Show simple item record

Patterns in sources and forms of nitrogen in a large eutrophic lake during a cyanobacterial harmful algal bloom

dc.contributor.authorKharbush, Jenan J.
dc.contributor.authorRobinson, Rebecca S.
dc.contributor.authorCarter, Susan J.
dc.date.accessioned2023-05-01T19:11:40Z
dc.date.available2024-05-01 15:11:39en
dc.date.available2023-05-01T19:11:40Z
dc.date.issued2023-04
dc.identifier.citationKharbush, Jenan J.; Robinson, Rebecca S.; Carter, Susan J. (2023). "Patterns in sources and forms of nitrogen in a large eutrophic lake during a cyanobacterial harmful algal bloom." Limnology and Oceanography 68(4): 803-815.
dc.identifier.issn0024-3590
dc.identifier.issn1939-5590
dc.identifier.urihttps://hdl.handle.net/2027.42/176296
dc.description.abstractWestern Lake Erie experiences an annual, toxic cyanobacterial harmful algal bloom (cyanoHAB), primarily caused by excess anthropogenic inputs of nitrogen (N) and phosphorous (P). Because the non-N fixing cyanobacteria species Microcystis dominates these blooms, N availability is hypothesized to play a central role in cyanoHAB progression, as well as production of the N-rich toxin microcystin. Many previous studies focused on nitrate because it is the most abundant N substrate during bloom initiation. However, recent work implicated reduced N substrates like ammonium and dissolved organic N (DON) in promoting greater bloom biomass and longevity. To examine the relative importance of oxidized and reduced N substrates to phytoplankton during different bloom stages, we measured concentrations and natural abundance δ15N isotope values of dissolved N substrates and phytoplankton biomass throughout the entirety of the 2020 cyanoHAB in Western Lake Erie. The results provide the first data on DON dynamics and composition in Western Lake Erie, and suggest that phytoplankton, including Microcystis, likely relied on N regenerated from the DON pool in later bloom stages. In addition, the stable isotope data confirm the importance of nitrate delivered via the Maumee River to cyanobacterial growth and toxin production.
dc.publisherJohn Wiley & Sons, Inc.
dc.titlePatterns in sources and forms of nitrogen in a large eutrophic lake during a cyanobacterial harmful algal bloom
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176296/1/lno12311_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176296/2/lno12311.pdf
dc.identifier.doi10.1002/lno.12311
dc.identifier.sourceLimnology and Oceanography
dc.identifier.citedreferenceNOAA-NCCOS. 2020. Lake Erie Algal Bloom was Mild, as Predicted by Seasonal Forecast. https://coastalscience.noaa.gov/news/lake-erie-hab-2020-bloom-severity-was-mild-as-predicted-by-seasonal-forecast/ [Accessed 20 March 2021].
dc.identifier.citedreferenceOstrom, N. E., S. A. Macko, D. Deibel, and R. J. Thompson. 1997. Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim. Cosmochim. Acta 61: 2929 – 2942. doi: 10.1016/S0016-7037(97)00131-2
dc.identifier.citedreferenceOstrom, N. E., D. T. Long, E. M. Bell, and T. Beals. 1998. The origin and cycling of particulate and sedimentary organic matter and nitrate in Lake Superior. Chem. Geol. 152: 13 – 28. doi: 10.1016/S0009-2541(98)00093-X
dc.identifier.citedreferencePurvina, S., C. Béchemin, M. Balode, C. Verite, C. Arnaud, and S. Y. Maestrini. 2010. Release of available nitrogen from river-discharged dissolved organic matter by heterotrophic bacteria associated with the cyanobacterium Microcystis aeruginosa. Estonian J. Ecol. 59: 184 – 196. doi: 10.3176/eco.2010.3.02
dc.identifier.citedreferenceR Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing,. Available from https://www.r-project.org/.
dc.identifier.citedreferenceScavia, D., and others. 2016. Informing Lake Erie agriculture nutrient management via scenario evaluation. http://graham.umich.edu/media/pubs/InformingLakeErieAgricultureNutrientManagementviaScenarioEvaluation.pdf
dc.identifier.citedreferenceSigman, D., K. Karsh, and K. Casciotti. 2009. Ocean process tracers: Nitrogen isotopes in the ocean, Elsevier, p. 4138 – 4153. In Encyclopedia of ocean sciences.
