 20 ), 8456 – 8462. https://doi.org/10.1002/2015GL066475
dc.identifier.citedreferenceSurma, J., Assonov, S., Herwartz, D., Voigt, C., & Staubwasser, M. ( 2018 ). The evolution of 17 O-excess in surface water of the arid environment during recharge and evaporation. Scientific Reports, 8, 1 – 10. https://doi.org/10.1038/s41598-018-23151-6
dc.identifier.citedreferenceSurma, J., Assonov, S., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics in the hydrologic cycle. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 401 – 428. https://doi.org/10.2138/rmg.2021.86.12
dc.identifier.citedreferenceTappa, D. J., Kohn, M. J., Mcnamara, J. P., Benner, S. G., & Flores, A. N. ( 2016 ). Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water. 4592, 4582 – 4592. Hydrological%20Processes, https://doi.org/10.1002/hyp.10940
dc.identifier.citedreferenceThompson, L. G., Mosley-Thompson, E., & Henderson, K. A. ( 2000 ). Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science, 15 ( 4 ), 377 – 394. https://doi.org/10.1002/1099-1417(200005)15:4<377::AID-JQS542>3.0.CO;2-L
dc.identifier.citedreferenceTian, C., Jiao, W., Beysens, D., Farai Kaseke, K., Medici, M. G., Li, F., & Wang, L. ( 2021 ). Investigating the role of evaporation in dew formation under different climates using 17 O-excess. Journal of Hydrology, 592, 125847. https://doi.org/10.1016/j.jhydrol.2020.125847
dc.identifier.citedreferenceTian, C., & Wang, L. ( 2019 ). Data Descriptor: Stable isotope variations of daily precipitation from 2014 to 2018 in the central United States. Scientific Data, 6, 1 – 8. https://doi.org/10.1038/sdata.2019.18
dc.identifier.citedreferenceTian, C., Wang, L., Kaseke, K. F., & Bird, B. W. ( 2018 ). Stable isotope compositions ( δ 2 H, δ 18 O, and δ 17 O) of rainfall and snowfall in the central United States. Scientific Reports, 8, 1 – 15. https://doi.org/10.1038/s41598-018-25102-7
dc.identifier.citedreferenceTian, C., Wang, L., Tian, F., Zhao, S., & Jiao, W. ( 2019 ). Spatial and temporal variations of tap water 17 O-excess in China. Geochimica et Cosmochimica Acta, 260, 1 – 14. https://doi.org/10.1016/j.gca.2019.06.015
dc.identifier.citedreferenceTouzeau, A., Landais, A., Stenni, B., Uemura, R., Fukui, K., Fujita, S., et al. ( 2016 ). Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters. The Cryosphere, 10 ( 2 ), 837 – 852. https://doi.org/10.5194/tc-10-837-2016
dc.identifier.citedreferenceUechi, Y., & Uemura, R. ( 2019 ). Dominant influence of the humidity in the moisture source region on the 17 O-excess in precipitation on a subtropical island. Earth and Planetary Science Letters, 513, 20 – 28. https://doi.org/10.1016/j.epsl.2019.02.012
dc.identifier.citedreferenceVoigt, C., Herwartz, D., Dorador, C., & Staubwasser, M. ( 2021 ). Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system. Hydrology and Earth System Sciences, 25 ( 3 ), 1211 – 1228. https://doi.org/10.5194/hess-25-1211-2021
dc.identifier.citedreferenceWelker, J. M. ( 2012 ). ENSO effects on δ 18 O, δ 2 H, and d -excess values in precipitation across the U.S. using a high-density, long-term network (USNIP). Rapid Communications in Mass Spectrometry, 26 ( 17 ), 1893 – 1898. https://doi.org/10.1002/rcm.6298
dc.identifier.citedreferenceWelp, L. R., Lee, X., Griffis, T. J., Wen, X. F., Xiao, W., Li, S., et al. ( 2012 ). A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Global Biogeochemical Cycles, 26 ( 3 ), 1 – 12. https://doi.org/10.1029/2011GB004246
dc.identifier.citedreferenceWinkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F., Masson-Delmotte, V., et al. ( 2012 ). Deglaciation records of 17 O-excess in East Antarctica: Reliable reconstruction of oceanic normalized relative humidity from coastal sites. Climate of the Past, 8, 1 – 16. https://doi.org/10.5194/cp-8-1-2012
dc.identifier.citedreferenceWortham, B. E., Montañez, I. P., Swart, P. K., Vonhof, H., & Tabor, C. ( 2022 ). Variability in effective moisture inferred from inclusion fluid δ 18 O and δ 2 H values in a central Sierra Nevada stalagmite (CA). Quaternary Science Reviews, 279, 107399. https://doi.org/10.1016/j.quascirev.2022.107399
