Show simple item record

Tree growth periodicity in the ever-wet tropical forest of the Americas

dc.contributor.authorGiraldo, Jorge A.
dc.contributor.authorDel valle, Jorge I.
dc.contributor.authorGonzález-Caro, Sebastián
dc.contributor.authorDavid, Diego A.
dc.contributor.authorTaylor, Tyeen
dc.contributor.authorTobón, Conrado
dc.contributor.authorSierra, Carlos A.
dc.date.accessioned2023-05-01T19:11:28Z
dc.date.available2024-05-01 15:11:26en
dc.date.available2023-05-01T19:11:28Z
dc.date.issued2023-04
dc.identifier.citationGiraldo, Jorge A.; Del valle, Jorge I. ; González-Caro, Sebastián ; David, Diego A.; Taylor, Tyeen; Tobón, Conrado ; Sierra, Carlos A. (2023). "Tree growth periodicity in the ever- wet tropical forest of the Americas." Journal of Ecology (4): 889-902.
dc.identifier.issn0022-0477
dc.identifier.issn1365-2745
dc.identifier.urihttps://hdl.handle.net/2027.42/176291
dc.description.abstractThe occurrence of annual growth rings in tropical trees—the result of the seasonal activity of vascular cambium—has been explained by seasonal water deficit or flooding periods. However, little is known about the drivers of annual tree-ring formation under tropical hyper-humid conditions without clear seasonal dry periods or flooding (ever-wet conditions). Shelford’s law states that the deficit or the excess of environmental resources limits plant growth. Accordingly, we hypothesize that excess soil moisture, a slight seasonal reduction of precipitation and a reduction in light availability determine rhythmic growth in ever-wet tropical forests.We first assessed the occurrence of rhythmic growth in 14 tree species from the Biogeographic Chocó Region (annual rainfall 7200 mm) using three methods: Radiocarbon (14C) dating (all studied species), tree-ring synchronization (4 species that have replicates) and automatic dendrometers (two species). Then, we assessed the effect of environmental drivers (rainfall, short-wave radiation, temperature and soil moisture) on tree growth based on tree ring and dendrometer observations.We present evidence of annual tree-ring formation in all 14 studied tree species. Depending on the tree species, we observed positive and negative correlations between growth, water availability and light availability. These relationships suggest that both excess or deficit of environmental resources may explain the seasonal pattern of tree growth. Although we cannot differentiate between excess soil water and low light availability by high cloudiness, we suggest that cloudiness frequency could affect tree growth in these forests.Synthesis. We reveal the annual formation of growth rings in the unexplored wetter-end tropical forests, where seasonal growth depends on either high soil moisture and hypoxia or light limitations by cloudiness and photosynthesis constraints.We reveal the annual formation of growth rings in the unexplored wetter-end tropical forests, where seasonal growth depends on either high soil moisture and hypoxia or light limitations by cloudiness and photosynthesis constraints.
dc.publisherSanta fé de Bogotá
dc.publisherWiley Periodicals, Inc.
dc.subject.otherChocó biogeographical region
dc.subject.otherrainiest place on earth
dc.subject.othertree rings
dc.subject.otherdendrometers
dc.titleTree growth periodicity in the ever-wet tropical forest of the Americas
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176291/1/jec14069_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176291/2/jec14069.pdf
dc.identifier.doi10.1111/1365-2745.14069
dc.identifier.sourceJournal of Ecology