dc.identifier.citedreferenceSmith, D. J., J. J. Kharbush, R. D. Kersten, G., and J. Dick. 2022. Uptake of phytoplankton-derived carbon and cobalamins by novel Acidobacteria genera in Microcystis blooms inferred from metagenomic and metatranscriptomic evidence. Appl. Environ. Microbiol. 88: 1 – 18. doi: 10.1128/aem.01803-21
dc.identifier.citedreferenceSterner, R. W. 2021. The laurentian great lakes: A biogeochemical test bed. Annu. Rev. Earth Planet. Sci. 49: 201 – 229. doi: 10.1146/annurev-earth-071420-051746
dc.identifier.citedreferenceStow, C. A., Y. Cha, L. T. Johnson, R. Confesor, and R. P. Richards. 2015. Long-term and seasonal trend decomposition of Maumee river nutrient inputs to western Lake Erie. Environ. Sci. Technol. 49: 3392 – 3400. doi: 10.1021/es5062648
dc.identifier.citedreferenceStumpf, R. P., L. T. Johnson, T. T. Wynne, and D. B. Baker. 2016. Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J. Great Lakes Res. 42: 1174 – 1183. doi: 10.1016/J.JGLR.2016.08.006
dc.identifier.citedreferenceTeranes, J. L., and S. M. Bernasconi. 2000. The record of nitrate utilization and productivity limitation provided by d15N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanogr. 45: 801 – 813. doi: 10.4319/lo.2000.45.4.0801
dc.identifier.citedreferenceWickham, H., R. Francois, L. Henry, and K. Müller. 2022. dplyr: A grammer of data manipulation. R package version 1.0.10. Available from https://cran.r-project.org/package=dplyr.
dc.identifier.citedreferenceYamashita, Y., and E. Tanoue. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar. Chem. 82: 255 – 271. doi: 10.1016/S0304-4203(03)00073-2
dc.identifier.citedreferenceYancey, C. E., and others. 2022. Metagenomic and metatranscriptomic insights into population diversity of Microcystis blooms: Spatial and temporal dynamics of mcy genotypes, including a partial operon that can be abundant and expressed. Appl. Environ. Microbiol. 88: e0246421. doi: 10.1128/AEM.02464-21
dc.identifier.citedreferenceYao, X., Y. Zhang, L. Zhang, G. Zhu, B. Qin, Y. Zhou, and J. Xue. 2020. Emerging role of dissolved organic nitrogen in supporting algal bloom persistence in Lake Taihu, China: Emphasis on internal transformations. Sci. Total Environ. 736: 139497. doi: 10.1016/j.scitotenv.2020.139497
dc.identifier.citedreferenceYoshioka, T., E. Wada, and Y. Saijo. 1988. Isotopic characterization of Lake Kizaki and Lake Suwa. Jpn. J. Limnol. (Rikusuigaku Zasshi) 49: 119 – 128. doi: 10.3739/rikusui.49.119
dc.identifier.citedreferenceZhang, Y., S. Huo, F. Zan, B. Xi, and J. Zhang. 2015. Dissolved organic nitrogen (DON) in seventeen shallow lakes of Eastern China. Environ. Earth Sci. 74: 4011 – 4021. doi: 10.1007/s12665-015-4185-1
dc.identifier.citedreferenceAllinger, L. E., and E. D. Reavie. 2013. The ecological history of Lake Erie as recorded by the phytoplankton community. J. Great Lakes Res. 39: 365 – 382. doi: 10.1016/j.jglr.2013.06.014
dc.identifier.citedreferenceBada, J. L., M. J. Schoeninger, and A. Schimmelmann. 1989. Isotopic fractionation during peptide bond hydrolysis. Geochim. Cosmochim. Acta 53: 3337 – 3341. doi: 10.1016/0016-7037(89)90114-2
dc.identifier.citedreferenceBelisle, B. S., M. M. Steffen, H. L. Pound, S. B. Watson, J. M. DeBruyn, R. A. Bourbonniere, G. L. Boyer, and S. W. Wilhelm. 2016. Urea in Lake Erie: Organic nutrient sources as potentially important drivers of phytoplankton biomass. J. Great Lakes Res. 42: 599 – 607. doi: 10.1016/j.jglr.2016.03.002
dc.identifier.citedreferenceBerman, T., and D. A. Bronk. 2003. Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol. 31: 279 – 305. doi: 10.3354/ame031279
dc.identifier.citedreferenceBerry, M. A., and others. 2017. Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. Environ. Microbiol. 19: 1149 – 1162. doi: 10.1111/1462-2920.13640
dc.identifier.citedreferenceBeutler, M., K. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 72: 39 – 53. doi: 10.1023/a:1016026607048
dc.identifier.citedreferenceBeversdorf, L. J., T. R. Miller, and K. D. McMahon. 2015. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00456
dc.identifier.citedreferenceBlomqvist, P., A. Pettersson, and P. Hyenstrane. 1994. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141 – 164.
