Show simple item record

Off-resonance artifact correction for MRI: A review

dc.contributor.authorHaskell, Melissa W.
dc.contributor.authorNielsen, Jon-Fredrik
dc.contributor.authorNoll, Douglas C.
dc.date.accessioned2023-05-01T19:11:31Z
dc.date.available2024-06-01 15:11:29en
dc.date.available2023-05-01T19:11:31Z
dc.date.issued2023-05
dc.identifier.citationHaskell, Melissa W.; Nielsen, Jon-Fredrik ; Noll, Douglas C. (2023). "Off- resonance artifact correction for MRI: A review." NMR in Biomedicine 36(5): n/a-n/a.
dc.identifier.issn0952-3480
dc.identifier.issn1099-1492
dc.identifier.urihttps://hdl.handle.net/2027.42/176292
dc.publisherWiley Periodicals, Inc.
dc.titleOff-resonance artifact correction for MRI: A review
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176292/1/nbm4867_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176292/2/nbm4867.pdf
dc.identifier.doi10.1002/nbm.4867
dc.identifier.sourceNMR in Biomedicine
dc.identifier.citedreferenceLim Y, Bliesener Y, Narayanan S, Nayak KS. Deblurring for spiral real-time MRI using convolutional neural networks. Magn Reson Med. 2020; 84 ( 6 ): 3438 - 3452.
dc.identifier.citedreferenceGuo S, Douglas CN. Oscillating steady-state imaging (OSSI): a novel method for functional MRI. Magn Reson Med. 2020; 84 ( 2 ): 698 - 712.
dc.identifier.citedreferenceStockmann JP, Witzel T, Keil B, et al. A 32-channel combined RF and B 0 shim array for 3 T brain imaging. Magn Reson Med. 2016; 75 ( 1 ): 441 - 451.
dc.identifier.citedreferenceDarnell D, Truong TK, Song AW. Integrated parallel reception, excitation, and shimming (iPRES) with multiple shim loops per radio-frequency coil element for improved B 0 shimming. Magn Reson Med. 2017; 77 ( 5 ): 2077 - 2086.
dc.identifier.citedreferenceAndersson JLR, Graham MS, Drobnjak I, Zhang H, Jon C. Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. NeuroImage. 2018; 171: 277 - 295.
dc.identifier.citedreferenceHutter J, Christiaens DJ, Schneider T, et al. Slice-level diffusion encoding for motion and distortion correction. Med Image Anal. 2018; 48: 214 - 229.
dc.identifier.citedreferenceHahn AD, Nencka AS, Rowe DB. Improving robustness and reliability of phase-sensitive fMRI analysis using temporal off-resonance alignment of single-echo timeseries (TOAST). NeuroImage. 2009; 44 ( 3 ): 742 - 752.
dc.identifier.citedreferenceDymerska B, Poser BA, Barth M, Trattnig S, Robinson SD. A method for the dynamic correction of B 0 -related distortions in single-echo EPI at 7 T. NeuroImage. 2018; 168: 321 - 331.
dc.identifier.citedreferenceWallace TE, Polimeni JR, Stockmann JP, et al. Dynamic distortion correction for functional MRI using FID navigators. Magn Reson Med. 2021; 85 ( 3 ): 1294 - 1307.
dc.identifier.citedreferenceCardoso PL, Dymerska B, Bachratá B, et al. The clinical relevance of distortion correction in presurgical fMRI at 7 T. NeuroImage. 2018; 168 ( December 2016 ): 490 - 498.
dc.identifier.citedreferenceJuchem C, Nixon TW, Diduch P, Rothman DL, Starewicz P, De Graaf RA. Dynamic shimming of the human brain at 7 T. Concepts Magn Reson B. 2010; 37 ( 3 ): 116 - 128.
dc.identifier.citedreferenceSengupta S, Brian Welch E, Zhao Y, et al. Dynamic B 0 shimming at 7 T. Magn Reson Imaging. 2011; 29 ( 4 ): 483 - 496.
dc.identifier.citedreferenceFinsterbusch J, Sprenger C, Büchel C. Combined T 2 ∗ -weighted measurements of the human brain and cervical spinal cord with a dynamic shim update. NeuroImage. 2013; 79: 153 - 161.