dc.identifier.citedreferenceRodriguez-Caton, M., Andreu-Hayles, L., Morales, M. S., Daux, V., Christie, D. A., Coopman, R. E., Alvarez, C., Rao, M. P., Aliste, D., Flores, F., & Villalba, R. ( 2021 ). Different climate sensitivity for radial growth, but uniform for treering stable isotopes along an aridity gradient in Polylepis tarapacana, the world’s highest elevation tree species. Tree Physiology, 41 ( 8 ), 1353 – 1371. https://doi.org/10.1093/treephys/tpab021
dc.identifier.citedreferenceRestrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., … Saleska, S. R. ( 2013 ). What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182–183, 128 – 144. https://doi.org/10.1016/j.agrformet.2013.04.031
dc.identifier.citedreferenceRestrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., Galbraith, D., Imbuzeiro, H., Martins, G., da Araujo, A. C., Malhi, Y. S., Zeng, X., Moorcroft, P., & Saleska, S. R. ( 2017 ). Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Global Change Biology, 23 ( 1 ), 191 – 208. https://doi.org/10.1111/gcb.13442
dc.identifier.citedreferenceRozendaal, D. M., & Zuidema, P. ( 2011 ). Dendroecology in the tropics: A review. Trees, 25 ( 1 ), 3 – 16. https://doi.org/10.1007/s00468-010-0480-3
dc.identifier.citedreferenceSaleska, S. R., Wu, J., Guan, K., Araujo, A. C., Huete, A., Nobre, A. D., & Restrepo-Coupe, N. ( 2016 ). Dry-season greening of Amazon forests. Nature, 531 ( 7594 ), E4 – E5. https://doi.org/10.1038/nature16457
dc.identifier.citedreferenceSantos, G. G. A., Santos, B. A., Nascimento, H. E. M., & Tabarelli, M. ( 2012 ). Contrasting demographic structure of short- and long-lived Pioneer tree species on Amazonian Forest edges. Biotropica, 44 ( 6 ), 771 – 778. https://doi.org/10.1111/j.1744-7429.2012.00882.x
dc.identifier.citedreferenceSauter, M. ( 2013 ). Root responses to flooding. Current Opinion in Plant Biology, 16 ( 3 ), 282 – 286. https://doi.org/10.1016/j.pbi.2013.03.013
dc.identifier.citedreferenceSchindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. ( 2012 ). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9 ( 7 ), 676 – 682. https://doi.org/10.1038/nmeth.2019
dc.identifier.citedreferenceSchöngart, J., Bräuning, A., Barbosa, A., Lisi, C., & Oliveira, J. ( 2017 ). Dendroecological studies in the neotropics: History, status and future challenges. In M. Amoroso, L. Daniels, P. Baker, & J. Camarero (Eds.), Dendroecology. Ecological studies (analysis and synthesis) (Vol. 231, pp. 35 – 73 ). https://doi.org/10.1007/978-3-319-61669-8_3
dc.identifier.citedreferenceSchöngart, J., Piedade, M. T. F., Ludwigshausen, S., Horna, V., & Worbes, M. ( 2002 ). Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology, 18 ( 4 ), 581 – 597. https://doi.org/10.1017/S0266467402002389
dc.identifier.citedreferenceSchurer, A. P., Ballinger, A. P., Friedman, A. R., & Hegerl, G. C. ( 2020 ). Human influence strengthens the contrast between tropical wet and dry regions. Environmental Research Letters, 15 ( 10 ). https://doi.org/10.1088/1748-9326/ab83ab
dc.identifier.citedreferenceSchuur, E. A. G. ( 2003 ). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology, 84 ( 5 ), 1165 – 1170. https://doi.org/10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
dc.identifier.citedreferenceSchweingruber, F. H., Börner, A., & Schulze, E. ( 2008 ). The evolution of plants stems in the earth’s history. In F. H. Schweingruber, A. Börner, & E. Schulze (Eds.), Atlas of woody plant stems: Evolution, structure, and environmental modifications (pp. 3 – 26 ). Springer.
dc.identifier.citedreferenceShelford, V. ( 1931 ). Some concepts of bioecology. Ecology, 12 ( 3 ), 455 – 467.