dc.identifier.citedreferenceBurtner, A., C. Kitchens, G. Carter, K. McCabe, H. Henderson, C. Godwin, D. Gossiaux, and R. Errera. 2022. Physical, chemical, and biological water quality monitoring data to support detection of harmful algal blooms (HABs) physical, chemical, and biological water quality data collected from a small boat in western Lake Erie, Great Lakes from 2020-06-16 to 2021-10-27 (NCEI Accession 0254720). NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0254720
dc.identifier.citedreferenceCao, P., C. Lu, and Z. Yu. 2018. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: Application rate, timing, and fertilizer types. Earth Syst. Sci. Data 10: 969 – 984. doi: 10.5194/ESSD-10-969-2018
dc.identifier.citedreferenceCasciotti, K. L., D. M. Sigman, M. G. Hastings, J. K. Böhlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74: 4905 – 4912. doi: 10.1021/ac020113w
dc.identifier.citedreferenceChaffin, J. D., T. B. Bridgeman, and D. L. Bade. 2013. Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie. Adv. Microbiol. 2013: 16 – 26. doi: 10.4236/AIM.2013.36A003
dc.identifier.citedreferenceChaffin, J. D., and T. B. Bridgeman. 2014. Organic and inorganic nitrogen utilization by nitrogen-stressed cyanobacteria during bloom conditions. J. Appl. Phycol. 26: 299 – 309. doi: 10.1007/s10811-013-0118-0
dc.identifier.citedreferenceChernoff, N., D. Hill, J. Lang, J. Schmid, T. Le, A. Farthing, and H. Huang. 2020. The comparative toxicity of 10 microcystin congeners administered orally to mice: Clinical effects and organ toxicity. Toxins 12: 403. doi: 10.3390/TOXINS12060403
dc.identifier.citedreferenceColborne, S. F., and others. 2019. Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Sci. Total Environ. 647: 1594 – 1603. doi: 10.1016/j.scitotenv.2018.08.029
dc.identifier.citedreferenceCory, R. M., and others. 2016. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. 3: 1 – 17. doi: 10.3389/fmars.2016.00054
dc.identifier.citedreferenceDavis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715 – 725. doi: 10.1016/j.hal.2009.02.004
dc.identifier.citedreferenceDavis, T. W., G. S. Bullerjahn, T. Tuttle, R. M. McKay, and S. B. Watson. 2015. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Environ. Sci. Technol. 49: 7197 – 7207. doi: 10.1021/acs.est.5b00799
dc.identifier.citedreferenceDeutsch, B., M. Mewes, I. Liskow, and M. Voss. 2006. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org. Geochem. 37: 1333 – 1342. doi: 10.1016/J.ORGGEOCHEM.2006.04.012
dc.identifier.citedreferenceDonald, D. B., M. J. Bogard, K. Finlay, and P. R. Leavitt. 2011. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol. Oceanogr. 56: 2161 – 2175. doi: 10.4319/LO.2011.56.6.2161
dc.identifier.citedreferenceDowning, T. G., C. Meyer, M. M. Gehringer, and M. Van De Venter. 2005. Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ. Toxicol. 20: 257 – 262.
dc.identifier.citedreferenceDurand, P., and others. 2011. Nitrogen processes in aquatic ecosystems, p. 126 – 146. In M. Sutton and others [eds.], The European Nitrogen Assessment: Sources, effects and policy perspectives. Cambridge University Press. doi: 10.1017/cbo9780511976988.010
dc.identifier.citedreferenceEscoffier, N., C. Bernard, S. Hamlaoui, A. Groleau, and A. Catherine. 2015. Quantifying phytoplankton communities using spectral fluorescence: The effects of species composition and physiological state. J. Plankton Res. 37: 233 – 247. doi: 10.1093/plankt/fbu085
dc.identifier.citedreferenceFawcett, S. E., M. W. Lomas, J. R. Casey, B. B. Ward, and D. M. Sigman. 2011. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4: 717 – 722. doi: 10.1038/ngeo1265
dc.identifier.citedreferenceFellman, J. B., E. Hood, D. V. D’Amore, R. T. Edwards, and D. White. 2009. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95: 277 – 293. doi: 10.1007/s10533-009-9336-6
dc.identifier.citedreferenceFeuerstein, T. P., P. H. Ostrom, and N. E. Ostrom. 1997. Isotopic biogeochemistry of dissolved organic nitrogen: A new technique and application. Org. Geochem. 27: 363 – 370. doi: 10.1016/S0146-6380(97)00071-5
dc.identifier.citedreferenceFinlay, J. C., and C. Kendall. 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems, p. 283 – 333. In Stable isotopes in ecology and environmental science, 2nd ed. Wiley-Blackwell.
