Show simple item record

An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT

dc.contributor.authorLi, Zhipeng
dc.contributor.authorLong, Yong
dc.contributor.authorChun, Il Yong
dc.date.accessioned2023-05-01T19:12:11Z
dc.date.available2024-05-01 15:12:09en
dc.date.available2023-05-01T19:12:11Z
dc.date.issued2023-04
dc.identifier.citationLi, Zhipeng; Long, Yong; Chun, Il Yong (2023). "An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT." Medical Physics 50(4): 2195-2211.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/176308
dc.description.abstractPurposeDual-energy computed tomography (DECT) has widely been used in many applications that need material decomposition. Image-domain methods directly decompose material images from high- and low-energy attenuation images, and thus, are susceptible to noise and artifacts on attenuation images. The purpose of this study is to develop an improved iterative neural network (INN) for high-quality image-domain material decomposition in DECT, and to study its�properties.MethodsWe propose a new INN architecture for DECT material decomposition. The proposed INN architecture uses distinct cross-material convolutional neural network (CNN) in image refining modules, and uses image decomposition physics in image reconstruction modules. The distinct cross-material CNN refiners incorporate distinct encoding-decoding filters and cross-material model that captures correlations between different materials. We study the distinct cross-material CNN refiner with patch-based reformulation and tight-frame condition.ResultsNumerical experiments with extended cardiac-torso phantom and clinical data show that the proposed INN significantly improves the image quality over several image-domain material decomposition methods, including a conventional model-based image decomposition (MBID) method using an edge-preserving regularizer, a recent MBID method using prelearned material-wise sparsifying transforms, and a noniterative deep CNN method. Our study with patch-based reformulations reveals that learned filters of distinct cross-material CNN refiners can approximately satisfy the tight-frame�condition.ConclusionsThe proposed INN architecture achieves high-quality material decompositions using iteration-wise refiners that exploit cross-material properties between different material images with distinct encoding-decoding filters. Our tight-frame study implies that cross-material CNN refiners in the proposed INN architecture are useful for noise suppression and signal�restoration.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimage-domain decomposition
dc.subject.otheriterative neural network
dc.subject.otherdual-energy CT
dc.titleAn improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176308/1/mp15817-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176308/2/mp15817_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176308/3/mp15817.pdf
dc.identifier.doi10.1002/mp.15817
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceLi Z, Chun IY, Long Y. Image-domain material decomposition using an iterative neural network for dual-energy CT. In: Proceedings of IEEE International Symposium on Biomedical Imaging, April 2020: 651 - 655.
dc.identifier.citedreferenceZhang W, Zhang H, Wang L, et�al. Image domain dual material decomposition for dual-energy CT using butterfly network. Med Phys. 2019; 46 ( 5 ): 2037 - 2051.
dc.identifier.citedreferenceClark DP, Holbrook M, Badea CT. Multi-energy CT decomposition using convolutional neural networks. In: Medical Imaging 2018: Physics of Medical Imaging, volume 10573, October 2018: 105731O.
dc.identifier.citedreferenceChun IY, Fessler JA. Deep BCD-Net using identical encoding-decoding CNN structures for iterative image recovery. In: Proceedings of IEEE Workshop on Image, Video, and Multidimensional Signal Processing Workshop. 2018: 1 - 5.
dc.identifier.citedreferenceChun IY, Lim H, Huang Z, Fessler JA. Fast and convergent iterative signal recovery using trained convolutional neural networks. In: Proceedings of Allerton Conference on Communication, Control, and Computing, Allerton, IL, October 2018: 155 - 159.
dc.identifier.citedreferenceChun IY, Zheng X, Long Y, Fessler JA. BCD-Net for low-dose CT reconstruction: Acceleration, convergence, and generalization. Med Image Comput Comput-Assisted Intervention (MICCAI). 2019: 31 - 40.