dc.identifier.citedreferenceSoliz-Gamboa, C., Rozendaal, D. M. A., Ceccantini, G., Angyalossy, V., van der Borg, K., & Zuidema, P. A. ( 2011 ). Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees, 25 ( 17 ), 17 – 27. https://doi.org/10.1007/s00468-010-0468-z
dc.identifier.citedreferenceSpeer, J. H. ( 2010 ). Fundamentals of tree-ring research. Fundamentals of Treering Research, 333. https://doi.org/10.1080/00330124.2010.536466
dc.identifier.citedreferenceSteinhof, A., Altenburg, M., & Machts, H. ( 2017 ). Sample preparation at the Jena 14 C laboratory. Radiocarbon, 59 ( 3 ), 815 – 830. https://doi.org/10.1017/RDC.2017.50
dc.identifier.citedreferenceStine, A. R. ( 2019 ). Global demonstration of local Liebig’s law behavior for tree-ring reconstructions of climate. Paleoceanography and Paleoclimatology, 34 ( 2 ), 203 – 216. https://doi.org/10.1029/2018PA003449
dc.identifier.citedreferenceTuck, S. L., Phillips, H. R. P., Hintzen, R. E., Scharlemann, J. P. W., Purvis, A., & Hudson, L. N. ( 2014 ). MODISTools—Downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4 ( 24 ), 4658 – 4668. https://doi.org/10.1002/ece3.1273
dc.identifier.citedreferenceUnderwood, E. C., Olson, D., Hollander, A. D., & Quinn, J. F. ( 2014 ). Ever-wet tropical forests as biodiversity refuges. Nature Climate Change, 4 ( 9 ), 740 – 741. https://doi.org/10.1038/nclimate2351
dc.identifier.citedreferenceUribe, M. R., Sierra, C. A., & Dukes, J. S. ( 2021 ). Seasonality of tropical photosynthesis: A pantropical map of correlations with precipitation and radiation and comparison to model outputs. Journal of Geophysical Research: Biogeosciences, 126 ( 11 ), 1 – 17. https://doi.org/10.1029/2020JG006123
dc.identifier.citedreferenceWu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K. S., Dda Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., … Saleska, S. R. ( 2016 ). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351 ( 6276 ), 972 – 976. https://doi.org/10.1126/science.aad5068
dc.identifier.citedreferenceZang, C., & Biondi, F. ( 2015 ). Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography, 38 ( 4 ), 431 – 436. https://doi.org/10.1111/ecog.01335
dc.identifier.citedreferenceZuidema, P. A., Babst, F., Groenendijk, P., Trouet, V., Abiyu, A., Acuña-Soto, R., Adenesky-Filho, E., Alfaro-Sánchez, R., Aragão, J. R. V., Assis-Pereira, G., Bai, X., Barbosa, A. C., Battipaglia, G., Beeckman, H., Botosso, P. C., Bradley, T., Bräuning, A., Brienen, R., Buckley, B. M., … Zhou, Z.-K. ( 2022 ). Tropical tree growth driven by dry-season climate variability. Nature Geoscience, 15, 269 – 276. https://doi.org/10.1038/s41561-022-00911-8
dc.identifier.citedreferenceZuidema, P. A., Baker, P. J., Groenendijk, P., Schippers, P., van der Sleen, P., Vlam, M., & Sterck, F. ( 2013 ). Tropical forests and global change: Filling knowledge gaps. Trends in Plant Science, 18 ( 8 ), 413 – 419. https://doi.org/10.1016/j.tplants.2013.05.006
dc.identifier.citedreferenceZuidema, P. A., & Van der Sleen, P. ( 2022 ). Seeing the forest through the trees: How tree-level measurements can help understand forest dynamics. New Phytologist, 234 ( 5 ), 1544 – 1546. https://doi.org/10.1111/nph.18144
dc.identifier.citedreferenceAlbert, L. P., Restrepo-Coupe, N., Smith, M. N., Wu, J., Chavana-Bryant, C., Prohaska, N., Taylor, T. C., Martins, G. A., Ciais, P., Mao, J., Arain, M. A., Li, W., Shi, X., Ricciuto, D. M., Huxman, T. E., McMahon, S. M., & Saleska, S. R. ( 2019 ). Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 25 ( 11 ), 3591 – 3608. https://doi.org/10.1111/gcb.14759
dc.identifier.citedreferenceAraza, A., de Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., Avitabile, V., Santoro, M., Mitchard, E. T. A., Ryan, C., Phillips, O. L., Willcock, S., Verbeek, H., Carreiras, J., Hein, L., Schelhaas, M. J., Pacheco Pascagaza, A. M., Da Conceição Bispo, P., Vaglio Laurin, G., … Lucas, R. ( 2022 ). A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272 ( February ), 112917. https://doi.org/10.1016/j.rse.2022.112917