dc.identifier.citedreferenceWostbrock, J. A. G., Brand, U., Coplen, T. B., Swart, P. K., Carlson, S. J., Brearley, A. J., & Sharp, Z. D. ( 2020 ). Calibration of carbonate-water triple oxygen isotope fractionation: Seeing through diagenesis in ancient carbonates. Geochimica et Cosmochimica Acta, 288, 369 – 388. https://doi.org/10.1016/j.gca.2020.07.045
dc.identifier.citedreferenceWostbrock, J. A. G., & Sharp, Z. D. ( 2021 ). Triple oxygen isotopes in silica—Water and carbonate—Water systems. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 367 – 400. https://doi.org/10.2138/rmg.2021.86.11
dc.identifier.citedreferenceXia, Z., & Winnick, M. J. ( 2021 ). The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation. Earth and Planetary Science Letters, 572, 117120. https://doi.org/10.1016/j.epsl.2021.117120
dc.identifier.citedreferenceYoung, E. D., Galy, A., & Nagahara, H. ( 2002 ). Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta, 66 ( 6 ), 1095 – 1104. https://doi.org/10.1016/S0016-7037(01)00832-8
dc.identifier.citedreferenceZachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 Ma to present (Vol. 292, pp. 686 – 693 ). https://doi.org/10.1126/science.1059412
dc.identifier.citedreferenceAffolter, S., Häuselmann, A. D., Fleitmann, D., Häuselmann, P., & Leuenberger, M. ( 2015 ). Triple isotope ( δ D, δ 17 O, δ 18 O) study on precipitation, drip water, and speleothem fluid inclusions for a Western Central European cave (NW Switzerland). Quaternary Science Reviews, 127, 73 – 89. https://doi.org/10.1016/j.quascirev.2015.08.030
dc.identifier.citedreferenceAlexandre, A., Landais, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Pauchet, S., et al. ( 2018 ). The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: Insights from climate chamber and climate transect calibrations. Biogeosciences, 15 ( 10 ), 3223 – 3241. https://doi.org/10.5194/bg-15-3223-2018
dc.identifier.citedreferenceAllen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., & Goldsmith, G. R. ( 2019 ). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23 ( 2 ), 1199 – 1210. https://doi.org/10.5194/hess-23-1199-2019
dc.identifier.citedreferenceAron, P. G., Li, S., Brooks, J. R., Welker, J. M., & Levin, N. E. ( 2023 ). Seasonal variations in triple oxygen isotope ratios of precipitation in the western and central United States—Final Data. [Dataset]. University of Utah Water Isotope Database. Retrieved from https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html
dc.identifier.citedreferenceAron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., et al. ( 2021a ). Triple oxygen isotopes in the water cycle. Chemical Geology, 565, 120026. https://doi.org/10.1016/j.chemgeo.2020.120026
dc.identifier.citedreferenceAron, P. G., Poulsen, C. J., Fiorella, R. P., Levin, N. E., Acosta, R. P., Yanites, J. B., & Cassel, E. J. ( 2021b ). Variability and controls on δ 18 O, d -excess, and ∆′ 17 O in southern Peruvian precipitation. Journal of Geophysical Research: Atmospheres, 126 ( 23 ), 1 – 18. https://doi.org/10.1029/2020jd034009
dc.identifier.citedreferenceBaker, L., Franchi, I. A., Maynard, J., Wright, I. P., & Pillinger, C. T. ( 2002 ). A technique for the determination of 18 O/ 16 O and 17 O/ 16 O isotopic ratios in water from small liquid and solid samples. Analytical Chemistry, 74 ( 7 ), 1665 – 1673. https://doi.org/10.1021/ac010509s
dc.identifier.citedreferenceBarkan, E., & Luz, B. ( 2005 ). High-precision measurements of 17 O/ 16 O and 18 O/ 16 O ratios in H 2 O. Rapid Communications in Mass Spectrometry, 19 ( 24 ), 3737 – 3742. https://doi.org/10.1002/rcm.2250
dc.identifier.citedreferenceBarkan, E., & Luz, B. ( 2007 ). Diffusivity fractionations of H 2 16 O/H 2 17 O and H 2 16 O/H 2 18 O in air and their implications for isotope hydrology. Rapid Communications in Mass Spectrometry, 21 ( 18 ), 2999 – 3005. https://doi.org/10.1002/rcm.3180
dc.identifier.citedreferenceBenjamin, L., Knobel, L. L., Hall, L. F., Cecil, L. D., & Green, J. R. ( 2004 ). Development of a local meteoric water line for Southeastern Idaho, Western Wyoming, and South-Central Montana (pp. 1 – 23 ). USGS.