dc.identifier.citedreferenceFinlay, J. C., R. W. Sterner, and S. Kumar. 2007. Isotopic evidence for in-lake production of accumulating nitrate in lake superior. Ecol. Appl. 17: 2323 – 2332. doi: 10.1890/07-0245.1
dc.identifier.citedreferenceFlores, E., and A. Herrero. 2005. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33: 164 – 167. doi: 10.1042/BST0330164
dc.identifier.citedreferenceFogel, M. L., and L. A. Cifuentes. 1993. Isotope fractionation during primary production, p. 73 – 98. Organic geochemistry: Principles and applications, Springer.
dc.identifier.citedreferenceGlibert, P. M., and others. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61: 165 – 197. doi: 10.1002/lno.10203
dc.identifier.citedreferenceGLWQA (Great Lakes Water Quality Agreement). 2016. The United States and Canada adopt phosphorus load reduction targets to combat lake erie algal blooms. Recommended binational phosphorous targets to combat Lake Erie algal blooms. Factsheet. Available at https://binational.net/wp-content/uploads/2015/07/nutrients-factsheet-en-FINAL.pdf.
dc.identifier.citedreferenceGobler, C. J., J. A. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow, and D. B. Van de Waal. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87 – 97. doi: 10.1016/j.hal.2016.01.010
dc.identifier.citedreferenceGranger, J., D. M. Sigman, M. M. Rohde, M. T. Maldonado, and P. D. Tortell. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74: 1030 – 1040. doi: 10.1016/j.gca.2009.10.044
dc.identifier.citedreferenceGu, B. 2012. Stable isotopes as indicators for seasonally dominant nitrogen cycling processes in a subarctic lake. Int. Rev. Hydrobiol. 97: 233 – 243. doi: 10.1002/iroh.201111466
dc.identifier.citedreferenceHampel, J. J., M. J. McCarthy, W. S. Gardner, L. Zhang, H. Xu, G. Zhu, and S. E. Newell. 2018. Nitrification and ammonium dynamics in Taihu Lake, China: Seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences 15: 733 – 748. doi: 10.5194/bg-15-733-2018
dc.identifier.citedreferenceHampel, J. J., M. J. McCarthy, M. Neudeck, G. S. Bullerjahn, R. M. L. McKay, and S. E. Newell. 2019. Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake Erie: Evidence from stable isotope and metatranscriptome data. Harmful Algae 81: 42 – 52. doi: 10.1016/j.hal.2018.11.011
dc.identifier.citedreferenceHarke, M. J., and C. J. Gobler. 2015. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa. BMC Genomics 16: 1 – 18. doi: 10.1186/s12864-015-2275-9
dc.identifier.citedreferenceHoffman, D. K., M. J. McCarthy, A. R. Boedecker, J. A. Myers, and S. E. Newell. 2022. The role of internal nitrogen loading in supporting non-N-fixing harmful cyanobacterial blooms in the water column of a large eutrophic lake. Limnol. Oceanogr. 67: 2028 – 2041. doi: 10.1002/LNO.12185
dc.identifier.citedreferenceHoke, A. K., and others. 2021. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS One 16: e0257017. doi: 10.1371/JOURNAL.PONE.0257017
dc.identifier.citedreferenceHorst, G. P., O. Sarnelle, J. D. White, S. K. Hamilton, R. R. B. Kaul, and J. D. Bressie. 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res. 54: 188 – 198. doi: 10.1016/j.watres.2014.01.063
dc.identifier.citedreferenceHou, X., L. Feng, Y. Dai, and others. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 15: 130 – 134. doi: 10.1038/s41561-021-00887-x
dc.identifier.citedreferenceJankowiak, J., T. Hattenrath-Lehmann, B. J. Kramer, M. Ladds, and C. J. Gobler. 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64: 1347 – 1370. doi: 10.1002/LNO.11120
dc.identifier.citedreferenceKane, D. D., J. D. Conroy, R. P. Richards, D. B. Baker, and D. A. Culver. 2014. Re-eutrophication of Lake Erie: Correlations between tributary nutrient loads and phytoplankton biomass. J. Great Lakes Res. 40: 496 – 501.
