Show simple item record

New experimental evidence for pervasive dynamics in proteins

dc.contributor.authorZuiderweg, Erik R.P.
dc.contributor.authorCase, David A.
dc.date.accessioned2023-05-01T19:12:03Z
dc.date.available2024-06-01 15:12:02en
dc.date.available2023-05-01T19:12:03Z
dc.date.issued2023-05
dc.identifier.citationZuiderweg, Erik R.P.; Case, David A. (2023). "New experimental evidence for pervasive dynamics in proteins." Protein Science 32(5): n/a-n/a.
dc.identifier.issn0961-8368
dc.identifier.issn1469-896X
dc.identifier.urihttps://hdl.handle.net/2027.42/176306
dc.description.abstractThere is ample computational, but only sparse experimental data suggesting that pico-ns motions with 1 Å amplitude are pervasive in proteins in solution. Such motions, if present in reality, must deeply affect protein function and protein entropy. Several NMR relaxation experiments have provided insights into motions of proteins in solution, but they primarily report on azimuthal angle variations of vectors of covalently-linked atoms. As such, these measurements are not sensitive to distance fluctuations, and cannot but under-represent the dynamical properties of proteins. Here we analyze a novel NMR relaxation experiment to measure amide proton transverse relaxation rates in uniformly 15N labeled proteins, and present results for protein domain GB1 at 283 and 303 K. These relaxation rates depend on fluctuations of dipolar interactions between 1HN and many nearby protons on both the backbone and sidechains. Importantly, they also report on fluctuations in the distances between these protons. We obtained a large mismatch between rates computed from the crystal structure of GB1 and the experimental rates. But when the relaxation rates were calculated from a 200 ns molecular dynamics trajectory using a novel program suite, we obtained a substantial improvement in the correspondence of experimental and theoretical rates. As such, this work provides novel experimental evidence of widespread motions in proteins. Since the improvements are substantial, but not sufficient, this approach may also present a new benchmark to help improve the theoretical forcefields underlying the molecular dynamics calculations.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherNMR relaxation
dc.subject.othersidechain motions
dc.subject.othermolecular dynamics
dc.subject.othercomputation
dc.titleNew experimental evidence for pervasive dynamics in proteins
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176306/1/pro4630.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176306/2/pro4630_am.pdf
dc.identifier.doi10.1002/pro.4630
dc.identifier.sourceProtein Science
dc.identifier.citedreferenceSchweiger A, Braunschweiler L, Fauth J, Ernst RR. Coherent and incoherent echo spectroscopy with extended-time excitation. Phys Rev Lett. 1985; 54: 1241 – 4.
dc.identifier.citedreferenceLipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc. 1982b; 104: 4546 – 59.
dc.identifier.citedreferenceLoth K, Pelupessy P, Bodenhausen G. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J Am Chem Soc. 2005; 127: 6062 – 8.
dc.identifier.citedreferenceMancini T, Mosetti R, Marcelli A, Petrarca M, Lupi S, D’Arco A. Terahertz spectroscopic analysis in protein dynamics: current status. Radiation. 2022; 2: 100 – 23.
dc.identifier.citedreferenceMorris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of protein structure coordinates. Proteins. 1992; 12: 345 – 64.
dc.identifier.citedreferenceSchleucher J, Wijmenga SS. How to detect internal motion by homonuclear NMR. J Am Chem Soc. 2002; 124: 5881 – 9.
dc.identifier.citedreferenceSchmidt HL, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, et al. Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B. 2007; 111: 14362 – 9.
dc.identifier.citedreferenceSegawa TF, Bodenhausen G. Determination of transverse relaxation rates in systems with scalar-coupled spins: the role of antiphase coherences. J Magn Reson. 2013; 237: 139 – 46.
dc.identifier.citedreferenceSmith AA, Ernst M, Riniker S, Meier BH. Localized and collective motions in HET-s(218-289) fibrils from combined NMR relaxation and MD simulation. Angew Chem Int Ed Engl. 2019; 58: 9383 – 8.