dc.identifier.citedreferenceBergel, S. J., Barkan, E., Stein, M., & Affek, H. P. ( 2020 ). Carbonate 17 O-excess as a paleo-hydrology proxy: Triple oxygen isotope fractionation between H 2 O and biogenic aragonite, derived from freshwater mollusks. Geochimica et Cosmochimica Acta, 275, 36 – 47. https://doi.org/10.1016/j.gca.2020.02.005
dc.identifier.citedreferenceBerman, E. S. F., Levin, N. E., Landais, A., Li, S., & Owano, T. ( 2013 ). Measurement of δ 18 O, δ 17 O, and 17 O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Analytical Chemistry, 85 ( 21 ), 10392 – 10398. https://doi.org/10.1021/ac402366t
dc.identifier.citedreferenceBershaw, J., Hansen, D. D., & Schauer, A. J. ( 2020 ). Deuterium excess and 17 O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus Series B Chemical and Physical Meteorology, 72, 1 – 17. https://doi.org/10.1080/16000889.2020.1773722
dc.identifier.citedreferenceBeverly, E. J., Levin, N. E., Passey, B. H., Aron, P. G., Yarian, D. A., Page, M., & Pelletier, E. M. ( 2021 ). Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth and Planetary Science Letters, 567, 116952. https://doi.org/10.1016/j.epsl.2021.116952
dc.identifier.citedreferenceBindeman, I. N. ( 2021 ). Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 241 – 290. https://doi.org/10.2138/rmg.2021.86.08
dc.identifier.citedreferenceBowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. ( 2019 ). Isotopes in the water cycle: Regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences., 47 ( 1 ), 453 – 479. https://doi.org/10.1146/annurev-earth-053018-060220
dc.identifier.citedreferenceBowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., & Good, S. P. ( 2018 ). Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187 ( 4 ), 1025 – 1039. https://doi.org/10.1007/s00442-018-4192-5
dc.identifier.citedreferenceBrady, M. P., & Hodell, D. A. ( 2021 ). Continuous and simultaneous measurement of triple-oxygen and hydrogen isotopes of liquid and vapor during evaporation experiments. Rapid Communications in Mass Spectrometry, 35 ( 10 ). https://doi.org/10.1002/rcm.9078
dc.identifier.citedreferenceBreecker, D. O., Sharp, Z. D., & McFadden, L. D. ( 2009 ). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bulletin of the Geological Society of America, 121 ( 3–4 ), 630 – 640. https://doi.org/10.1130/B26413.1
dc.identifier.citedreferenceBrooks, J. R. ( 2017 ). OR Precipitation (EPA). [Dataset]. University of Utah Water Isotope Database. Retrieved from https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html
dc.identifier.citedreferenceBrooks, J. R., Wigington, P. J., Phillips, D. L., Comeleo, R., & Coulombe, R. ( 2012a ). Willamette River Basin surface water isoscape ( δ 18 O and δ 2 H): Temporal changes of source water within the river. Ecosphere, 3 ( 5 ), art39. https://doi.org/10.1890/es11-00338.1
dc.identifier.citedreferenceBrooks, J. R., Wigington, P. J., Phillips, D. L., Comeleo, R., & Coulombe, R. ( 2012b ). Willamette River Basin surface water isoscape (δ 18 O and δ 2 H): Temporal changes of source water within the river. [Dataset]. University of Utah Water Isotope Database. Retrieved from https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html
