Show simple item record

MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier

dc.contributor.authorDeijkers, Johanna (Sanne) H.
dc.contributor.authorJong, Arthur A.
dc.contributor.authorMattinen, Miika J.
dc.contributor.authorSchulpen, Jeff J. P. M.
dc.contributor.authorVerheijen, Marcel A.
dc.contributor.authorSprey, Hessel
dc.contributor.authorMaes, Jan Willem
dc.contributor.authorKessels, Wilhelmus (Erwin) M. M.
dc.contributor.authorBol, Ageeth A.
dc.contributor.authorMackus, Adriaan J. M.
dc.date.accessioned2023-05-01T19:11:04Z
dc.date.available2024-05-01 15:11:02en
dc.date.available2023-05-01T19:11:04Z
dc.date.issued2023-04
dc.identifier.citationDeijkers, Johanna (Sanne) H.; Jong, Arthur A.; Mattinen, Miika J.; Schulpen, Jeff J. P. M.; Verheijen, Marcel A.; Sprey, Hessel; Maes, Jan Willem; Kessels, Wilhelmus (Erwin) M. M.; Bol, Ageeth A.; Mackus, Adriaan J. M. (2023). "MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier." Advanced Materials Interfaces 10(12): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/176280
dc.description.abstractMiniaturization in integrated circuits requires that the Cu diffusion barriers located in interconnects between the Cu metal line and the dielectric material should scale down. Replacing the conventional TaN with a 2D transition metal dichalcogenide barrier potentially offers the opportunity to scale to 1–2 nm thick barriers. In this article, it is demonstrated that MoS2 synthesized by atomic layer deposition (ALD) can be employed as a Cu diffusion barrier. ALD offers a controlled growth process at back-end-of-line (BEOL) compatible temperatures. MoS2 films of different thicknesses (i.e., 2.2, 4.3, and 6.5 nm) are tested by time-dependent dielectric breakdown (TDDB) measurements, demonstrating that ALD-grown MoS2 can enhance dielectric lifetime by a factor up to 17 at an electric field of 7 MV cm−1. Extrapolation to lower E-fields shows that the MoS2 barriers prepared by ALD have at least an order of magnitude higher median-time-to-failure during device operation at 0.5 MV cm−1 compared with MoS2 barriers prepared by other methods. By scaling the thickness further down in future work, the ALD MoS2 films can be applied as ultrathin Cu diffusion barriers.MoS2 films prepared by atomic layer deposition (ALD) can potentially be applied as Cu diffusion barrier. Time-dependent dielectric breakdown measurements show that MoS2 films effectively block Cu diffusion. ALD-MoS2 films have at least an order of magnitude higher median-time-to-failure at the device operation E-field of 0.5 MV cm−1 than MoS2 prepared by other methods.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherback-end-of-line
dc.subject.othertime-dependent dielectric breakdown
dc.subject.otheratomic layer deposition
dc.subject.otherMoS2
dc.subject.otherCu diffusion barrier
dc.titleMoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176280/1/admi202202426.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176280/2/admi202202426-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176280/3/admi202202426_am.pdf
dc.identifier.doi10.1002/admi.202202426
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceJ. J. P. M. Schulpen, M. A. Verheijen, W. M. M. (Erwin) Kessels, V. Vandalon, A. A. Bol, 2D Mater. 2022, 9, 025016.
dc.identifier.citedreferenceH. C. M. Knoops, L. Baggetto, E. Langereis, M. C. M. van de Sanden, J. H. Klootwijk, F. Roozeboom, R. A. H. Niessen, P. H. L. Notten, W. M. M. Kessels, J. Electrochem. Soc. 2008, 155, G287.
dc.identifier.citedreferenceO. van der Straten, X. Zhang, K. Motoyama, C. Penny, J. Maniscalco, S. Knupp, ECS Meet. Abstr. 2014, MA2014-02, 1611.
dc.identifier.citedreferenceZ. Wu, R. Li, X. Xie, W. Suen, J. Tseng, N. Bekiaris, R. Vinnakota, K. Kashefizadeh, M. Naik, 2018 IEEE Int. Interconnect Technol. Conf. 2018, 149, 2018.
dc.identifier.citedreferenceC. Witt, K. B. Yeap, A. Lesniewska, D. Wan, N. Jordan, I. Ciofi, C. Wu, Z. Tokei, 2018 IEEE Int. Interconnect Technol. Conf. 2018, 54, 2018.
dc.identifier.citedreferenceC. L. Lo, B. A. Helfrecht, Y. He, D. M. Guzman, N. Onofrio, S. Zhang, D. Weinstein, A. Strachan, Z. Chen, J. Appl. Phys. 2020, 128, 080903.
dc.identifier.citedreferenceB. S. Nguyen, J. F. Lin, D. C. Perng, Appl. Phys. Lett. 2014, 104, 082105.
dc.identifier.citedreferenceL. Li, X. Chen, C. H. Wang, J. Cao, S. Lee, A. Tang, C. Ahn, S. Singha Roy, M. S. Arnold, H. S. P. Wong, ACS Nano 2015, 9, 8361.