dc.identifier.citedreferenceSmith CA, Mazur A, Rout AK, Becker S, Lee D, de Groot BL, et al. Enhancing NMR derived ensembles with kinetics on multiple timescales. J Biomol NMR. 2020; 74: 27 – 43.
dc.identifier.citedreferenceTian C, Kasavajhala K, Belfon K, Raguette L, Huang H, Migues A, et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput. 2020; 16: 528 – 52.
dc.identifier.citedreferenceToyama Y, Rangadurai AK, Kay LE. Measurement of H-1(alpha) transverse relaxation rates in proteins: application to solvent PREs. J Biomol NMR. 2022; 76: 137 – 52.
dc.identifier.citedreferenceTugarinov V, Kay LE, Ibraghimov I, Orekhov VY. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc. 2005; 127: 2767 – 75.
dc.identifier.citedreferenceVan Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26: 1701 – 18.
dc.identifier.citedreferenceVendruscolo M, Paci E, Dobson CM, Karplus M. Rare fluctuations of native proteins sampled by equilibrium hydrogen exchange. J Am Chem Soc. 2003; 125: 15686 – 7.
dc.identifier.citedreferenceVogeli B. The nuclear overhauser effect from a quantitative perspective. Prog Nucl Magn Reson Spectrosc. 2014; 78: 1 – 46.
dc.identifier.citedreferenceVold RL, Vold RR. Nuclear magnetic-relaxation in coupled spin systems. Prog. NMR Spectrosc. 1978; 12: 79 – 133.
dc.identifier.citedreferenceWilliams, C. J., Headd, J. J., Moriarty, N. A.-O., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., 3rd, Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., and Richardson, D. C. ( 2018 ) MolProbity: more and better reference data for improved all-atom structure validation.
dc.identifier.citedreferenceWong V, Case DA. Evaluating rotational diffusion from protein MD simulations. J Phys Chem B. 2008; 112: 6013 – 24.
dc.identifier.citedreferenceZuiderweg ERP. Multispin cross-correlated transverse dipolar NMR relaxation in solution. Concepts in Magnetic Resonance Part A. 2022; 2022: 1 – 10.
dc.identifier.citedreferenceFischer MWF, Majumdar A, Zuiderweg ERP. Protein NMR relaxation: theory, applications and outlook. Prog. NMR Spectrosc. 1998; 33: 207 – 72.
dc.identifier.citedreferenceGoldman M. Interference effects in the relaxation of a pair of unlike spin 1/2 nuclei. J Magn Reson. 1984; 60: 437 – 52.
dc.identifier.citedreferenceGoldman M. Quantum description of high-resolution NMR in liquids. Oxford: Clarendon Press; 1988.
dc.identifier.citedreferenceAbergel D, Palmer AG. Approximate solutions of the Bloch-McConnell equations for two-site chemical exchange. ChemPhysChem. 2004; 5: 787 – 93.
dc.identifier.citedreferenceAbragam A. The principles of nuclear magnetism. The principles of nuclear magnetism. Oxford: Clarenden Press; 1961.
dc.identifier.citedreferenceAnandakrishnan R, Baker C, Izadi S, Onufriev AV. Point charges optimally placed to represent the multipole expansion of charge distributions. PloS One. 2013; 8: e67715.
dc.identifier.citedreferenceBarth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007; 1767: 1073 – 101.
dc.identifier.citedreferenceBax A. Homonuclear Hartmann-Hahn experiments. Methods Enzymol. 1989; 176: 151 – 68.
dc.identifier.citedreferenceBest RB, Vendruscolo M. Structural interpretation of hydrogen exchange protection factors in proteins: characterization of the native state fluctuations of CI2. Structure. 2006; 14: 97 – 106.