dc.identifier.citedreferenceIslam H, Law CSW, Weber KA, Mackey SC, Glover GH. Dynamic per slice shimming for simultaneous brain and spinal cord fMRI. Magn Reson Med. 2019; 81 ( 2 ): 825 - 838.
dc.identifier.citedreferenceLingala SG, Sutton BP, Miquel ME, Nayak KS. Recommendations for real-time speech MRI. J Magn Reson Imaging. 2016; 43 ( 1 ): 28 - 44.
dc.identifier.citedreferenceKolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004; 20 ( 3 ): 487 - 495.
dc.identifier.citedreferenceKoch KM, Lorbiecki JE, Scott Hinks R, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009; 61 ( 2 ): 381 - 390.
dc.identifier.citedreferenceWenmiao L, Pauly KB, Gold GE, Pauly JM, Brian AH. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009; 62 ( 1 ): 66 - 76.
dc.identifier.citedreferenceKoch KM, Brau AC, Chen W, et al. Imaging near metal with a MAVRIC–SEMAC hybrid. Magn Reson Med. 2011; 65 ( 1 ): 71 - 82.
dc.identifier.citedreferenceLüdeke KM, Röschmann P, Tischler R. Susceptibility artefacts in NMR imaging. Magn Reson Imaging. 1985; 3 ( 4 ): 329 - 343.
dc.identifier.citedreferenceO’Donnell M, Edelstein WA. NMR imaging in the presence of magnetic field inhomogeneities and gradient field nonlinearities. Med Phys. 1985; 12 ( 1 ): 20 - 26.
dc.identifier.citedreferenceCzervionke LF, Daniels DL, Wehrli FW, et al. Magnetic susceptibility artifacts in gradient-recalled echo MR imaging. Am J Neuroradiol. 1988; 9 ( 6 ): 1149 - 1155.
dc.identifier.citedreferenceMichiels J, Bosmans H, Pelgrims P, et al. On the problem of geometric distortion in magnetic resonance images for stereotactic neurosurgery. Magn Reson Imaging. 1994; 12 ( 5 ): 749 - 765.
dc.identifier.citedreferenceLadd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC. Biopsy needle susceptibility artifacts. Magn Reson Med. 1996; 36 ( 4 ): 646 - 651.
dc.identifier.citedreferenceWalker A, Liney G, Metcalfe P, Holloway L. MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med. 2014; 37 ( 1 ): 103 - 113.
dc.identifier.citedreferenceWeygand J, Fuller CD, Ibbott GS, et al. Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys. 2016; 95 ( 4 ): 1304 - 1316.
dc.identifier.citedreferenceHargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. Am J Roentgenol. 2011; 197 ( 3 ): 547 - 555.
dc.identifier.citedreferenceJezzard P, Stuart C. Sources of distortion in functional MRI data. Hum Brain Mapp. 1999; 8 ( 2/3 ): 80 - 85.
dc.identifier.citedreferenceJezzard P. Correction of geometric distortion in fMRI data. NeuroImage. 2012; 62 ( 2 ): 648 - 651.
dc.identifier.citedreferenceHahn EL. Spin echoes. Phys Rev. 1950; 80 ( 4 ): 580 - 594.
dc.identifier.citedreferenceHennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986; 3 ( 6 ): 823 - 833.
dc.identifier.citedreferenceLarkman DJ, Atkinson D, Hajnal JV. Artifact reduction using parallel imaging methods. Top Magn Reson Imaging. 2004; 15 ( 4 ): 267 - 275.
dc.identifier.citedreferenceFeinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013; 229: 90 - 100.
dc.identifier.citedreferenceStehling MK, Turner R, Mansfield P, Stehling MK. Echo-Planar Imaging: Magnetic Resonance Imaging in a Fraction of a Second. Technical report; 1991.
dc.identifier.citedreferenceKwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992; 89 ( 12 ): 5675 - 5679.
dc.identifier.citedreferenceDuyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR Biomed. 2017; 30 ( 4 ): e3546.
dc.identifier.citedreferenceNakagomi M, Kajiwara M, Matsuzaki J, et al. Development of a small car-mounted magnetic resonance imaging system for human elbows using a 0.2 T permanent magnet. J Magn Reson. 2019; 304: 7.