dc.identifier.citedreferenceAvitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H., DeVries, B., Girardin, C. A., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., … Willcock, S. ( 2016 ). An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22 ( 4 ), 1406 – 1420. https://doi.org/10.1111/gcb.13139
dc.identifier.citedreferenceBabst, F., Alexander, M. R., Szejner, P., Bouriaud, O., Klesse, S., Roden, J., Ciais, P., Poulter, B., Frank, D., Moore, D. J., & Trouet, V. ( 2014 ). A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 176 ( 2 ), 307 – 322. https://doi.org/10.1007/s00442-014-3031-6
dc.identifier.citedreferenceBabst, F., Bodesheim, P., Charney, N., Friend, A. D., Girardin, M. P., Klesse, S., Moore, D. J. P., Seftigen, K., Bjorklund, J., Bouriaud, O., Dawson, A., DeRose, R. J., Dietze, M. C., Eckes, A. H., Enquist, B., Frank, D. C., Mahecha, M. D., Poulter, B., Record, S., … Evans, M. E. K. ( 2018 ). When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197, 1 – 20. https://doi.org/10.1016/j.quascirev.2018.07.009
dc.identifier.citedreferenceBaker, J. C. A., Santos, G. M., Gloor, M., & Brienen, R. J. W. ( 2017 ). Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees, 31 ( 6 ), 1999 – 2009. https://doi.org/10.1007/s00468-017-1604-9
dc.identifier.citedreferenceBeer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., … Papale, D. ( 2010 ). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329 ( 5993 ), 834 – 838. https://doi.org/10.1126/science.1184984
dc.identifier.citedreferenceBorchert, R., & Rivera, G. ( 2001 ). Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiology, 21 ( 4 ), 213 – 221. https://doi.org/10.1093/treephys/21.4.213
dc.identifier.citedreferenceBreitsprecher, A., & Bethel, J. ( 1990 ). Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology, 71 ( 3 ), 1156 – 1164.
dc.identifier.citedreferenceBrienen, R., Lebrija-trejos, E., Van Breugel, M., Perez-Garcia, E., Bongers, F., Meave, J. A., & Martínez-ramos, M. ( 2009 ). The potential of tree rings for the study of forest succession in southern Mexico. Biotropica, 41 ( 2 ), 186 – 195. https://doi.org/10.1111/j.1744-7429.2008.00462.x
dc.identifier.citedreferenceBrienen, R., Schöngart, J., & Zuidema, P. ( 2016 ). Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees. In G. Goldstein & S. L. Santiago (Eds.), Tropical tree physiology (pp. 441 – 461 ). https://doi.org/10.1007/978-3-319-27422-5
dc.identifier.citedreferenceBunn, A. G. ( 2008 ). A dendrochronology program library in R (dplR). Dendrochronologia, 26 ( 2 ), 115 – 124. https://doi.org/10.1016/j.dendro.2008.01.002
dc.identifier.citedreferenceBunn, A. G. ( 2010 ). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28 ( 4 ), 251 – 258. https://doi.org/10.1016/j.dendro.2009.12.001
dc.identifier.citedreferenceCallado, C., Da Silva Neto, S., Scarano, F., & Costa, C. ( 2001 ). Periodicity of growth rings in some flood-prone trees of the Atlantic rain Forest in Rio de Janeiro, Brazil. Trees, 15 ( 8 ), 492 – 497. https://doi.org/10.1007/s00468-001-0128-4
dc.identifier.citedreferenceCintra, B. B. L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., Levis, C., Quesada, C. A., & Schöngart, J. ( 2013 ). Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area. Biogeosciences Discussions, 10 ( 4 ), 6417 – 6459. https://doi.org/10.5194/bgd-10-6417-2013
dc.identifier.citedreferenceClark, D. A., & Clark, D. B. ( 1994 ). Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain Forest. Journal of Ecology, 82 ( 4 ), 865 – 872.
dc.identifier.citedreferenceCONIF. ( 1996 ). Investigación Forestal del Pacífico Colombiano. Santa fé de Bogotá.
dc.identifier.citedreferenceCook, E. R., & Kairiukstis, L. ( 1992 ). Methods of dendrochronology: Applications in the environmental science. Kluwer Academic Publishers.