dc.identifier.citedreferenceBryant, J. D., & Froelich, P. N. ( 1995 ). A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta, 59 ( 21 ), 4523 – 4537. https://doi.org/10.1016/0016-7037(95)00250-4
dc.identifier.citedreferenceChamberlain, C. P., Ibarra, D. E., Kukla, T., Methner, K. A., & Gao, Y. ( 2021 ). Triple oxygen isotope paleoaltimetry of crystalline rocks. Frontiers of Earth Science, 9, 1 – 6. https://doi.org/10.3389/feart.2021.633687
dc.identifier.citedreferenceCooper, O. R., Gao, R. S., Tarasick, D., Leblanc, T., & Sweeney, C. ( 2012 ). Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010. Journal of Geophysical Research, 117 ( D22 ), 1990 – 2010. https://doi.org/10.1029/2012JD018261
dc.identifier.citedreferenceCraig, H. ( 1961 ). Isotopic variations in meteoric waters. Science, 133 ( 3465 ), 1702 – 1703. https://doi.org/10.1126/science.133.3465.1702
dc.identifier.citedreferenceCraig, H., & Gordon, L. I. ( 1965 ). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In E. Tongiorgi (Ed.), Proceedings of a Conference on stable isotopes in oceanographic studies and paleotemperatures (pp. 9 – 130 ). Spoleto.
dc.identifier.citedreferenceDansgaard, W. ( 1964 ). Stable isotopes in precipitation. Tellus, 16 ( 4 ), 436 – 468. https://doi.org/10.3402/tellusa.v16i4.8993
dc.identifier.citedreferenceDutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., & Lohmann, K. C. ( 2005 ). Spatial distribution and seasonal variation in 18 O/ 16 O of modern precipitation and river water across the conterminous USA. Hydrological Processes, 19 ( 20 ), 4121 – 4146. https://doi.org/10.1002/hyp.5876
dc.identifier.citedreferenceEastoe, C. J., & Dettman, D. L. ( 2016 ). Isotope amount effects in hydrologic and climate reconstructions of monsoon climates: Implications of some long-term data sets for precipitation. Chemical Geology, 430, 78 – 89. https://doi.org/10.1016/j.chemgeo.2016.03.022
dc.identifier.citedreferenceEvans, N. P., Bauska, T. K., Gázquez-Sánchez, F., Brenner, M., Curtis, J. H., & Hodell, D. A. ( 2018 ). Quantification of drought during the collapse of the classic Maya civilization. Science, 361 ( 6401 ), 498 – 501. https://doi.org/10.1126/science.aas9871
dc.identifier.citedreferenceFiorella, R. P., Poulsen, C. J., & Matheny, A. M. ( 2018 ). Seasonal patterns of water cycling in a deep, continental mountain valley inferred from stable water vapor isotopes. Journal of Geophysical Research: Atmospheres, 123 ( 14 ), 7271 – 7291. https://doi.org/10.1029/2017JD028093
dc.identifier.citedreferenceFiorella, R. P., Poulsen, C. J., Pillco, R. S., Jeffery, M. L., & Ehlers, T. A. ( 2015 ). Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations. Earth and Planetary Science Letters, 432, 59 – 72. https://doi.org/10.1016/j.epsl.2015.09.045
dc.identifier.citedreferenceFranz, P., & Röckmann, T. ( 2005 ). High-precision isotope measurements of H 2 16 O, H 2 17 O, H 2 18 O, and the ∆ 17 O-anomaly of water vapor in the southern lowermost stratosphere. Atmospheric Chemistry and Physics, 5, 5373 – 5403.