dc.identifier.citedreferenceLiu Y, Leong AT, Zhao Y, et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun. 2021; 12 ( 1 ): 1 - 14.
dc.identifier.citedreferenceCooley CZ, McDaniel PC, Stockmann JP, et al. A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng. 2021; 5 ( 3 ): 229 - 239.
dc.identifier.citedreferenceO’Reilly T, Teeuwisse WM, de Gans D, Koolstra K, Webb AG. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magn Reson Med. 2021; 85 ( 1 ): 495 - 505.
dc.identifier.citedreferenceSheth KN, Mazurek MH, Yuen MM, et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 2021; 78 ( 1 ): 41 - 47.
dc.identifier.citedreferenceGeethanath S, Vaughan JT Jr. Accessible magnetic resonance imaging: a review. J Magn Reson Imaging. 2019; 49 ( 7 ): e65 - e77.
dc.identifier.citedreferenceFessler JA. Optimization methods for magnetic resonance image reconstruction: key models and optimization algorithms. IEEE Signal Process Mag. 2020; 37 ( 1 ): 33 - 40.
dc.identifier.citedreferenceSutton BP, Noll DC, Fessler JA. Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Trans Med Imaging. 2003; 22 ( 2 ): 178 - 188.
dc.identifier.citedreferenceFessler JA. Michigan Image Reconstruction Toolbox. 2022. https://web.eecs.umich.edu/∼fessler/code
dc.identifier.citedreferenceCooley CZ, Stockmann JP, Armstrong BD, et al. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med. 2014; 883: 872 - 883.
dc.identifier.citedreferenceCooley CZ, Haskell MW, Cauley SF, et al. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Trans Magn. 2018; 54 ( 1 ): 1 - 12.
dc.identifier.citedreferenceO’Reilly T, Teeuwisse WM, Webb AG. Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet. J Magn Reson. 2019; 307: 106578.
dc.identifier.citedreferenceMcDaniel PC, Cooley CZ, Stockmann JP, Lawrence LW. The MR cap: a single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magn Reson Med. 2019; 82 ( 5 ): 1946 - 1960.
dc.identifier.citedreferenceObungoloch J, Harper JR, Consevage S, et al. Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. Magn Reson Mater Phys Biol Med. 2018; 31 ( 5 ): 665 - 676.
dc.identifier.citedreferenceSchenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996; 23 ( 6 ): 815 - 850.
dc.identifier.citedreferenceFarahani K, Sinha U, Sinha S, Chiu LCL, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph. 1990; 14 ( 6 ): 409 - 413.
dc.identifier.citedreferenceStockmann JP, Wald LL. In vivo B 0 field shimming methods for MRI at 7 T. NeuroImage. 2018; 168: 71 - 87.
dc.identifier.citedreferenceElster AD. 2022. https://mriquestions.com/what-is-susceptibility.html
dc.identifier.citedreferenceHood MN, Ho VB, Smirniotopoulos JG, Jerzy S. Chemical shift: the artifact and clinical tool revisited. RadioGraphics. 1999; 19 ( 2 ): 357 - 371.
dc.identifier.citedreferenceBabcock EE, Brateman L, Weinreb JC, Horner SD, Ray LN. Edge artifacts in MR images: chemical shift effect. J Comput Assist Tomogr. 1985; 9 ( 2 ): 252 - 257.
dc.identifier.citedreferenceDwyer AJ, Knop RH, Hoult DI. Frequency shift artifacts in MR imaging. J Comput Assist Tomogr. 1985; 1 ( 1 ): 16 - 18.
dc.identifier.citedreferenceSmith RC, Lange RC, McCarthy SM. Chemical shift artifact: dependence on shape and orientation of the lipid-water interface. Radiology. 1991; 10 ( 1 ): 225 - 229.
dc.identifier.citedreferenceASTM. ATSM F2503-13: Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. Technical report, West Conshohocken, PA, USA, American Society for Testing and Materials International; 2013.
dc.identifier.citedreferenceIEC. IEC 62570:2014: Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. Technical report, Geneva, Switzerland, International Electrotechnical Commission; 2014.
dc.identifier.citedreferenceJungmann PM, Agten CA, Pfirrmann CW, Reto S. Advances in MRI around metal. J Magn Reson Imaging. 2017; 46 ( 4 ): 972 - 991.