dc.identifier.citedreferenceCook, E. R., & Pederson, N. ( 2011 ). Uncertainty, emergence, and statistics in dendrochronology. In M. K. Hughes, T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology, developments in Paleoenvironmental research (pp. 77 – 112 ). https://doi.org/10.1007/978-1-4020-5725-0_4
dc.identifier.citedreferenceCorlett, R. T. ( 2016 ). The impacts of droughts in tropical forests. Trends in Plant Science, 21 ( 7 ), 584 – 593. https://doi.org/10.1016/j.tplants.2016.02.003
dc.identifier.citedreferenceCosta, F. R. C., Schietti, J., Stark, S. C., & Smith, M. N. ( 2022 ). The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist, 237, 714 – 733. https://doi.org/10.1111/nph.17914
dc.identifier.citedreferenceDe Micco, V., Carrer, M., Rathgeber, C. B. K., Julio Camarero, J., Voltas, J., Cherubini, P., & Battipaglia, G. ( 2019 ). From xylogenesis to tree rings: Wood traits to investigate tree response to environmental changes. IAWA Journal, 40 ( 2 ), 155 – 182. https://doi.org/10.1163/22941932-40190246
dc.identifier.citedreferencedel Valle, J. I., & Giraldo, J. A. ( 2021 ). Radiocarbon and dendrochronology applied in a legal dispute: A case from Colombia. Radiocarbon, 63 ( 4 ), 1215 – 1223. https://doi.org/10.1017/RDC.2020.30
dc.identifier.citedreferencedel Valle, J. I., Guarín, J. R., & Sierra, C. A. ( 2014 ). Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon, 56 ( 1 ), 39 – 52. https://doi.org/10.2458/56.16486
dc.identifier.citedreferenceDezzeo, N., Worbes, M., Ishii, I., & Herrera, R. ( 2003 ). Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire river, a tributary of the lower Orinoco river, Venezuela. Plant Ecology, 168 ( 1 ), 165 – 175. https://doi.org/10.1023/A:1024417610776
dc.identifier.citedreferenceEsquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … Phillips, O. L. ( 2017 ). Seasonal drought limits tree species across the Neotropics. Ecography, 40 ( 5 ), 618 – 629. https://doi.org/10.1111/ecog.01904
dc.identifier.citedreferenceEsteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. ( 2021 ). The other side of droughts: Wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229 ( 4 ), 1995 – 2006. https://doi.org/10.1111/nph.17005
dc.identifier.citedreferenceEstupinan-Suarez, L. M., Gans, F., Brenning, A., Gutierrez-Velez, V. H., Londono, M. C., Pabon-Moreno, D. E., Poveda, G., Reichstein, M., Reu, B., Sierra, C. A., Weber, U., & Mahecha, M. D. ( 2021 ). A regional earth system data lab for understanding ecosystem dynamics: An example from tropical South America. Frontiers in Earth Science, 9 ( July ), 1 – 20. https://doi.org/10.3389/feart.2021.613395
dc.identifier.citedreferenceFaber-Langendoen, D., & Gentry, A. H. ( 1991 ). The structure and diversity of rain forests at Bajo Calima, Choco region, Western Colombia. Biotropica, 23 ( 1 ), 2 – 11.
dc.identifier.citedreferenceFranco-Ramos, O., Stoffel, M., & Ballesteros-Cánovas, J. A. ( 2019 ). Reconstruction of debris-flow activity in a temperate mountain forest catchment of Central Mexico. Journal of Mountain Science, 16 ( 9 ), 2096 – 2109. https://doi.org/10.1007/s11629-019-5496-6
dc.identifier.citedreferenceFriend, A. D., Eckes-Shephard, A. H., Fonti, P., Rademacher, T. T., Rathgeber, C. B. K., Richardson, A. D., & Turton, R. H. ( 2019 ). On the need to consider wood formation processes in global vegetation models and a suggested approach. Annals of Forest Science, 76 ( 2 ), 49. https://doi.org/10.1007/s13595-019-0819-x
dc.identifier.citedreferenceFrumau, A., Bruijnzeel, S., & Tobón, C. ( 2006 ). Hydrological measurement protocol for montane cloud forest. Annex 2, Final Technical Report DFID-FRP project R7991.
dc.identifier.citedreferenceFyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K., Díaz, S., Enquist, B. J., Farfan-Rios, W., Gloor, E., Guerrieri, R., Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O., Salinas, N., Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., & Malhi, Y. ( 2017 ). Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 20 ( 6 ), 730 – 740. https://doi.org/10.1111/ele.12771
dc.identifier.citedreferenceGentry, A. H. ( 1989 ). Species richness and floriscti composition of Choco region plant communities. Caldasia, 15, 71 – 75.
