Show simple item record

Atrophy of the Cholinergic Basal Forebrain can Detect Presynaptic Cholinergic Loss in Parkinson’s Disease

dc.contributor.authorRay, Nicola J.
dc.contributor.authorKanel, Prabesh
dc.contributor.authorBohnen, Nicolaas I.
dc.date.accessioned2023-05-01T19:11:20Z
dc.date.available2024-06-01 15:11:18en
dc.date.available2023-05-01T19:11:20Z
dc.date.issued2023-05
dc.identifier.citationRay, Nicola J.; Kanel, Prabesh; Bohnen, Nicolaas I. (2023). "Atrophy of the Cholinergic Basal Forebrain can Detect Presynaptic Cholinergic Loss in Parkinson’s Disease." Annals of Neurology 93(5): 991-998.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/176288
dc.publisherJohn Wiley & Sons, Inc.
dc.titleAtrophy of the Cholinergic Basal Forebrain can Detect Presynaptic Cholinergic Loss in Parkinson’s Disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176288/1/ana26596.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176288/2/ana26596_am.pdf
dc.identifier.doi10.1002/ana.26596
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceBohnen NI, Albin RL, Koeppe RA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 2006; 26: 1198 – 1212.
dc.identifier.citedreferenceMuller-Gärtner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992; 12: 571 – 583.
dc.identifier.citedreferenceBohnen NI, Kanel P, Koeppe RA, et al. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson’s disease. Brain. Communications 2021; 3: fcab109.
dc.identifier.citedreferenceAshburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95 – 113.
dc.identifier.citedreferenceKuhl DE, Koeppe RA, Minoshima S, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 1999; 52: 691 – 699.
dc.identifier.citedreferenceKlein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74: 885 – 892.
dc.identifier.citedreferenceMattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7: 278 – 294.
dc.identifier.citedreferenceKanel P, Bedard MA, Aghourian M, et al. Molecular imaging of the cholinergic system in Alzheimer and Lewy body dementias: expanding views. Curr Neurol Neurosci Rep 2021; 21: 52.
dc.identifier.citedreferenceBohnen NI, Koeppe RA, Minoshima S, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52: 848 – 855.
dc.identifier.citedreferenceChaves-Coira I, Martín-Cortecero J, Nuñez A, Rodrigo-Angulo ML. Basal forebrain nuclei display distinct projecting pathways and functional circuits to sensory primary and prefrontal cortices in the rat. Front Neuroanat 2018; 12: 69.
dc.identifier.citedreferenceDeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145 – 155.
dc.identifier.citedreferenceMesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 2013; 521: 4124 – 4144.
dc.identifier.citedreferenceAlbin RL, Bohnen NI, Muller M, et al. Regional vesicular acetylcholine transporter distribution in human brain: a [(18) F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526: 2884 – 2897.
dc.identifier.citedreferenceHeckers S, Geula C, Mesulam MM. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 1992; 325: 68 – 82.
dc.identifier.citedreferenceSwanson LW, Mogenson GJ, Gerfen CR, Robinson P. Evidence for a projection from the lateral preoptic area and substantia innominata to the ’mesencephalic locomotor region’ in the rat. Brain Res 1984; 295: 161 – 178.
dc.identifier.citedreferenceLiu AK, Chang RC, Pearce RK, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 2015; 129: 527 – 540.
dc.identifier.citedreferenceBohnen NI, Roytman S, Kanel P, et al. Progression of regional cortical cholinergic denervation in Parkinson’s disease. Brain Comm 2022.
dc.identifier.citedreferencevan der Zee S, Müller M, Kanel P, et al. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov Disord 2021; 36: 642 – 650.
dc.identifier.citedreferenceBohnen NI, Kanel P, Zhou Z, et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 2019; 85: 538 – 549.
dc.identifier.citedreferenceMuller ML, Bohnen NI, Kotagal V, et al. Clinical markers for identifying cholinergic deficits in Parkinson’s disease. Mov Disord 2015; 30: 269 – 273.