dc.identifier.citedreferenceC. L. Lo, M. Catalano, K. K. H. Smithe, L. Wang, S. Zhang, E. Pop, M. J. Kim, Z. Chen, npj 2D Mater. Appl. 2017, 1, 42.
dc.identifier.citedreferenceC. L. Lo, K. Zhang, R. S. Smith, K. Shah, J. A. Robinson, Z. Chen, IEEE Electron Device Lett. 2018, 39, 873.
dc.identifier.citedreferenceR. Zhao, C. L. Lo, F. Zhang, R. K. Ghosh, T. Knobloch, M. Terrones, Z. Chen, J. Robinson, Adv. Mater. Interfaces 2019, 6, 1901055.
dc.identifier.citedreferenceC. L. Lo, M. Catalano, A. Khosravi, W. Ge, Y. Ji, D. Y. Zemlyanov, L. Wang, R. Addou, Y. Liu, R. M. Wallace, M. J. Kim, Z. Chen, Adv. Mater. 2019, 31, 1902397.
dc.identifier.citedreferenceM. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H. L. Zhang, A. Z. Moshfegh, Nanoscale Horiz. 2018, 3, 90.
dc.identifier.citedreferenceS. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2017, 2, 17033.
dc.identifier.citedreferenceM. Mattinen, M. Leskelä, M. Ritala, Adv. Mater. Interfaces 2021, 8, 2001677.
dc.identifier.citedreferenceH. C. M. Knoops, S. E. Potts, A. A. Bol, W. M. M. Kessels, Atomic Layer Deposition, 2nd ed., Elsevier B. V., Boston 2015, https://doi.org/10.1016/B978-0-444-63304-0.00027-5.
dc.identifier.citedreferenceA. Sharma, M. A. Verheijen, L. Wu, S. Karwal, V. Vandalon, H. C. M. Knoops, R. S. Sundaram, J. P. Hofmann, W. M. M. Kessels, A. A. Bol, Nanoscale 2018, 10, 8615.
dc.identifier.citedreferenceS. Balasubramanyam, M. Shirazi, M. A. Bloodgood, L. Wu, M. A. Verheijen, V. Vandalon, W. M. M. Kessels, J. P. Hofmann, A. A. Bol, Chem. Mater. 2019, 31, 5104.
dc.identifier.citedreferenceS. B. Basuvalingam, Y. Zhang, M. A. Bloodgood, R. H. Godiksen, A. G. Curto, J. P. Hofmann, M. A. Verheijen, W. M. M. Kessels, A. A. Bol, Chem. Mater. 2019, 31, 9354.
dc.identifier.citedreferenceS. Balasubramanyam, M. A. Bloodgood, M. Van Ommeren, T. Faraz, V. Vandalon, W. M. M. Kessels, M. A. Verheijen, A. A. Bol, ACS Appl. Mater. Interfaces 2020, 12, 3873.
dc.identifier.citedreferenceA. Sharma, R. Mahlouji, L. Wu, M. A. Verheijen, V. Vandalon, S. Balasubramanyam, J. P. Hofmann, W. M. M. Erwin Kessels, A. A. Bol, Nanotechnology 2020, 31, 255603.
dc.identifier.citedreferenceR. Mahlouji, M. A. Verheijen, Y. Zhang, J. P. Hofmann, W. M. M. Kessels, A. A. Bol, Adv. Electron. Mater. 2022, 8, 2100781.
dc.identifier.citedreferenceY. Zhao, Z. Liu, T. Sun, L. Zhang, W. Jie, X. Wang, Y. Xie, Y. H. Tsang, H. Long, Y. Chai, ACS Nano 2014, 8, 12601.
dc.identifier.citedreferenceG. S. Haase, E. T. Ogawa, J. W. McPherson, J. Appl. Phys. 2005, 98, 034503.
dc.identifier.citedreferenceH. Kim, I. K. Oh, Jpn. J. Appl. Phys. 2014, 53, 03DA01.
dc.identifier.citedreferenceH. C. M. Knoops, E. M. J. Braeken, K. De Peuter, S. E. Potts, S. Haukka, V. Pore, W. M. M. Kessels, ACS Appl. Mater. Interfaces 2015, 7, 19857.
dc.identifier.citedreferenceM. Mattinen, F. Gity, E. Coleman, J. F. A. Vonk, M. A. Verheijen, R. Duffy, W. M. M. Kessels, A. A. Bol, Chem. Mater. 2022, 34, 7280.
dc.identifier.citedreferenceJ. C. Fothergill, IEEE Trans. Electr. Insul. 1990, 25, 489.
dc.identifier.citedreferenceC. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Joloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, et al., in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, 29.1.1 - 29.1.4, https://doi.org/10.1109/IEDM.2017.8268472.
dc.identifier.citedreferenceM. R. Baklanov, C. Adelmann, L. Zhao, S. De Gendt, ECS J. Solid State Sci. Technol. 2015, 4, Y1.
dc.identifier.citedreferenceK.-H. Min, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1996, 14, 3263.
dc.identifier.citedreferenceR. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, C. Wenger, H. J. Engelmann, C. Wenzel, E. Zschech, J. W. Bartha, Thin Solid Films 2003, 437, 248.
dc.identifier.citedreferenceH. Kizil, C. Steinbrüchel, Thin Solid Films 2004, 449, 158.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.