dc.identifier.citedreferenceGiraldo, J., del Valle, J., Gonzalez-Caro, S., David, D., Taylor, T., Tobón, C., & Sierra, C. A. ( 2023 ). Tree growth periodicity in the ever-wet tropical forest of the Americas: Datasets [data set]. Zenodo, https://doi.org/10.5281/zenodo.7521524
dc.identifier.citedreferenceGiraldo, J. A., del Valle, J. I., González-Caro, S., & Sierra, C. A. ( 2022 ). Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees, 36 ( 3 ), 1039 – 1052. https://doi.org/10.1007/s00468-022-02271-7
dc.identifier.citedreferenceGiraldo, J. A., del Valle, J. I., Sierra, C. A., & Melo, O. ( 2020 ). Dendrochronological potential of trees from America’s rainiest region. In M. Pompa-García & J. J. Camarero (Eds.), Latin American dendroecology (pp. 79 – 119 ). https://doi.org/10.1007/978-3-030-36930-9_5
dc.identifier.citedreferenceGraham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., & Wright, S. J. ( 2003 ). Cloud cover limits net CO 2 uptake and growth of a rainforest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences, 100 ( 2 ), 572 – 576. https://doi.org/10.1073/pnas.0133045100
dc.identifier.citedreferenceGreen, J. K., Berry, J., Ciais, P., Zhang, Y., & Gentine, P. ( 2020 ). Amazon rainforest photosynthesis increases in response to atmospheric dryness. Science Advances, 6 ( 47 ). https://doi.org/10.1126/sciadv.abb7232
dc.identifier.citedreferenceHammond, W. M., Yu, K., Wilson, L. A., Will, R. E., Anderegg, W. R. L., & Adams, H. D. ( 2019 ). Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytologist, 223 ( 4 ), 1834 – 1843. https://doi.org/10.1111/nph.15922
dc.identifier.citedreferenceHuc, R., Ferhi, A., & Guehl, J. M. ( 1994 ). Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia, 99 ( 3–4 ), 297 – 305. https://doi.org/10.1007/BF00627742
dc.identifier.citedreferenceKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. ( 2017 ). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 1 – 20. https://doi.org/10.1038/sdata.2017.122
dc.identifier.citedreferenceKato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L., & Weller, R. A. ( 2013 ). Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate, 26 ( 9 ), 2719 – 2740. https://doi.org/10.1175/JCLI-D-12-00436.1
dc.identifier.citedreferenceKerr, M. T., Horn, S. P., Grissino-Mayer, H. D., & Stachowiak, L. A. ( 2018 ). Annual growth zones in stems of Hypericum irazuense (Guttiferae) in the Costa Rican páramos. Physical Geography, 39 ( 1 ), 38 – 50. https://doi.org/10.1080/02723646.2017.1340714
dc.identifier.citedreferenceWagner, F., Rossi, V., Stahl, C., Bonal, D., & Hérault, B. ( 2012 ). Water availability is the main climate driver of neotropical tree growth. PLoS ONE, 7 ( 4 ), 1 – 11. https://doi.org/10.1371/journal.pone.0034074
dc.identifier.citedreferenceKonings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R. L., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L., Agee, E., Barnes, M. L., Binks, O., Cawse-Nicholson, K., Christoffersen, B. O., Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., … Zuidema, P. A. ( 2021 ). Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 27 ( 23 ), 6005 – 6024. https://doi.org/10.1111/gcb.15872
dc.identifier.citedreferenceLocosselli, G. M., Brienen, R. J. W., de Leite, M. S., Gloor, M., Krottenthaler, S., de Oliveira, A. A., Barichivich, J., Anhuf, D., Ceccantini, G., Schöngart, J., & Buckeridge, M. ( 2020 ). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 52 ), 33358 – 33364. https://doi.org/10.1073/pnas.2003873117
dc.identifier.citedreferenceLotfiomran, N., & Köhl, M. ( 2017 ). Retrospective analysis of growth a contribution to sustainable forest management in the tropics. IAWA Journal, 38 ( 3 ), 297 – 312. https://doi.org/10.1163/22941932-20170173
dc.identifier.citedreferenceLüttge, U., & Hertel, B. ( 2009 ). Diurnal and annual rhythms in trees. Trees—Structure and Function, 23 ( 4 ), 683 – 700. https://doi.org/10.1007/s00468-009-0324-1
