Show simple item record

5-Species MHD Study of Martian Proton Loss and Source

dc.contributor.authorSun, Wenyi
dc.contributor.authorMa, Yingjuan
dc.contributor.authorRussell, Christopher T.
dc.contributor.authorLuhmann, Janet
dc.contributor.authorNagy, Andrew
dc.contributor.authorBrain, David
dc.date.accessioned2023-05-01T19:11:18Z
dc.date.available2024-05-01 15:11:16en
dc.date.available2023-05-01T19:11:18Z
dc.date.issued2023-04
dc.identifier.citationSun, Wenyi; Ma, Yingjuan; Russell, Christopher T.; Luhmann, Janet; Nagy, Andrew; Brain, David (2023). "5-Species MHD Study of Martian Proton Loss and Source." Journal of Geophysical Research: Space Physics 128(4): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/176287
dc.description.abstractAlthough photochemistry-enabled escape of oxygen is a dominant atmospheric loss process at Mars today, ion outflow plays an essential role in the long-term evolution of Mars’ atmosphere. Apart from heavy planetary ions such as O+, O2+, and CO2+, the loss of planetary protons is also important because it could be related to water loss. To study planetary proton loss due to solar wind interaction, we improve the 4-species (O+, O2+, CO2+, and H+) single-fluid magnetohydrodynamic (MHD) model of Mars, to a 5-species (separating planetary protons and solar wind protons) MHD model so that the two types of protons can be tracked separately. The global distributions of solar wind protons and planetary ions at low altitudes are investigated. The calculated planetary proton escape rates are larger than heavy ion loss rates and solar wind proton inflows for both solar maximum and minimum conditions. Planetary proton escape rates are 1–2 orders less than neutral hydrogen loss, suggesting that planetary protons could contribute to no >10% of the hydrogen loss under current conditions. By comparing normal cases with cases for which H-O charge exchange reactions or electron impact ionizations are switched off, we find that H-O charge exchange mainly affects densities at low altitudes, while impact ionizations exert great influence on escape rates at high altitudes. The overall results suggest the specific treatment of proton origins in models of Mars atmosphere escape provides better insight into the contributing processes, and should be included in future studies focusing on water’s fate.Plain Language SummaryIt is commonly believed that Mars has lost most of its atmosphere. While there are many works on the escape rates of heavy ions such as O+, O2+, and CO2+, there are few studying proton loss which is also important due to its relation to the loss of water. We separate the protons from the solar wind and protons originating in the planetary atmosphere, so that the 4-species (O+, O2+, CO2+, and H+) single-fluid magnetohydrodynamic (MHD) model is improved to a 5-species (separating planetary protons and solar wind protons) MHD model. The global distributions of solar wind protons and planetary ions at low altitudes are discussed. The calculated escape rates suggest that planetary proton loss is important compared with heavy ion loss and solar wind proton inflow, even though planetary proton loss is no >10% of previously estimated atomic hydrogen loss. We investigate the effects of two types of reactions where protons are involved: H-O charge exchange and electron impact ionization. We find that impact ionization is important at high altitudes therefore also important for escape rates, while H-O charge exchange mainly exerts influence at low altitudes. The total integrations of chemical reactions indicate their relative importance.Key PointsSolar wind protons and planetary protons are analyzed separately using the updated magnetohydrodynamic modelPlanetary proton loss is estimated to be larger than heavy ion loss, but 1–2 orders less than neutral hydrogen lossThe effects of impact ionization and H-O charge exchange reactions are quantified
dc.publisherWiley Periodicals, Inc.
dc.title5-Species MHD Study of Martian Proton Loss and Source
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176287/1/jgra57739_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176287/2/2023JA031301-sup-0001-Figure_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176287/3/jgra57739.pdf
dc.identifier.doi10.1029/2023JA031301
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMa, Y., Fang, X., Russell, C. T., Nagy, A., Toth, G., Luhmann, J., et al. ( 2014 ). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophysical Research Letters, 41, 6563 – 6569. https://doi.org/10.1002/2014GL060785
dc.identifier.citedreferenceFang, X., Liemohn, M. W., Nagy, A. F., Ma, Y., De Zeeuw, D. L., Kozyra, J. U., & Zurbuchen, T. H. ( 2008 ). Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 113, A02210. https://doi.org/10.1029/2007JA012736
dc.identifier.citedreferenceFang, X., Ma, Y., Brain, D., Dong, Y., & Lillis, R. ( 2015 ). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time-dependent MHD study. Journal of Geophysical Research: Space Physics, 120, 10926 – 10944. https://doi.org/10.1002/2015JA021605
dc.identifier.citedreferenceGunell, H., Maggiolo, R., Nilsson, H., Stenberg Wieser, G., Slapak, R., Lindkvist, J., et al. ( 2018 ). Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astronomy & Astrophysics, 614, L3. https://doi.org/10.1051/0004-6361/201832934
dc.identifier.citedreferenceHalekas, J. ( 2017 ). Seasonal variability of the hydrogen exosphere of Mars. Journal of Geophysical Research: Planets, 122, 901 – 911. https://doi.org/10.1002/2017JE005306
dc.identifier.citedreferenceHalekas, J., & McFadden, J. ( 2021 ). Using solar wind helium to probe the structure and seasonal variability of the Martian hydrogen Corona. Journal of Geophysical Research: Planets, 126, e2021JE007049. https://doi.org/10.1029/2021JE007049
