Show simple item record

DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes

dc.contributor.authorKolmann, Matthew A.
dc.contributor.authorNagesan, Ramon S.
dc.contributor.authorAndrews, James V.
dc.contributor.authorBorstein, Samuel R.
dc.contributor.authorFigueroa, Rodrigo Tinoco
dc.contributor.authorSinger, Randal A.
dc.contributor.authorFriedman, Matt
dc.contributor.authorLópez-Fernández, Hernán
dc.date.accessioned2023-05-01T19:12:14Z
dc.date.available2024-05-01 15:12:12en
dc.date.available2023-05-01T19:12:14Z
dc.date.issued2023-04
dc.identifier.citationKolmann, Matthew A.; Nagesan, Ramon S.; Andrews, James V.; Borstein, Samuel R.; Figueroa, Rodrigo Tinoco; Singer, Randal A.; Friedman, Matt; López-Fernández, Hernán (2023). "DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes." Journal of Fish Biology 102(4): 893-903.
dc.identifier.issn0022-1112
dc.identifier.issn1095-8649
dc.identifier.urihttps://hdl.handle.net/2027.42/176309
dc.description.abstractComputed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol’s have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol’s solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol’s. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol’s can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.othermuscle
dc.subject.othersoft tissues
dc.subject.otherfunctional morphology
dc.subject.otherbrain
dc.subject.otherbio-imaging
dc.titleDiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176309/1/jfb15320.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176309/2/jfb15320_am.pdf
dc.identifier.doi10.1111/jfb.15320
dc.identifier.sourceJournal of Fish Biology
dc.identifier.citedreferenceMartin, R. P., Davis, M. P., & Smith, W. L. ( 2022 ). The impact of evolutionary trade-offs among bioluminescent organs and body shape in the deep sea: A case study on lanternfishes. Deep Sea Research Part I: Oceanographic Research Papers, 184, 103769.
dc.identifier.citedreferenceFerstl, S., Metscher, B., Müller, M., Allner, S., Dierolf, M., Busse, M., … Pfeiffer, F. ( 2018 ). Laboratory-based X-ray NanoCT explores morphology of a zebrafish embryo. Microscopy and Microanalysis, 24 ( S2 ), 184 – 185.
dc.identifier.citedreferenceFigueroa, R. T., Goodvin, D., Kolmann, M. A., Coates, M. I., Caron, A. M., Friedman, M., & Giles, S. ( 2023 ). Exceptional fossil preservation and evolution of the ray-finned fish brain. Nature. https://doi.org/10.1038/s41586-022-05666-1.
dc.identifier.citedreferenceGidmark, N. J. ( 2019 ). Build your body (no, seriously, actually make it): Integrating 2D-and 3D-maker-culture into a comparative vertebrate anatomy course. Journal of Morphology, 280, S35.
dc.identifier.citedreferenceGignac, P. M., & Kley, N. J. ( 2014 ). Iodine-enhanced micro-CT imaging: Methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 322 ( 3 ), 166 – 176.
dc.identifier.citedreferenceGignac, P. M., Kley, N. J., Clarke, J. A., Colbert, M. W., Morhardt, A. C., Cerio, D., … Witmer, L. M. ( 2016 ). Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy, 228, 889 – 909. https://doi.org/10.1111/joa.12449.
dc.identifier.citedreferenceGignac, P. M., & Kley, N. J. ( 2018 ). The utility of diceCT imaging for high-throughput comparative neuroanatomical studies. Brain, Behavior and Evolution, 91, 180 – 190.
dc.identifier.citedreferenceHedrick, B. P., Yohe, L., Vander Linden, A., Dávalos, L. M., Sears, K., Sadier, A., … Dumont, E. ( 2018 ). Assessing soft-tissue shrinkage estimates in museum specimens imaged with diffusible iodine-based contrast-enhanced computed tomography (diceCT). Microscopy and Microanalysis, 24 ( 3 ), 284 – 291.
dc.identifier.citedreferenceHipsley, C. A., Aguilar, R., Black, J. R., & Hocknull, S. A. ( 2020 ). High-throughput microCT scanning of small specimens: Preparation, packing, parameters and post-processing. Scientific Reports, 10, 13863.
dc.identifier.citedreferenceJohnson, A. H., & Herrington, B. L. ( 1927 ). Factors influencing the Loss of Iodine from Iodized Salt. Journal of Agricultural Research, 35, 167 – 182.
dc.identifier.citedreferenceKhoury, B. M., Bigelow, E. M., Smith, L. M., Schlecht, S. H., Scheller, E. L., Andarawis-Puri, N., & Jepsen, K. J. ( 2015 ). The use of nano-computed tomography to enhance musculoskeletal research. Connective Tissue Research, 56 ( 2 ), 106 – 119.