dc.identifier.citedreferenceBonvin AM, Rullmann JA, Lamerichs RM, Boelens R, Kaptein R. "Ensemble" iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of crambin. Proteins. 1993; 15: 385 – 400.
dc.identifier.citedreferenceBothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW. Structure determination of a tetrasaccharide: transient nuclear overhauser effects in the rotating frame. J Am Chem Soc. 1984; 106: 811 – 3.
dc.identifier.citedreferenceBoulat B, Bodenhausen G. Measurement of proton relaxation rates in proteins. J Biomolecular NMR. 1993; 3: 335 – 48.
dc.identifier.citedreferenceBouvignies G, Meier S, Grzesiek S, Blackledge M. Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media. Angew Chem Int Ed Engl. 2006; 45: 8166 – 9.
dc.identifier.citedreferenceBrooks CL 3rd, Onuchic JN, Wales DJ. Statistical thermodynamics. Taking a walk on a landscape. Science. 2001; 293: 612 – 3.
dc.identifier.citedreferenceBrooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009; 30: 1545 – 614.
dc.identifier.citedreferenceBrüschweiler R, Case DA. Characterization of biomolecular structure and dynamics by NMR cross relaxation. Prog NMR Spectrosc. 1994; 26: 27 – 58.
dc.identifier.citedreferenceBrüschweiler RP. Structural dynamics of biomolecular monitored by nuclear magnetic resonance relaxation. ETH Zurich; 1991.
dc.identifier.citedreferenceCase DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, et al. The amber biomolecular simulation programs. J Comput Chem. 2005; 26: 1668 – 88.
dc.identifier.citedreferenceCavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ. Protein NMR spectroscopy. Principles and Practice: Academic Press, London; 1996. p. 279.
dc.identifier.citedreferenceChoy WY, Shortle D, Kay LE. Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta. J Am Chem Soc. 2003; 125: 1748 – 58.
dc.identifier.citedreferenceDaragan VA, Mayo KH. Motional model analyses of protein and peptide dynamics using 13 C and 15 N NMR relaxation. Prog NMR Spectrosc. 1997; 31: 63 – 105.
dc.identifier.citedreferenceDavis DG, Perlman ME, London RE. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T-1-rho and T-2 (CPMG) methods. J Magn Reson B. 1994; 104: 266 – 75.
dc.identifier.citedreferencede la Torre JC, Huertas ML, Carrasco B. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson. 2000; 147: 138 – 46.
dc.identifier.citedreferenceDemchenko A. Fluorescence analysis of protein dynamics. Essays Biochem. 1986; 22: 120 – 57.
dc.identifier.citedreferenceEisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature. 2005; 438: 117 – 21.
dc.identifier.citedreferenceEnglander SW, Downer NW, Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972; 41: 903 – 24.
dc.identifier.citedreferenceHansen AL, Lundstrom P, Velyvis A, Kay LE. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain H-1 probes. J Am Chem Soc. 2012; 134: 3178 – 89.
dc.identifier.citedreferenceHansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct Biol. 2002; 12: 190 – 6.
dc.identifier.citedreferenceIwahara J, Tang C, Marius Clore G. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson. 2007; 184: 185 – 95.
dc.identifier.citedreferenceKay LE, Gardner KH. Solution NMR spectroscopy beyond 25 kDa. Curr Opin Struct Biol. 1997; 7: 722 – 31.
dc.identifier.citedreferenceKay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15 N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989; 28: 8972 – 9.
dc.identifier.citedreferenceKern D, Eisenmesser EZ, Wolf-Watz M. Enzyme dynamics during catalysis measured by NMR spectroscopy. Methods Enzymol. 2005; 394: 507 – 24.
dc.identifier.citedreferenceLee AL, Kinnear SA, Wand AJ. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol. 2000; 7: 72 – 7.
dc.identifier.citedreferenceLipari G, Szabo A. Analysis of NMR relaxation data on macromolecules using the model-free approach. Biophys J. 1982a; 37: A380.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.