dc.identifier.citedreferenceFriedman, I., Smith, G. I., Johnson, C. A., & Moscati, R. J. ( 2002 ). Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation. Journal of Geophysical Research, 107 ( D19 ), ACL15-1 – ACL15-22. https://doi.org/10.1029/2001JD000566
dc.identifier.citedreferenceGalewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., & Schneider, M. ( 2016 ). Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle: Isotopes in the Atmospheric Water Cycle. Reviews of Geophysics, 54 ( 4 ), 809 – 865. https://doi.org/10.1002/2015RG000512
dc.identifier.citedreferenceGat, J. R. ( 1996 ). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences., 24 ( 1 ), 225 – 262. https://doi.org/10.1146/annurev.earth.24.1.225
dc.identifier.citedreferenceGázquez, F., Bauska, T. K., Comas-Bru, L., Ghaleb, B., Calaforra, J. M., & Hodell, D. A. ( 2020 ). The potential of gypsum speleothems for paleoclimatology: Application to the Iberian Roman Human Period. Scientific Reports, 10, 1 – 13. https://doi.org/10.1038/s41598-020-71679-3
dc.identifier.citedreferenceGázquez, F., Calaforra, J. M., Evans, N. P., & Hodell, D. A. ( 2017 ). Using stable isotopes ( δ 17 O, δ 18 O, and δ D) of gypsum hydration water to ascertain the role of water condensation in the formation of subaerial gypsum speleothems. Chemical Geology, 452, 34 – 46. https://doi.org/10.1016/j.chemgeo.2017.01.021
dc.identifier.citedreferenceGázquez, F., Morellón, M., Bauska, T., Herwartz, D., Surma, J., Moreno, A., et al. ( 2018 ). Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction. Earth and Planetary Science Letters, 481, 177 – 188. https://doi.org/10.1016/j.epsl.2017.10.020
dc.identifier.citedreferenceGehler, A., Tütken, T., & Pack, A. ( 2011 ). Triple oxygen isotope analysis of bioapatite as tracer for diagenetic alteration of bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 310 ( 1–2 ), 84 – 91. https://doi.org/10.1016/j.palaeo.2011.04.014
dc.identifier.citedreferenceGimenez, R., Bartolome, M., Gazquez, F., Iglesias, M., & Moreno, A. ( 2021 ). Underlying climate controls in triple oxygen ( 16 O, 17 O, 18 O) and hydrogen ( 1 H, 2 H) isotopes composition of rainfall (Central Pyrenees). Frontiers of Earth Science, 9, 1 – 16. https://doi.org/10.3389/feart.2021.633698
dc.identifier.citedreferenceGonfiantini, R., Wassenaar, L. I., Araguas-Araguas, L., & Aggarwal, P. K. ( 2018 ). A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochimica et Cosmochimica Acta, 235, 224 – 236. https://doi.org/10.1016/j.gca.2018.05.020
dc.identifier.citedreferenceHe, S., Jackisch, D., Samanta, D., Yi, P. K. Y., Liu, G., Wang, X., & Goodkin, N. F. ( 2021 ). Understanding tropical convection through triple oxygen isotopes of precipitation from the maritime continent. Journal of Geophysical Research: Atmospheres, 126 ( 4 ), 1 – 14. https://doi.org/10.1029/2020jd033418
dc.identifier.citedreferenceHellmann, R., & Harvey, A. H. ( 2020 ). First-principles diffusivity ratios for kinetic isotope fractionation of water in air. Geophysical Research Letters, 47 ( 18 ), e2020GL089999. https://doi.org/10.1029/2020GL089999
dc.identifier.citedreferenceHerwartz, D., Surma, J., Voigt, C., Assonov, S., & Staubwasser, M. ( 2017 ). Triple oxygen isotope systematics of structurally bonded water in gypsum. Geochimica et Cosmochimica Acta, 209, 254 – 266. https://doi.org/10.1016/j.gca.2017.04.026
dc.identifier.citedreferenceHofmann, M. E. G., Horváth, B., Schneider, L., Peters, W., Schützenmeister, K., & Pack, A. ( 2017 ). Atmospheric measurements of Δ 17 O in CO 2 in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake. Geochimica et Cosmochimica Acta, 199, 143 – 163. https://doi.org/10.1016/j.gca.2016.11.019
