Show simple item record

Mining adverse events in large frequency tables with ontology, with an application to the vaccine adverse event reporting system

dc.contributor.authorZhao, Bangyao
dc.contributor.authorZhao, Lili
dc.date.accessioned2023-05-01T19:11:34Z
dc.date.available2024-06-01 15:11:32en
dc.date.available2023-05-01T19:11:34Z
dc.date.issued2023-05-10
dc.identifier.citationZhao, Bangyao; Zhao, Lili (2023). "Mining adverse events in large frequency tables with ontology, with an application to the vaccine adverse event reporting system." Statistics in Medicine 42(10): 1512-1524.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/176293
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otheradverse event ontology
dc.subject.otherzero-inflated negative binomial distribution
dc.subject.otherVAERS
dc.subject.othervaccine adverse event
dc.subject.otherempirical Bayes
dc.titleMining adverse events in large frequency tables with ontology, with an application to the vaccine adverse event reporting system
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176293/1/sim9684_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176293/2/sim9684.pdf
dc.identifier.doi10.1002/sim.9684
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceKhuri AI. Applications of Dirac’s delta function in statistics. Int J Math Edu Sci Technol. 2004; 35 ( 2 ): 185 - 195. doi: 10.1080/00207390310001638313
dc.identifier.citedreferenceMozzicato P. MedDRA: an overview of the medical dictionary for regulatory activities. Pharm Med. 2009; 23: 65 - 75.
dc.identifier.citedreferenceLi R, Stewart B, Weintraub E, McNeil MM. Continuous sequential boundaries for vaccine safety surveillance. Stat Med. 2014; 33: 3387 - 3397.
dc.identifier.citedreferenceKulldorff M, Dashevsky I, Avery TR, et al. Drug safety data mining with a tree-based scan statistic. Pharmacoepidemiol Drug Saf. 2013; 22: 517 - 523.
dc.identifier.citedreferenceHuang J, Cai Y, Du J, et al. Monitoring vaccine safety by studying temporal variation of adverse events using vaccine adverse event reporting system. Anna Appl Stat. 2021; 15 ( 1 ): 252 - 269. doi: 10.1214/20-AOAS1393
dc.identifier.citedreferenceCai Y, Du J, Huang J, et al. A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data. BMC Med Inform Decis Mak. 2017; 17 ( 2 ): 93 - 100.
dc.identifier.citedreferenceZeileis A, Kleiber C, Jackman S. Regression models for count data in R. J Stat Software. 2008; 27 ( 8 ): 1 - 25. doi: 10.18637/jss.v027.i08
dc.identifier.citedreferenceLi S, Zhao L. Vaccine adverse event enrichment tests. Stat Med. 2021; 40 ( 19 ): 4269 - 4278.
dc.identifier.citedreferenceWoo EJ, Mba-Jonas A, Dimova RB, Alimchandani M, Zinderman CE, Nair N. Association of Receipt of the Ad26. COV2. S COVID-19 vaccine with presumptive Guillain-Barré syndrome, February-July 2021. Jama. 2021; 326 ( 16 ): 1606 - 1613.
dc.identifier.citedreferenceShimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020-January 18, 2021. Jama. 2021; 325 ( 11 ): 1101 - 1102.
dc.identifier.citedreferenceLambkin-Williams R, Gelder C, Broughton R, et al. An intranasal proteosome-adjuvanted trivalent influenza vaccine is safe, immunogenic and efficacious in the human viral influenza challenge model. Serum IgG and mucosal IgA are important correlates of protection against illness associated with infection. PLoS one. 2016; 11: e0163089.
dc.identifier.citedreferenceHaber P, Moro PL, Cano M, Lewis P, Stewart B, Shimabukuro T. Post-licensure surveillance of quadrivalent live attenuated influenza vaccine United States, Vaccine adverse event reporting system(VAERS), July 2013–June 2014. Vaccine. 2015; 33: 1987 - 1992.
dc.identifier.citedreferenceBaxtera R, Eatona A, Hansena J, Aukesa L, Caspardb H, Ambroseba CS. Safety of quadrivalent live attenuated influenza vaccinein subjects aged 2–49 years. Vaccine. 2017; 35: 1254 - 1258.
dc.identifier.citedreferenceZhao L, Lee S, Li R, Ong E, He Y, Freed G. Improvement in the analysis of vaccine adverse event reporting system database. Stat Biopharm Res. 2020; 12: 1 - 14. doi: 10.1080/19466315.2020.1764862
dc.identifier.citedreferenceDing Y, Markatou M, Ball R. An evaluation of statistical approaches to postmarketing surveillance. Stat Med. 2020; 39 ( 7 ): 845 - 874. doi: 10.1002/sim.8447
dc.identifier.citedreferenceHuang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for signal detection with application to FDA’s drug safety data. J Am Stat Assoc. 2011; 106 ( 496 ): 1230 - 1241. doi: 10.1198/jasa.2011.ap10243
dc.identifier.citedreferenceThissen D, Steinberg L, Kuang D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J Edu Behavior Stat. 2002; 27 ( 1 ): 77 - 83.
dc.identifier.citedreferenceVarricchio F, Iskander J, DeStefano F, et al. Understanding vaccine safety information from the vaccine adverse event reporting system. Pediatr Infect Dis J. 2004; 23: 287 - 294.
dc.identifier.citedreferenceShimabukuro TT, Nguyen M, Martin D, DeStefano F. Safety monitoring in the vaccine adverse event reporting system (VAERS). Vaccine. 2015; 33 ( 36 ): 4398 - 4405.
dc.identifier.citedreferenceDuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999; 53 ( 3 ): 177 - 190.
dc.identifier.citedreferenceDuMouchel W, Pregibon D. Empirical Bayes screening for multi-item associations. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA; 2001: 67 - 76.
dc.identifier.citedreferenceEvans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001; 10: 483 - 486.
dc.identifier.citedreferencePuijenbroek vEP, Bate A, Leufkens HG, Lindquist M, RO R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002; 11: 3 - 10.
dc.identifier.citedreferenceBate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998; 54: 315 - 321.
dc.identifier.citedreferenceLansner ROA, Bate A, IRE ML, et al. Bayesian neural networks with confidence estimations applied to data mining. Comput Stat Data Anal. 2000; 34: 473 - 493.
dc.identifier.citedreferenceNóren GN, Bate A, Orre R, Edwards IR. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. BCPNN. 2006; 25: 3740 - 3757.
dc.identifier.citedreferenceSzarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. PLoS ONE. 2002; 25: 381 - 392.
dc.identifier.citedreferenceKulldorff M, Davis RL, Kolczak M, Lewis E, Lieu T, Platt R. A maximized sequential probability ratio test for drug and vaccine safety surveillance. Sequential Anal. 2011; 30: 58 - 78.
dc.identifier.citedreferenceDavis RL, Kolczak M, Lewis E, et al. Active surveillance of vaccine safety: a system to detect early signs of adverse events. Epidemiology. 2005; 16: 336 - 341.
dc.identifier.citedreferenceLi L, Kulldorff M. A conditional maximized sequential probability ratio test for pharmacovigilance. Stat Med. 2009; 29: 284 - 295.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.