dc.identifier.citedreferenceLim H, Chun IY, Dewaraja YK, Fessler JA. Improved low-count quantitative PET reconstruction with an iterative neural network. IEEE Trans Med Imag. 2020; 39: 3512 - 3522. https://doi.org/10.1109/TMI.2020.2998480
dc.identifier.citedreferenceChun IY, Huang Z, Lim H, Fessler JA. Momentum-Net: fast and convergent iterative neural network for inverse problems. Early access in IEEE Trans Pattern Anal Mach Intell. 2020. https://doi.org/10.1109/TPAMI.2020.3012955
dc.identifier.citedreferenceYe S, Long Y, Chun IY. Momentum-Net for low-dose CT image reconstruction. accepted to Asilomar Conference on Signals, Systems, and Computers. 2020. Online: http://arxiv.org/abs/2002.12018
dc.identifier.citedreferenceYang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems 29, December 2016: 10 - 18.
dc.identifier.citedreferenceFang W, Wu D, Kim K, et�al. Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior. Phys Med Biol. 2021; 66 ( 15 ): 155013.
dc.identifier.citedreferenceMaass C, Baer M, Kachelriess M. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys. 2009; 36 ( 8 ): 3818 - 3829.
dc.identifier.citedreferenceXue Y, Jiang Y, Yang C, et�al. Accurate multi-material decomposition in dual-energy CT: a phantom study. IEEE Trans Comput Imaging. 2019; 5 ( 4 ): 515 - 529.
dc.identifier.citedreferenceWu W, Chen P, Wang S, Vardhanabhuti V, Liu F, Yu H. Image-domain material decomposition for spectral CT using a generalized dictionary learning. IEEE Trans Radiat Plasma Med Sci. 2021; 5 ( 4 ): 537 - 547.
dc.identifier.citedreferenceWu W, Yu H, Chen P, et�al. Dictionary learning based image-domain material decomposition for spectral CT. Phys Med Biol. 2020; 65 ( 24 ): 245006.
dc.identifier.citedreferenceWaldron SFD. An introduction to finite tight frames. Springer; 2018.
dc.identifier.citedreferenceCai JF, Ji H, Shen Z, Ye GB. Data-driven tight frame construction and image denoising. Appl Comput Harmon Anal. 2014; 37 ( 1 ): 89 - 105.
dc.identifier.citedreferenceSegars WP, Mahesh M, Beck TJ, Frey EC, Tsui BMW. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008; 35 ( 8 ): 3800 - 3808.
dc.identifier.citedreferenceKingma DP, Ba JL. Adam: a method for stochastic optimization. In: Proceedings of IEEE International Symposium on Biomedical Imaging. April 2020: 651 - 655.
dc.identifier.citedreferencePetrongolo M, Zhu L. Noise suppression for dual-energy CT through entropy minimization. IEEE Trans Med Imag. 2015; 34 ( 11 ): 2286 - 2297.
dc.identifier.citedreferenceWu W, Hu D, Cong W, et�al. Stabilizing deep tomographic reconstruction. 2021. Online: http://arxiv.org/abs/2008.01846
dc.identifier.citedreferenceHokamp N, Lennartz S, Salem J, et�al. Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study. Eur Radiol. 2020; 30 ( 3 ): 1397 - 1404.
dc.identifier.citedreferenceJacobsen MC, Cressman EN, Tamm EP, et�al. Dual-energy CT: lower limits of iodine detection and quantification. Radiology. 2019; 292 ( 2 ): 414 - 419.
dc.identifier.citedreferenceLi Y, Shi G, Wang S, Wang S, Wu R. Iodine quantification with dual-energy CT: phantom study and preliminary experience with VX2 residual tumour in rabbits after radiofrequency ablation. British J Radiol. 2013; 86 ( 1029 ): 143 - 151.
dc.identifier.citedreferenceLiu Y, Cheng J, Chen Z, Xing Y. Feasibility study: low-cost dual energy CT for security inspection. In: Proceedings of IEEE Conference on Nuclear Science Symposium and Medical Imaging Conference. 2010: 879 - 882.
dc.identifier.citedreferenceMartin L, Tuysuzoglu A, Karl WC, Ishwar P. Learning-based object identification and segmentation using dual-energy CT images for security. IEEE Trans Image Process. 2015; 24 ( 11 ): 4069 - 4081.