dc.identifier.citedreferenceMcDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A., Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D., Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., … Xu, X. ( 2018 ). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219 ( 3 ), 851 – 869. https://doi.org/10.1111/nph.15027
dc.identifier.citedreferenceMcDowell, N. G., Coops, N. C., Beck, P. S. A., Chambers, J. Q., Gangodagamage, C., Hicke, J. A., Huang, C. Y., Kennedy, R., Krofcheck, D. J., Litvak, M., Meddens, A. J. H., Muss, J., Negrón-Juarez, R., Peng, C., Schwantes, A. M., Swenson, J. J., Vernon, L. J., Williams, A. P., Xu, C., … Allen, C. D. ( 2015 ). Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 20 ( 2 ), 114 – 123. https://doi.org/10.1016/j.tplants.2014.10.008
dc.identifier.citedreferenceMesa, O. J., & Rojo, J. D. ( 2020 ). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44 ( 172 ), 857 – 875. https://doi.org/10.18257/raccefyn.899
dc.identifier.citedreferenceMuller-Landau, H. C., Cushman, K. C., Arroyo, E. E., Martinez Cano, I., Anderson-Teixeira, K. J., & Backiel, B. ( 2021 ). Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 229, 3065 – 3087. https://doi.org/10.1111/nph.17084
dc.identifier.citedreferenceMyers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B., & Kent, J. ( 2000 ). Biodiversity hotspots for conservation priorities. Nature, 403 ( 6772 ), 853 – 858. https://doi.org/10.1038/35002501
dc.identifier.citedreferenceOhashi, Y., Sahri, M. H., Yoshizawa, N., & Itoh, T. ( 2001 ). Annual rhythm of xylem growth in rubberwood ( Hevea brasiliensis ) trees grown in Malaysia. Holzforschung, 55 ( 2 ), 151 – 154. https://doi.org/10.1515/HF.2001.024
dc.identifier.citedreferenceOliveira, M., Mattos, P., Muñoz-Braz, E., Canetti, A., Basso, A., & Rosot, N. ( 2014 ). Growth pattern of Qualea albiflora and Goupia glabra in Amazon forest, Mato Grosso state, Brazil. The International Forestry Review, 16 ( 5 ), 2014.
dc.identifier.citedreferencePan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. ( 2011 ). A large and persistent carbon sink in the world’s forests. Science, 333 ( 6045 ), 988 – 993. https://doi.org/10.1126/science.1201609
dc.identifier.citedreferencePearl, J. K., Keck, J. R., Tintor, W., Siekacz, L., Herrick, H. M., Meko, M. D., & Pearson, C. L. ( 2020 ). New frontiers in tree-ring research. Holocene, 30 ( 6 ), 923 – 941. https://doi.org/10.1177/0959683620902230
dc.identifier.citedreferencePérez-Escobar, O., Lucas, E., Jaramillo, C., Monro, A., Morris, S., Borgarin, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez, A., & Antonelli, A. ( 2019 ). The origin and diversification of the hyperdiverse flora in the chocó biogeographic region. Frontiers in Plant Science, 10, 1 – 9. https://doi.org/10.3389/fpls.2019.01328
dc.identifier.citedreferencePosada, J. M., & Schuur, E. A. G. ( 2011 ). Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia, 165 ( 3 ), 783 – 795. https://doi.org/10.1007/s00442-010-1881-0
dc.identifier.citedreferencePoveda, G. G., & Mesa, O. J. ( 2000 ). On the existence of Lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27 ( 11 ), 1675 – 1678. https://doi.org/10.1029/1999GL006091
dc.identifier.citedreferenceR Core Team. ( 2020 ). R: A language and environment for statistical computing. https://www.r-project.org/
dc.identifier.citedreferenceReimer, P. J., Brown, T. A., & Reimer, R. W. ( 2004 ). Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon, 46 ( 3 ), 1299 – 1304.
dc.identifier.citedreferenceRequena-Rojas, E. J., Amoroso, M. M., Ticse-Otarola, G., & Crispin-Delacruz, D. B. ( 2021 ). Assessing dendrochronological potential of Escallonia myrtilloides in the high Andes of Peru. Tree-Ring Research, 77 ( 2 ), 41 – 52. https://doi.org/10.3959/TRR2019-8
dc.identifier.citedreferenceWorbes, M., & Junk, W. J. ( 1989 ). Dating tropical trees by means of 14 C from bomb tests. Ecology, 70 ( 2 ), 503 – 507.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.