dc.identifier.citedreferenceHorita, J., & Wesolowski, D. J. ( 1994 ). Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58 ( 16 ), 3425 – 3437. https://doi.org/10.1016/0016-7037(94)90096-5
dc.identifier.citedreferenceIbarra, D. E., Kukla, T., Methner, K. A., Mulch, A., & Chamberlain, C. P. ( 2021 ). Reconstructing past elevations from triple oxygen isotopes of lacustrine chert: Application to the Eocene Nevadaplano, Elko Basin, Nevada, United States. Frontiers of Earth Science, 9, 1 – 19. https://doi.org/10.3389/feart.2021.628868
dc.identifier.citedreferenceJasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., et al. ( 2014 ). The pronounced seasonality of global groundwater recharge. Water Resources Research, 50 ( 11 ), 8845 – 8867. https://doi.org/10.1002/2014WR015809
dc.identifier.citedreferenceJespersen, R. G., Leffler, A. J., Oberbauer, S. F., & Welker, J. M. ( 2018 ). Arctic plant ecophysiology and water source utilization in response to altered snow: Isotopic ( δ 18 O and δ 2 H) evidence for meltwater subsidies to deciduous shrubs. Oecologia, 187 ( 4 ), 1009 – 1023. https://doi.org/10.1007/s00442-018-4196-1
dc.identifier.citedreferenceKelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher, T. M., Hoke, G. D., & Petersen, S. V. ( 2020 ). A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews, 234, 106259. https://doi.org/10.1016/j.quascirev.2020.106259
dc.identifier.citedreferenceKelson, J. R., Petersen, S. V., Niemi, N. A., Passey, B. H., & Curley, A. N. ( 2022 ). Looking upstream with clumped and triple oxygen isotopes of estuarine oyster shells in the early Eocene of California, USA. Geology, 50 ( 7 ), 755 – 759. https://doi.org/10.1130/G49634.1
dc.identifier.citedreferenceKendall, C., & Coplen, T. B. ( 2001 ). Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes, 15 ( 7 ), 1363 – 1393. https://doi.org/10.1002/hyp.217
dc.identifier.citedreferenceKoch, P. L. ( 1998 ). Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences, 26 ( 1 ), 573 – 613. https://doi.org/10.1146/annurev.earth.26.1.573
dc.identifier.citedreferenceKohn, M. J. ( 1996 ). Predicting animal δ 18 O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta, 60 ( 23 ), 4811 – 4829. https://doi.org/10.1016/S0016-7037(96)00240-2
dc.identifier.citedreferenceLandais, A., Barkan, E., & Luz, B. ( 2008 ). Record of δ 18 O and 17 O-excess in ice from Vostok Antarctica during the last 150,000 yr. Geophysical Research Letters, 35 ( 2 ), 1 – 5. https://doi.org/10.1029/2007GL032096
dc.identifier.citedreferenceLandais, A., Ekaykin, A., Barkan, E., Winkler, R., & Luz, B. ( 2012 ). Seasonal variations of 17 O-excess and d -excess in snow precipitation at Vostok station, East Antarctica. Journal of Glaciology, 58 ( 210 ), 725 – 733. https://doi.org/10.3189/2012JoG11J237
dc.identifier.citedreferenceLandais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., & Bouygues, A. ( 2010 ). Combined measurements of 17 O-excess and d -excess in African monsoon precipitation: Implications for evaluating convective parameterizations. Earth and Planetary Science Letters, 298 ( 1–2 ), 104 – 112. https://doi.org/10.1016/j.epsl.2010.07.033
dc.identifier.citedreferenceLandais, A., Steen-Larsen, H. C., Guillevic, M., Masson-Delmotte, V., Vinther, B., & Winkler, R. ( 2012 ). Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochimica et Cosmochimica Acta, 77, 304 – 316. https://doi.org/10.1016/j.gca.2011.11.022
dc.identifier.citedreferenceLehmann, S. B., Levin, N. E., Passey, B. H., Hu, H., Cerling, T. E., Miller, J. H., et al. ( 2022 ). Triple oxygen isotope distribution in modern mammal teeth and potential geologic applications. Geochim Cosmochim Acta, 331, 105 – 122. https://doi.org/10.1016/j.gca.2022.04.033