dc.identifier.citedreferenceBohnen NI, Muller ML, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab 2012; 32: 1609 – 1617.
dc.identifier.citedreferenceMulholland GK, Wieland DM, Kilbourn MR, et al. [ 18 F] fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 1998; 30: 263 – 274.
dc.identifier.citedreferenceAghourian M, Aumont É, Grothe MJ, et al. FEOBV-PET to quantify cortical cholinergic denervation in AD: relationship to basal forebrain volumetry. J Neuroimaging 2021; 31: 1077 – 1081.
dc.identifier.citedreferenceKanel P, Müller M, van der Zee S, et al. Topography of cholinergic changes in dementia with Lewy bodies and key neural network hubs. J Neuropsychiatry Clin Neurosci 2020; 32: 370 – 375.
dc.identifier.citedreferenceLegault-Denis C, Aghourian M, Soucy JP, et al. Normal cognition in Parkinson’s disease may involve hippocampal cholinergic compensation: an exploratory PET imaging study with [(18) F]-FEOBV. Parkinsonism Relat Disord 2021; 91: 162 – 166.
dc.identifier.citedreferenceBohnen NI, Kanel P, Koeppe RA, et al. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson’s disease. Brain Commun 2021; 3: fcab109.
dc.identifier.citedreferenceMesulam MM, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 1983; 10: 1185 – 1201.
dc.identifier.citedreferenceAyala G. A hitherto undifferentiated nucleus in the forebrain (nucleus subputaminalis). Brain 1915; 37: 433 – 448.
dc.identifier.citedreferenceKilimann I, Grothe M, Heinsen H, et al. Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis 2014; 40: 687 – 700.
dc.identifier.citedreferencePerry EK, Curtis M, Dick DJ, et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1985; 48: 413 – 421.
dc.identifier.citedreferenceRay NJ, Bradburn S, Murgatroyd C, et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain 2018; 141: 165 – 176.
dc.identifier.citedreferenceGrothe MJ, Labrador-Espinosa MA, Jesús S, et al. In vivo cholinergic basal forebrain degeneration and cognition in Parkinson’s disease: imaging results from the COPPADIS study. Parkinsonism Relat Disord 2021; 88: 68 – 75.
dc.identifier.citedreferencePereira JB, Hall S, Jalakas M, et al. Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson’s disease. Neurobiol Dis 2020; 139: 104831.
dc.identifier.citedreferenceSchulz J, Pagano G, Fernandez Bonfante JA, et al. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain 2018; 141: 1501 – 1516.
dc.identifier.citedreferencevan der Zee S, Kanel P, Gerritsen MJJ, et al. Altered cholinergic innervation in De novo Parkinson’s disease with and without cognitive impairment. Mov Disord 2022; 37: 713 – 723.
dc.identifier.citedreferencevan der Zee S, Vállez García D, Elsinga PH, et al. [ 18 F]Fluoroethoxybenzovesamicol in Parkinson’s disease patients: quantification of a novel cholinergic positron emission tomography tracer. Mov Disord 2019; 34: 924 – 926.
dc.identifier.citedreferenceHughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181 – 184.
dc.identifier.citedreferenceKanel P, van der Zee S, Sanchez-Catasus CA, et al. Cerebral topography of vesicular cholinergic transporter changes in neurologically intact adults: a [(18)F]FEOBV PET study. Aging. Brain 2022; 2: 100039.
dc.identifier.citedreferenceShao X, Hoareau R, Hockley BG, et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 1: fully automated production of [F]labelled radiopharmaceuticals using a Tracerlab FX(FN). J Label Compd Radiopharm 2011; 54: 292 – 307.
dc.identifier.citedreferenceNejad-Davarani S, Koeppe RA, Albin RL, et al. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [(18)F]-FEOBV. Mol Psychiatry 2019; 24: 322 – 327.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.