dc.identifier.citedreferenceKolmann, M. A., Huie, J. M., Evans, K., & Summers, A. P. ( 2018 ). Specialized specialists and the narrow niche fallacy: A tale of scale-feeding fishes. Royal Society Open Science, 5 ( 1 ), 171581.
dc.identifier.citedreferenceKotrba, M., & Schilling, L. H. ( 2017 ). Measurement of pH in ethanol, distilled water, and their mixtures: On the assessment of pH in ethanol-based natural history wet collections and the detrimental aspects of dilution with distilled water. Collection Forum, 31 ( 1–2 ), 84 – 101.
dc.identifier.citedreferenceLanzetti, A., & Ekdale, E. G. ( 2021 ). Enhancing CT imaging: A safe protocol to stain and de-stain rare fetal museum specimens using diffusible iodine-based staining (diceCT). Journal of Anatomy, 239, 228 – 241.
dc.identifier.citedreferenceLiem, K. F., & Greenwood, P. H. ( 1981 ). A functional approach to the phylogeny of the pharyngognath teleosts. American Zoologist, 21 ( 1 ), 83 – 101.
dc.identifier.citedreferenceManzano, B. L., Means, B. K., Begley, C. T., & Zechini, M. ( 2015 ). Using digital 3D scanning to create “artifictions” of the passenger pigeon and harelip sucker, two extinct species in eastern North America: The future examines the past. Ethnobiology Letters, 6 ( 2 ), 232 – 241.
dc.identifier.citedreferenceMetscher, B. D. ( 2009a ). MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology, 9 ( 1 ), 1 – 14.
dc.identifier.citedreferenceMetscher, B. D. ( 2009b ). Micro-CT for developmental biology: A versatile tool for high-contrast 3-D imaging at histological resolutions. Developmental Dynamics, 238, 632 – 640.
dc.identifier.citedreferenceMuñoz, M. M., & Price, S. A. ( 2019 ). The future is bright for evolutionary morphology and biomechanics in the era of big data. Integrative and Comparative Biology, 59 ( 3 ), 599 – 603.
dc.identifier.citedreferenceNikiforuk, G., & Sreebny, L. ( 1953 ). Demineralization of hard tissues by organic chelating agents at neutral pH. Journal of Dental Research, 32 ( 6 ), 859 - 867. 
dc.identifier.citedreferencePauwels, E., Van Loo, D., Cornillie, P., Brabant, L., & Van Hoorebeke, L. ( 2013 ). An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. Journal of Microscopy, 250 ( 1 ), 21 – 31.
dc.identifier.citedreferencePeyrin, F., Pacureanu, A., & Langer, M. ( 2011, September). 3D microscopic imaging by synchrotron radiation micro/nano-CT. In 2011 18th IEEE international conference on image processing (pp. 3057 – 3060 ). Brussels, Belgium:  IEEE.
dc.identifier.citedreferenceRahman, I. A., Adcock, K., & Garwood, R. J. ( 2012 ). Virtual fossils: A new resource for science communication in paleontology. Evolution: Education and Outreach, 5 ( 4 ), 635 – 641.
dc.identifier.citedreferenceRawson, S. D., Maksimcuka, J., Withers, P. J., & Cartmell, S. H. ( 2020 ). X-ray computed tomography in life sciences. BMC Biology, 18, 21. https://doi.org/10.1186/s12915-020-0753-2.
dc.identifier.citedreferenceRutledge, K. M., Summers, A. P., & Kolmann, M. A. ( 2019 ). Killing them softly: Ontogeny of jaw mechanics and stiffness in mollusk-feeding freshwater stingrays. Journal of Morphology, 280 ( 6 ), 796 – 808.
dc.identifier.citedreferenceStaab, K. L. ( 2019 ). Specimen preparation projects and visual study guides exhibited as art: Engaging undergraduates and the general public in vertebrate morphology. Journal of Morphology, 280, S36 – S37.
dc.identifier.citedreferenceSutton, M., Rahman, I., & Garwood, R. ( 2016 ). Virtual paleontology - an overview. The Paleontological Society Papers, 22, 1 – 20. https://doi.org/10.1017/scs.2017.5.
dc.identifier.citedreferenceWatanabe, A., Gignac, P. M., Balanoff, A. M., Green, T. L., Kley, N. J., & Norell, M. A. ( 2019 ). Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? Journal of Anatomy, 234 ( 3 ), 291 – 305.
dc.identifier.citedreferenceZuluaga, M. A., Orkisz, M., Dong, P., Pacureanu, A., Gouttenoire, P. J., & Peyrin, F. ( 2014 ). Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation. Physics in Medicine & Biology, 59 ( 9 ), 2155 – 2171.