dc.identifier.citedreferenceVan Speybroeck CDE, O’Reilly T, Teeuwisse W, Arnold PM, Webb AG. Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (¡100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems. Phys Med. 2021; 84 ( February ): 116 - 124.
dc.identifier.citedreferenceWang D, David D. Geometric distortion in structural magnetic resonance imaging. Curr Med Imaging Rev. 2005; 1 ( 1 ): 49 - 60.
dc.identifier.citedreferenceMacovski A. Noise in MRI. Magn Reson Med. 1996; 36 ( 3 ): 494 - 497.
dc.identifier.citedreferencePorter D, Mueller E. Multi-shot diffusion-weighted EPI with readout mosaic segmentation and 2D navigator correction. In: Proceedings of the 12th Annual Meeting of ISMRM; 2004; Kyoto: 442.
dc.identifier.citedreferenceHoldsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R. Readout-segmented EPI for rapid high resolution diffusion imaging at 3 T. Eur J Radiol. 2008; 65 ( 1 ): 36 - 46.
dc.identifier.citedreferenceButts K, Crespigny A, Pauly JM, Michael M. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med. 1996; 35 ( 5 ): 763 - 770.
dc.identifier.citedreferenceNoll DC. Multishot rosette trajectories for spectrally selective MR imaging. IEEE Trans Med Imaging. 1997; 16 ( 4 ): 372 - 377.
dc.identifier.citedreferenceWeiger M, Brunner DO, Dietrich BE, Müller CF, Pruessmann KP. ZTE imaging in humans. Magn Reson Med. 2013; 70 ( 2 ): 328 - 332.
dc.identifier.citedreferenceGatehouse PD, Bydder GM. Magnetic resonance imaging of short T 2 components in tissue. Clin Radiol. 2003; 58 ( 1 ): 1 - 19.
dc.identifier.citedreferenceJiang D, Carroll TJ, Brodsky E, et al. Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging. 2004; 20 ( 5 ): 894 - 900.
dc.identifier.citedreferenceLi F, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014; 72 ( 3 ): 707 - 717.
dc.identifier.citedreferenceNoll DC, Cohen JD, Meyer CH, Schneider W. Spiral k -space MR imaging of cortical activation. J Magn Reson Imaging. 1995; 5 ( 1 ): 49 - 56.
dc.identifier.citedreferenceNayak KS, Hargreaves BA, Bob S, Nishimura DG, Pauly JM, Meyer CH. Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 2005; 53 ( 6 ): 1468 - 1473.
dc.identifier.citedreferenceLi Z, Pipe JG, Ooi MB, Kuwabara M, Karis JP. Improving the image quality of 3D FLAIR with a spiral MRI technique. Magn Reson Med. 2020; 83 ( 1 ): 170 - 177.
dc.identifier.citedreferenceIrarrazabal P, Nishimura DG. Fast three dimensional magnetic resonance imaging. Magn Reson Med. 1995; 33 ( 5 ): 656 - 662.
dc.identifier.citedreferenceHutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Robert T. Image distortion correction in fMRI: a quantitative evaluation. NeuroImage. 2002; 16 ( 1 ): 217 - 240.
dc.identifier.citedreferenceReber PJ, Wong EC, Buxton RB, Frank LR. Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med. 1998; 39 ( 2 ): 328 - 330.
dc.identifier.citedreferenceJenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012; 62 ( 2 ): 782 - 790.
dc.identifier.citedreferenceJenkinson M. Fast, automated, N -dimensional phase-unwrapping algorithm. Magn Reson Med. 2003; 49 ( 1 ): 193 - 197.
dc.identifier.citedreferenceIyer SS, Liao C, Li Q, et al. PhysiCal: A rapid calibration scan for B 0, B 1 +, coil sensitivity and eddy current mapping. In: Proceedings of the 28th Annual Meeting of ISMRM Sydney/Virtual; 2020: 661.
dc.identifier.citedreferenceBarmet C, Zanche ND, Pruessmann KP. Spatiotemporal magnetic field monitoring for MR. Magn Reson Med. 2008; 60 ( 1 ): 187 - 197.
dc.identifier.citedreferenceDietrich BE, Brunner DO, Wilm BJ, et al. A field camera for MR sequence monitoring and system analysis. Magn Reson Med. 2016; 75 ( 4 ): 1831 - 1840.