dc.identifier.citedreferenceHalekas, J. S., McFadden, J. P., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Connerney, J. E., et al. ( 2018 ). Structure and variability of the Martian ion composition boundary layer. Journal of Geophysical Research: Space Physics, 123, 8439 – 8458. https://doi.org/10.1029/2018JA025866
dc.identifier.citedreferenceHarnett, E. M., & Winglee, R. M. ( 2006 ). Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. Journal of Geophysical Research, 111, A09213. https://doi.org/10.1029/2006JA011724
dc.identifier.citedreferenceJakosky, B., Grebowsky, J., Luhmann, J., & Brain, D. ( 2015 ). Initial results from the MAVEN mission to Mars. Geophysical Research Letters, 42, 8791 – 8802. https://doi.org/10.1002/2015GL065271
dc.identifier.citedreferenceJakosky, B., & Phillips, R. ( 2001 ). Mars’ volatile and climate history. Nature, 412, 237 – 244. https://doi.org/10.1038/35084184
dc.identifier.citedreferenceJakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., et al. ( 2018 ). Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 315, 146 – 157. https://doi.org/10.1016/j.icarus.2018.05.030
dc.identifier.citedreferenceLedvina, S., Brecht, S., Brain, D., & Jakosky, B. ( 2017 ). Ion escape rates from Mars: Results from hybrid simulations compared to MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 8391 – 8408. https://doi.org/10.1002/2016JA023521
dc.identifier.citedreferenceLundin, R., Zakharov, A., Pellinen, R., Barabasj, S., Borg, H., Dubinin, E., et al. ( 1990 ). Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere. Geophysical Research Letters, 17 ( 6 ), 873 – 876. https://doi.org/10.1029/GL017i006p00873
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. Journal of Geophysical Research, 109, A07211. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceMa, Y., Russell, C. T., Fang, X., Dong, Y., Nagy, A., Toth, G., et al. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218
dc.identifier.citedreferencePowell, K., Roe, P., Linde, T., Gombosi, T., & De Zeeuw, D. ( 1999 ). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., Wang, X., & Holmström, M. ( 2015 ). The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars express observations. Journal of Geophysical Research: Planets, 120, 1298 – 1309. https://doi.org/10.1002/2015JE004816
dc.identifier.citedreferenceStone, S., Yelle, R., Benna, M., Lo, D., Elrod, M., & Mahaffy, P. ( 2020 ). Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370 ( 6518 ), 824 – 831. https://doi.org/10.1126/science.aba5229
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTrotignon, J., Mazelle, C., Bertucci, C., & Acuña, M. ( 2006 ). Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor Data Sets. Planetary and Space Science, 54 ( 4 ), 357 – 369. https://doi.org/10.1016/j.pss.2006.01.003
dc.identifier.citedreferenceAcuña, M., Connerney, J., Ness, F. N., Lin, R., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER Experiment. Science, 284 ( 5415 ), 790 – 793. https://doi.org/10.1126/science.284.5415.790
dc.identifier.citedreferenceArkani-Hamed, J. ( 2001 ). A 50-degree spherical harmonic model of the magnetic field of Mars. Journal of Geophysical Research, 106 ( E10 ), 23197 – 23208. https://doi.org/10.1029/2000JE001365
dc.identifier.citedreferenceBarabash, S., Fedorov, A., Lundin, R., & Sauvaud, J. ( 2007 ). Martian atmospheric erosion rates. Science, 315 ( 5811 ), 501 – 503. https://doi.org/10.1126/science.1134358
dc.identifier.citedreferenceBrain, D., McFadden, J., Halekas, J., Connerney, J., Bougher, S., Curry, S., et al. ( 2015 ). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 42, 9142 – 9148. https://doi.org/10.1002/2015GL065293
dc.identifier.citedreferenceBrecht, S. H., & Ledvina, S. A. ( 2010 ). The loss of water from Mars: Numerical results and challenges. Icarus, 206 ( 1 ), 164 – 173. https://doi.org/10.1016/j.icarus.2009.04.028
dc.identifier.citedreferenceChaufray, J., Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, M., Leblanc, F., Modolo, R., & Hess, S. ( 2015 ). Variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling. Icarus, 245, 282 – 294. https://doi.org/10.1016/j.icarus.2014.08.038
dc.identifier.citedreferenceDiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S., Mitchell, D. L., et al. ( 2018 ). The twisted configuration of the Martian magnetotail: Maven Observations. Geophysical Research Letters, 45, 4559 – 4568. https://doi.org/10.1029/2018GL077251
dc.identifier.citedreferenceDong, C., Bougher, S., Ma, Y., Toth, G., Lee, Y., Nagy, A., et al. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, C., Ma, Y., Bougher, S., Toth, G., Nagy, A., Halekas, J., et al. ( 2015 ). Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 42, 9103 – 9112. https://doi.org/10.1002/2015GL065944
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Woch, J., McFadden, J., Fan, K., et al. ( 2020 ). Impact of Martian crustal magnetic field on the ion escape. Journal of Geophysical Research: Space Physics, 125, e2020JA028010. https://doi.org/10.1029/2020JA028010
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Woch, J., Barabash, S., Lundin, R., & Yamauchi, M. ( 2006 ). Hydrogen exosphere at Mars: Pickup protons and their acceleration at the bow shock. Geophysical Research Letters, 33, L22103. https://doi.org/10.1029/2006GL027799
dc.identifier.citedreferenceDubinin, E., Lundin, R., Norberg, O., & Pissarenko, N. ( 1993 ). Ion acceleration in the Martian tail: Phobos observations. Journal of Geophysical Research, 98 ( A3 ), 3991 – 3997. https://doi.org/10.1029/92JA02233
dc.identifier.citedreferenceErgun, R., Andersson, L., Peterson, W., Brain, D., Delory, G., Mitchell, D., et al. ( 2006 ). Role of plasma waves in Mars’ atmospheric loss. Geophysical Research Letters, 33, L14103. https://doi.org/10.1029/2006GL025785
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.