dc.identifier.citedreferenceBrocklehurst, R., Porro, L., Herrel, A., Adriaens, D., & Rayfield, E. ( 2019 ). A digital dissection of two teleost fishes: comparative functional anatomy of the cranial musculoskeletal system in pike ( Esox lucius ) and eel ( Anguilla anguilla ). Journal of Anatomy, 235 ( 2 ), 189 – 204.
dc.identifier.citedreferenceBrodnicke, O. B., Hansen, C. E., Huie, J. M., Brandl, S. J., & Worsaae, K. ( 2022 ). Functional impact and trophic morphology of small, sand-sifting fishes on coral reefs. Functional Ecology, 36, 1936 – 1948.
dc.identifier.citedreferenceBrunke, O., Neuber, D. & Lehmann, D. K. ( 2007 ). NanoCT: Visualizing of internal 3D-structures with submicrometer resolution  (p.990). MRS Online Proceedings Library (OPL).
dc.identifier.citedreferenceBuser, T. J., Boyd, O. F., Cortés, Á., Donatelli, C. M., Kolmann, M. A., Luparell, J. L., … Summers, A. P. ( 2020 ). The natural historian’s guide to the CT galaxy: Step-by-step instructions for preparing and analyzing computed tomographic (CT) data using cross-platform, open access software. Integrative Organismal Biology, 2 ( 1 ), obaa009.
dc.identifier.citedreferenceCallahan, S., Crowe-Riddell, J. M., Nagesan, R. S., Gray, J. A., & Davis Rabosky, A. R. ( 2021 ). A guide for optimal iodine staining and high-throughput diceCT scanning in snakes. Ecology and Evolution, 11 ( 17 ), 11587 – 11603.
dc.identifier.citedreferenceCamilieri-Asch, V., Shaw, J. A., Mehnert, A., Yopak, K. E., Partridge, J. C. & Collin, S. P. ( 2020 ). diceCT: A valuable technique to study the nervous system of fish. Eneuro, 7 ( 4 ), 1 – 23.
dc.identifier.citedreferenceCohen, K. E., & Hernandez, L. P. ( 2018 ). The complex trophic anatomy of silver carp, Hypophthalmichthys molitrix, highlighting a novel type of epibranchial organ. Journal of Morphology, 279 ( 11 ), 1615 – 1628.
dc.identifier.citedreferenceCohen, K. E., Crawford, C. H., Hernandez, L. P., Beckert, M., Nadler, J. H., & Flammang, B. E. ( 2020 ). Sucker with a fat lip: The soft tissues underlying the viscoelastic grip of remora adhesion. Journal of Anatomy, 237 ( 4 ), 643 – 654.
dc.identifier.citedreferenceCohen, K. E., Flammang, B. E., Crawford, C. H., & Hernandez, L. P. ( 2020 ). Knowing when to stick: Touch receptors found in the remora adhesive disc. Royal Society Open Science, 7 ( 1 ), 190990.
dc.identifier.citedreferenceCrampton, W. G. ( 2019 ). Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology, 95 ( 1 ), 92 – 134.
dc.identifier.citedreferenceDawood, Y., Hagoort, J., Siadari, B. A., Ruijter, J. M., Gunst, Q. D., Lobe, N. H. J., … van den Hoff, M. J. B. ( 2021 ). Reducing soft-tissue shrinkage artefacts caused by staining with Lugol’s solution. Scientific Reports, 11 ( 1 ), 1 – 12.
dc.identifier.citedreferenceDescamps, E., Sochacka, A., De Kegel, B., Van Loo, D., Van Hoorebeke, L., & Adriaens, D. ( 2014 ). Soft tissue discrimination with contrast agents using micro-CT scanning. Belgian Journal of Zoology, 144 ( 1 ), 20 – 40.
dc.identifier.citedreferencedu Plessis, A., Broeckhoven, C., Guelpa, A., & le Roux, S. G. ( 2017 ). Laboratory x-ray micro-computed tomography: A user guideline for biological samples. Gigascience, 6 ( 6 ), 1 – 11.
dc.identifier.citedreferenceEarly, C. M., Morhardt, A. C., Cleland, T. P., Milensky, C. M., Kavich, G. M., & James, H. F. ( 2020 ). Chemical effects of diceCT staining protocols on fluid-preserved avian specimens. PLoS One, 15 ( 9 ), e0238783.
dc.identifier.citedreferenceFedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., … Kikinis, R. ( 2012 ). 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging., 30 ( 9 ), 1323 – 1341.
dc.identifier.citedreferenceFernández-Jalvo, Y., Andrews, P., Sevilla, P., & Requejo, V. ( 2014 ). Digestion versus abrasion features in rodent bones. Lethaia, 47 ( 3 ), 323 – 336.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.