dc.identifier.citedreferenceLevin, N. E., Raub, T. D., Dauphas, N., & Eiler, J. M. ( 2014 ). Triple oxygen isotope variations in sedimentary rocks. Geochimica et Cosmochimica Acta, 139, 173 – 189. https://doi.org/10.1016/j.gca.2014.04.034
dc.identifier.citedreferenceLi, S., Levin, N. E., & Chesson, L. A. ( 2015 ). Continental scale variation in 17 O-excess of meteoric waters in the United States. Geochimica et Cosmochimica Acta, 164, 110 – 126. https://doi.org/10.1016/j.gca.2015.04.047
dc.identifier.citedreferenceLi, S., Levin, N. E., Soderberg, K., Dennis, K. J., & Caylor, K. K. ( 2017 ). Triple oxygen isotope composition of leaf waters in Mpala, central Kenya. Earth and Planetary Science Letters, 468, 38 – 50. https://doi.org/10.1016/j.epsl.2017.02.015
dc.identifier.citedreferenceLin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J., Tarasick, D., & Rieder, H. E. ( 2015 ). Climate variability modulates western U.S. ozone air quality in spring via deep stratospheric intrusions. Nature Communications, 6, 1 – 11. https://doi.org/10.1038/ncomms8105
dc.identifier.citedreferenceLin, Y., Clayton, R. N., Huang, L., Nakamura, N., & Lyons, J. R. ( 2013 ). Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 39 ), 15608 – 15613. https://doi.org/10.1073/pnas.1313014110
dc.identifier.citedreferenceLiu, Z., Tang, Y., Jian, Z., Poulsen, C. J., Welker, J. M., & Bowen, G. J. ( 2017 ). Pacific North American circulation pattern links external forcing and North American hydroclimatic change over the past millennium. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 13 ), 3340 – 3345. https://doi.org/10.1073/pnas.1618201114
dc.identifier.citedreferenceLuz, B., & Barkan, E. ( 2010 ). Variations of 17 O/ 16 O and 18 O/ 16 O in meteoric waters. Geochimica et Cosmochimica Acta, 74 ( 22 ), 6276 – 6286. https://doi.org/10.1016/j.gca.2010.08.016
dc.identifier.citedreferenceLynch, J. A., Bowersox, V. C., & Grimm, J. W. ( 1996 ). Trends in precipitation chemistry in the United States, 1983–1994—An analysis of the effects of precipitation chemistry of phase I of the Clean Air Act Amendments of 1990, title IV (pp. 99 – 111 ). U.S. Geological Survey.
dc.identifier.citedreferenceMajoube, M. ( 1971 ). Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. Journal de Chimie Physique, 68, 1432 – 1436. https://doi.org/10.1051/jcp/1971681423
dc.identifier.citedreferenceMarchetti, D. W., & Marchetti, S. B. ( 2019 ). Stable isotope compositions of precipitation from Gunnison, Colorado 2007–2016: Implications for the climatology of a high-elevation valley. Heliyon, 5 ( 7 ), e02120. https://doi.org/10.1016/j.heliyon.2019.e02120
dc.identifier.citedreferenceMeijer, H. A. J., & Li, W. J. ( 1998 ). The use of electrolysis for accurate δ 18 O and δ 17 O isotope measurements in water. Isotopes in Environmental and Health Studies, 34 ( 4 ), 349 – 369. https://doi.org/10.1080/10256019808234072
dc.identifier.citedreferenceMiller, M. F. ( 2002 ). Isotopic fractionation and the quantification of 17 O anomalies in the oxygen three-isotope system: An appraisal and geochemical significance. Geochimica et Cosmochimica Acta, 66 ( 11 ), 1881 – 1889. https://doi.org/10.1016/s0016-7037(02)00832-3
dc.identifier.citedreferenceMiller, M. F. ( 2013 ). Oxygen isotope anomaly not present in water vapor from Alert, Canada. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 48 ), 4567. https://doi.org/10.1073/pnas.1318925110
dc.identifier.citedreferenceMiller, M. F. ( 2018 ). Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores. Earth and Planetary Science Letters, 481, 316 – 327. https://doi.org/10.1016/j.epsl.2017.10.035