dc.identifier.citedreferenceEngler P, Friedman WD. Review of dual-energy computed tomography techniques. Mater Eval. 1990; 48 ( 5 ): 623 - 629.
dc.identifier.citedreferenceMendonca PRS, Lamb P, Sahani D. A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imag. 2014; 33 ( 1 ): 99 - 116.
dc.identifier.citedreferenceWu W, Wang Q, Liu F, Zhu Y, Yu H. Block matching frame based material reconstruction for spectral CT. Phys Med Biol. 2019; 64 ( 23 ): 235011.
dc.identifier.citedreferenceWu W, Hu D, An K, Wang S, Luo F. A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging. IEEE Trans Instrum Meas. 2020; 70 ( 25 ): 427 - 431.
dc.identifier.citedreferenceLong Y, Fessler JA. Multi-material decomposition using statistical image reconstruction for spectral CT. IEEE Trans Med Imag. 2014; 33 ( 8 ): 1614 - 1626.
dc.identifier.citedreferenceNoh J, Fessler JA, Kinahan PE. Statistical sinogram restoration in dual-energy CT for PET attenuation correction. IEEE Trans Med Imag. 2009; 28 ( 11 ): 1688 - 1702.
dc.identifier.citedreferenceNiu T, Dong X, Petrongolo M, Zhu L. Iterative image-domain decomposition for dual-energy CT. Med Phys. 2014; 41 ( 4 ): 041901.
dc.identifier.citedreferenceGoodsitt MM, Christodoulou EG, Larson SC. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys. 2011; 38 ( 4 ): 2222 - 2232.
dc.identifier.citedreferenceDaniele M, Daniel T, Achille M, Rendon CN. State of the art: dual-energy CT of the abdomen. Radiology. 2014; 271 ( 2 ): 327 - 342.
dc.identifier.citedreferenceXue Y, Ruan R, Hu X, et�al. Statistical image-domain multi-material decomposition for dual-energy CT. Med Phys. 2017; 44 ( 3 ): 886 - 901.
dc.identifier.citedreferenceChun IY, Fessler JA. Convolutional dictionary learning: acceleration and convergence. IEEE Trans Image Process. 2018; 27 ( 4 ): 1697 - 1712.
dc.identifier.citedreferenceWu W, Yu H, Chen P, et�al. DLIMD: dictionary learning based image-domain material decomposition for spectral CT. May 2019. Online: https://arxiv.org/abs/1905.02567
dc.identifier.citedreferenceChun IY, Fessler JA. Convolutional analysis operator learning: acceleration and convergence. IEEE Trans Image Process. 2020; 29: 2108 - 2122.
dc.identifier.citedreferenceLi Z, Ravishankar S, Long Y, Fessler JA. Image-domain material decomposition using data-driven sparsity models for dual-energy CT. In: Proceedings of IEEE International Symposium on Biomedical Imaging. April 2018: 52 - 56.
dc.identifier.citedreferenceLi Z, Ravishankar S, Long Y. Image-domain multi-material decomposition using a union of cross-material models. In: Proceedings of International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2019:1107210-1-1107210-5.
dc.identifier.citedreferenceLi Z, Ravishankar S, Long Y, Fessler JA. DECT-MULTRA: dual-energy CT image decomposition with learned mixed material models and efficient clustering. IEEE Trans Med Imag. 2020; 39 ( 4 ): 1223 - 1234.
dc.identifier.citedreferenceWu D, Kim K, Fakhri G, Li Q. A cascaded convolutional neural network for X-ray low-dose CT image denoising. 2017. Online: http://arxiv.org/abs/1705.04267
dc.identifier.citedreferenceFroustey E, Jin KH, McCann MT, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017; 26 ( 9 ): 4509 - 4522.
dc.identifier.citedreferenceLiao Y, Wang Y, Li S, et�al. Pseudo dual energy CT imaging using deep learning-based framework: basic material estimation. In Proceedings of SPIE, volume 10573, March 2018: 105734N.
dc.identifier.citedreferenceXu Y, Yan B, Zhang J, Chen J, Zeng L, Wang L. Image decomposition algorithm for dual-energy computed tomography via fully convolutional network. Comput Math Methods Med. 2018.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.