dc.identifier.citedreferenceGross S, Barmet C, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nat Commun. 2016; 7: 1 - 6.
dc.identifier.citedreferenceWallace TE, Afacan O, Kober T, Warfield SK. Rapid measurement and correction of spatiotemporal B 0 field changes using FID navigators and a multi-channel reference image. Magn Reson Med. 2020; 83 ( 2 ): 575 - 589.
dc.identifier.citedreferenceJezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B 0 field variations. Magn Reson Med. 1995; 34 ( 1 ): 65 - 73.
dc.identifier.citedreferenceFunai AK, Fessler JA, Yeo DTB, Noll DC, Olafsson VT. Regularized field map estimation in MRI. IEEE Trans Med Imaging. 2008; 27 ( 10 ): 1484 - 1494.
dc.identifier.citedreferenceLin CY, Fessler JA. Efficient regularized field map estimation in 3D MRI. IEEE Trans Comput Imaging. 2020; 6 ( 1 ): 1451 - 1458.
dc.identifier.citedreferenceAndersson JLR, Skare S, John A. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003; 20 ( 2 ): 870 - 888.
dc.identifier.citedreferenceSchneider E, Gary G. Rapid in vivo proton shimming. Magn Reson Med. 1991; 18 ( 2 ): 335 - 347.
dc.identifier.citedreferenceJuchem C, Cudalbu C, Graaf RA, et al. B 0 shimming for in vivo magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed. 2021; 34 ( 5 ): 1 - 20.
dc.identifier.citedreferenceLarkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biology. 2007; 52 ( 7 ): 15 - 55.
dc.identifier.citedreferenceBley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010; 31 ( 1 ): 4 - 18.
dc.identifier.citedreferenceSchallmo MP, Weldon KB, Burton PC, Sponheim SR, Olman CA. Assessing methods for geometric distortion compensation in 7 T gradient echo functional MRI data. Hum Brain Mapp. 2021; 42 ( 13 ): 4205 - 4223.
dc.identifier.citedreferenceAbreu R, Duarte JV. Quantitative assessment of the impact of geometric distortions and their correction on fMRI data analyses. Front Neurosci. 2021; 15: 1 - 17.
dc.identifier.citedreferenceRobson MD, Gore JC, Constable RT. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med. 1997; 38 ( 5 ): 733 - 740.
dc.identifier.citedreferenceZeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med. 2002; 48 ( 1 ): 137 - 146.
dc.identifier.citedreferenceZaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med. 2004; 52 ( 5 ): 1156 - 1166.
dc.identifier.citedreferenceFessler JA. On NUFFT-based gridding for non-Cartesian MRI. J Magn Reson. 2007; 188 ( 2 ): 191 - 195.
dc.identifier.citedreferenceMacovski A. Volumetric NMR imaging with time-varying gradients. Magn Reson Med. 1985; 2 ( 1 ): 29 - 40.
dc.identifier.citedreferenceMaeda A, Sano K, Yokoyama T. Reconstruction by weighted correlation for MRI with time-varying gradients. IEEE Trans Med Imaging. 1988; 7 ( 1 ): 26 - 31.
dc.identifier.citedreferenceKoolstra K, O’Reilly T, Börnert P, Webb A. Image distortion correction for MRI in low field permanent magnet systems with strong B 0 inhomogeneity and gradient field nonlinearities. Magn Reson Mater Phys Biol Med. 2021; 34 ( 4 ): 631 - 642.
dc.identifier.citedreferenceNoll DC, Fessler JA, Sutton BP. Conjugate phase MRI reconstruction with spatially variant sample density correction. IEEE Trans Med Imaging. 2005; 24 ( 3 ): 325 - 336.
dc.identifier.citedreferenceFessler JA, Lee S, Olafsson VT, Shi HR, Noll DC. Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity. IEEE Trans Signal Process. 2005; 53 ( 9 ): 3393 - 3402.
dc.identifier.citedreferenceFessler J. Model-based image reconstruction for MRI. IEEE Signal Process Mag. 2010; 27 ( 4 ): 81 - 89.