dc.identifier.citedreferenceNava-Fernandez, C., Hartland, A., Gázquez, F., Kwiecien, O., Marwan, N., Fox, B., et al. ( 2020 ). Pacific climate reflected in Waipuna Cave drip water hydrochemistry. Hydrology and Earth System Sciences, 24 ( 6 ), 3361 – 3380. https://doi.org/10.5194/hess-24-3361-2020
dc.identifier.citedreferencePang, H., Hou, S., Landais, A., Delmotte, V. M., Jouzel, J., Steen-Larsen, H. C., et al. ( 2019 ). Influence of summer sublimation on δ D, δ 18 O, and δ 17 O in precipitation, East Antarctica, and implications for climate reconstruction from ice cores. Journal of Geophysical Research: Atmospheres, 124, 7339 – 7358. https://doi.org/10.1029/2018JD030218
dc.identifier.citedreferencePassey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., & Levin, N. E. ( 2014 ). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1 – 25. https://doi.org/10.1016/j.gca.2014.06.006
dc.identifier.citedreferencePassey, B. H., & Ji, H. ( 2019 ). Triple oxygen isotope signatures of evaporation in lake waters and carbonates: A case study from the western United States. Earth and Planetary Science Letters, 518, 1 – 12. https://doi.org/10.1016/j.epsl.2019.04.026
dc.identifier.citedreferencePassey, B. H., & Levin, N. E. ( 2021 ). Triple oxygen isotopes in carbonates, biological apatites, and continental paleoclimate reconstruction. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 429 – 462. https://doi.org/10.2138/rmg.2021.86.13
dc.identifier.citedreferencePierchala, A., Rozanski, K., Dulinski, M., & Gorczyca, Z. ( 2022 ). Triple-isotope mass balance of mid-latitude, groundwater controlled lake. Science of the Total Environment, 814, 151935. https://doi.org/10.1016/j.scitotenv.2021.151935
dc.identifier.citedreferencePutman, A. L., & Bowen, G. J. ( 2019 ). Technical note: A global database of the stable isotopic ratios of meteoric and terrestrial waters. Hydrology and Earth System Sciences, 23 ( 10 ), 4389 – 4396. https://doi.org/10.5194/hess-23-4389-2019
dc.identifier.citedreferencePutman, A. L., Fiorella, R., Bowen, G. J., & Cai, Z. ( 2019 ). A global perspective on local meteoric water lines: Metaanalytic insight into fundamental controls and practical constraints. Water Resources Research, 55 ( 8 ), 6896 – 6910. https://doi.org/10.1029/2019WR025181
dc.identifier.citedreferenceRech, J. A., Currie, B. S., Jordan, T. E., Riquelme, R., Lehmann, S. B., Kirk-Lawlor, N. E., et al. ( 2019 ). Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow. Earth and Planetary Science Letters, 506, 184 – 194. https://doi.org/10.1016/j.epsl.2018.10.040
dc.identifier.citedreferenceRowley, D. B. ( 2007 ). Stable isotope-based paleoaltimetry: Theory and validation. Reviews in Mineralogy and Geochemistry, 66 ( 1 ), 23 – 52. https://doi.org/10.2138/rmg.2007.66.2
dc.identifier.citedreferenceSchoenemann, S. W., Schauer, A. J., & Steig, E. J. ( 2013 ). Measurement of SLAP2 and GISP δ 17 O and proposed VSMOW-SLAP normalization for δ 17 O and 17 O-excess. Rapid Communications in Mass Spectrometry, 27 ( 5 ), 582 – 590. https://doi.org/10.1002/rcm.6486
dc.identifier.citedreferenceSchoenemann, S. W., & Steig, E. J. ( 2016 ). Seasonal and spatial variations of 17 O-excess and d -excess in Antarctic precipitation: Insights from an intermediate complexity isotope model. Journal of Geophysical Research: Atmospheres, 121 ( 19 ), 11215 – 11247. https://doi.org/10.1002/2016JD025117.Received
dc.identifier.citedreferenceSchoenemann, S. W., Steig, E. J., Ding, Q., Markle, B. R., & Schauer, A. J. ( 2014 ). Triple water-isotopologue record from WAIS Divide, Antarctica: Controls on glacial-interglacial changes in 17 O-excess of precipitation. Journal of Geophysical Research: Atmospheres, 119 ( 14 ), 8741 – 8763. https://doi.org/10.1002/2014JD021770.Received
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.