dc.identifier.citedreferenceKassambara, A. 2020. ggpubr: “ggplot2” based publication ready plots. R package version 0.4.0. Available from https://cran.r-project.org/package=ggpubr
dc.identifier.citedreferenceKendall, C., E. M. Elliott, and S. D. Wankel. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems, p. 375 – 449. In Stable isotopes in ecology and environmental science, 2nd ed. Wiley-Blackwell.
dc.identifier.citedreferenceKnapp, A. N., D. M. Sigman, and F. Lipschultz. 2005. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series study site. Global Biogeochem. Cycl. 19: 1 – 15. doi: 10.1029/2004GB002320
dc.identifier.citedreferenceKnapp, A. N., D. M. Sigman, F. Lipschultz, A. B. Kustka, and D. G. Capone. 2011. Interbasin isotopic correspondence between upper-ocean bulk DON and subsurface nitrate and its implications for marine nitrogen cycling. Global Biogeochem. Cycl. 25: GB4004. doi: 10.1029/2010GB003878
dc.identifier.citedreferenceLehmann, M. F., S. M. Bernasconi, J. A. McKenzie, A. Barbieri, M. Simona, and M. Veronesi. 2004. Seasonal variation of the δ 13 C and δ 15 N of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical cycling in a eutrophic lake. Limnol. Oceanogr. 49: 415 – 429. doi: 10.4319/lo.2004.49.2.0415
dc.identifier.citedreferenceLehman, P. W., C. Kendall, M. A. Guerin, M. B. Young, S. R. Silva, G. L. Boyer, and S. J. Teh. 2015. Characterization of the Microcystis bloom and its nitrogen supply in San Francisco Estuary using stable isotopes. Estuar. Coast. 38: 165 – 178. doi: 10.1007/s12237-014-9811-8
dc.identifier.citedreferenceMaccoux, M. J., A. Dove, S. M. Backus, and D. M. Dolan. 2016. Total and soluble reactive phosphorus loadings to Lake Erie: A detailed accounting by year, basin, country, and tributary. J. Great Lakes Res. 42: 1151 – 1165. doi: 10.1016/J.JGLR.2016.08.005
dc.identifier.citedreferenceMacko, S. A., M. L. F. Estep, M. H. Engel, and P. E. Hare. 1986. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochim. Cosmochim. Acta 50: 2143 – 2146. doi: 10.1016/0016-7037(86)90068-2
dc.identifier.citedreferenceMcCarthy, M. J., W. S. Gardner, M. F. Lehmann, and D. F. Bird. 2013. Implications of water column ammonium uptake and regeneration for the nitrogen budget in temperate, eutrophic Missisquoi Bay, Lake Champlain (Canada/USA). Hydrobiologia 718: 173 – 188. doi: 10.1007/s10750-013-1614-6
dc.identifier.citedreferenceMcCusker, E. M., P. H. Ostrom, N. E. Ostrom, J. D. Jeremiason, and J. E. Baker. 1999. Seasonal variation in the biogeochemical cycling of seston in Grand Traverse Bay, Lake Michigan. Org. Geochem. 30: 1543 – 1557. doi: 10.1016/S0146-6380(99)00129-1
dc.identifier.citedreferenceMillar, N., J. E. Doll, and G. P. Robertson. 2014. Management of nitrogen fertilizer to reduce nitrous oxide emissions from field crops. Climate Change and Agriculture Fact Sheet Series—MSU Extension Bulletin E3152.
dc.identifier.citedreferenceMonchamp, M.-E., F. R. Pick, B. E. Beisner, and R. Maranger. 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS One 9: e85573. doi: 10.1371/journal.pone.0085573
dc.identifier.citedreferenceNewell, S. E., T. W. Davis, T. H. Johengen, D. Gossiaux, A. Burtner, D. Palladino, and M. J. McCarthy. 2019. Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie. Harmful Algae 81: 86 – 93. doi: 10.1016/j.hal.2018.11.003
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.