dc.identifier.citedreferenceNoll DC, Meyer CH, Pauly JM, Nishimura DG, Albert M. A homogeneity correction method for magnetic resonance imaging with time-varying gradients. IEEE Trans Med Imaging. 1991; 10 ( 4 ): 629 - 637.
dc.identifier.citedreferenceNoll DC. Reconstruction techniques for magnetic resonance imaging. PhD thesis: Stanford University; 1991.
dc.identifier.citedreferenceMan LC, Pauly JM, Macovski A. Multifrequency interpolation for fast off-resonance correction. Magn Reson Med. 1997; 37 ( 5 ): 785 - 792.
dc.identifier.citedreferenceAhunbay E, Pipe JG. Rapid method for deblurring spiral MR images. Magn Reson Med. 2000; 44 ( 3 ): 491 - 494.
dc.identifier.citedreferenceKadah YM, Xiaoping H. Simulated phase evolution rewinding (SPHERE): a technique for reducing B 0 inhomogeneity effects in MR images. Magn Reson Med. 1997; 38 ( 4 ): 615 - 627.
dc.identifier.citedreferenceSchomberg H. Off-resonance correction of MR images. IEEE Trans Med Imaging. 1999; 18 ( 6 ): 481 - 495.
dc.identifier.citedreferenceNoll DC, Pauly JM, Meyer CH, Nishimura DG, Albert M. Deblurring for non-2D Fourier transform magnetic resonance imaging. Magn Reson Med. 1992; 25 ( 2 ): 319 - 333.
dc.identifier.citedreferenceLim Y, Lingala SG, Narayanan SS, Nayak KS. Dynamic off-resonance correction for spiral real-time MRI of speech. Magn Reson Med. 2019; 81 ( 1 ): 234 - 246.
dc.identifier.citedreferenceZeng DY, Shaikh J, Holmes S, et al. Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magn Reson Med. 2019; 82 ( 4 ): 1398 - 1411.
dc.identifier.citedreferenceLiu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015; 42 ( 1 ): 23 - 41.
dc.identifier.citedreferenceHaskell MW, Lahiri A, Nielsen J-F, Fessler JA, Douglas CN. FieldMapNet MRI: learning-based mapping from single echo time BOLD fMRI data to fieldmaps with model-based reconstruction. In: Proceedings of the 30th Annual Meeting of ISMRM; 2022; London: 235.
dc.identifier.citedreferenceLiang D, Cheng J, Ke Z, Leslie Y. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag. 2020; 37 ( 1 ): 141 - 151.
dc.identifier.citedreferenceSutton BP, Noll DC, Fessler JA. Dynamic field map estimation using a spiral-in/spiral-out acquisition. Magn Reson Med. 2004; 51 ( 6 ): 1194 - 1204.
dc.identifier.citedreferencePatzig F, Wilm B, Pruessmann KP. Off-resonance self-correction by implicit B 0 -encoding. In: Proceedings of the 29th Annual Meeting of ISMRM Virtual; 2021: 666.
dc.identifier.citedreferenceOlafsson VT, Noll DC, Fessler JA. Fast joint reconstruction of dynamic R 2 ∗ and field maps in functional MRI. IEEE Trans Med Imaging. 2008; 27 ( 9 ): 1177 - 1188.
dc.identifier.citedreferenceHernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z.-P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008; 59 ( 3 ): 571 - 580.
dc.identifier.citedreferenceLam F, Sutton BP, Intravoxel B 0 inhomogeneity corrected reconstruction using a low-rank encoding operator. Magn Reson Med. 2020; 84 ( 2 ): 885 - 894.
dc.identifier.citedreferenceWilm BJ, Barmet C, Pavan M, Pruessmann KP, Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn Reson Med. 2011; 65 ( 6 ): 1690 - 1701.
dc.identifier.citedreferenceKasper L, Engel M, Heinzle J, et al. Advances in spiral fMRI: a high-resolution study with single-shot acquisition. NeuroImage. 2022; 246: 118738.
dc.identifier.citedreferenceCampbell-Washburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med. 2016; 75 ( 6 ): 2278 - 2285.
dc.identifier.citedreferenceCao AA, Douglas N. Real-time respiration compensation in oscillating steady state fMRI. In: Proceedings of the 28th Annual Meeting of ISMRM, Sydney/Virtual; 2020: 1223.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.