Show simple item record

Voltage-Modulated Untwist Deformations and Multispectral Optical Effects from Ion Intercalation into Chiral Ceramic Nanoparticles

dc.contributor.authorShao, Xiao
dc.contributor.authorZhu, Cheng
dc.contributor.authorKumar, Prashant
dc.contributor.authorWang, Yanan
dc.contributor.authorLu, Jun
dc.contributor.authorCha, Minjeong
dc.contributor.authorYao, Lin
dc.contributor.authorCao, Yuan
dc.contributor.authorMao, Xiaoming
dc.contributor.authorHeinz, Hendrik
dc.contributor.authorKotov, Nicholas A.
dc.date.accessioned2023-05-01T19:12:33Z
dc.date.available2024-05-01 15:12:28en
dc.date.available2023-05-01T19:12:33Z
dc.date.issued2023-04
dc.identifier.citationShao, Xiao; Zhu, Cheng; Kumar, Prashant; Wang, Yanan; Lu, Jun; Cha, Minjeong; Yao, Lin; Cao, Yuan; Mao, Xiaoming; Heinz, Hendrik; Kotov, Nicholas A. (2023). "Voltage-Modulated Untwist Deformations and Multispectral Optical Effects from Ion Intercalation into Chiral Ceramic Nanoparticles." Advanced Materials 35(16): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/176314
dc.description.abstractReconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects.  In this work, V2O3 nanoparticles are shown to have “built-in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ ions into the V2O3 lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid-infrared (IR), near-IR (NIR), and IR wavelengths. The g-factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer-by-layer assembled (LBL) from V2O3 nanoparticles reveal cyclic-voltage-driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.Chiral V2O3 nanoparticles display rich palette of intense chiroptical bands. Intercalation–deintercalation of Zn2+ leads to twist–untwist deformation and modulation of optical activity, which is remarkably strong for IR and NIR range because V2O3 nanoparticles have g-factors ≈100–400 times higher than other nanostructures. Device prototypes based on layer-by-layer assembled nanocomposite films provide a pathway to versatile voltage-driven photonic devices.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchiral photonics
dc.subject.othermetamaterials
dc.subject.othernanoscale chirality
dc.subject.otherpolarization rotation
dc.subject.othertwist deformations
dc.titleVoltage-Modulated Untwist Deformations and Multispectral Optical Effects from Ion Intercalation into Chiral Ceramic Nanoparticles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176314/1/adma202206956.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176314/2/adma202206956-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176314/3/adma202206956_am.pdf
dc.identifier.doi10.1002/adma.202206956
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceC. Hao, R. Gao, Y. Li, L. Xu, M. Sun, C. Xu, H. Kuang, Angew. Chem., Int. Ed. 2019, 58, 7371.
dc.identifier.citedreferenceZ. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C. M. Soukoulis, H. Chen, Y. Liu, Adv. Mater. 2017, 29, 1700412.
dc.identifier.citedreferenceW. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, N A. Kotov, Nat. Mater. 2019, 18, 820.
dc.identifier.citedreferenceA. Kuzyk, Y. Yang, X. Duan, S. Stoll, A. O. Govorov, H. Sugiyama, M. Endo, N. Liu, Nat. Commun. 2016, 7, 10591.
dc.identifier.citedreferenceI. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, Adv. Mater. 2019, 31, 1807742.
dc.identifier.citedreferenceS. Wang, Y. Zhang, X. Qin, Li Zhang, Z. Zhang, W. Lu, M. Liu, ACS Nano 2020, 14, 6087.
dc.identifier.citedreferenceJ. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, M. Wegener, Science 2009, 325, 1513.
dc.identifier.citedreferenceZ. Suo, X. Hou, J. Chen, X. Liu, Y. Liu, F. Xing, Y. Chen, L. Feng, J. Phys. Chem. C 2020, 124, 21094.
dc.identifier.citedreferenceS. Zhang, J. Zhou, Y. -. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. -. T. Chen, X. Yin, A. J. Taylor, X. Zhang, Nat. Commun. 2012, 3, 942.
dc.identifier.citedreferenceG. Wu, K. Du, C. Xia, X. Kun, J. Shen, B. Zhou, J. Wang, Thin Solid Films 2005, 485, 284.
dc.identifier.citedreferenceW. Zhang, H. Li, M. Al-Hussein, A. Y. Elezzabi, Adv. Opt. Mater. 2020, 8, 1901224.
dc.identifier.citedreferenceI. Mjejri, A. Rougier, M. Gaudon, Inorg. Chem. 2017, 56, 1734.
dc.identifier.citedreferenceJ. Zheng, Y. Zhang, C. Meng, X. Wang, C. Liu, M. Bo, X. Pei, Y. Wei, T. Lv, G. Cao, Electrochim. Acta 2019, 318, 635.
dc.identifier.citedreferenceC. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, P. Postorino, Phys. Rev. B 2008, 77, 235111.
dc.identifier.citedreferenceH. Heinz, T. -. J. Lin, R. Kishore Mishra, F. S. Emami, Langmuir 2013, 29, 1754.
dc.identifier.citedreferenceS. H. Jung, J. Jeon, H. Kim, J. Jaworski, J. H. Jung, J. Am. Chem. Soc. 2014, 136, 6446.
dc.identifier.citedreferenceI. Dolamic, B. Varnholt, T. Bürgi, Nat. Commun. 2015, 6, 7117.
dc.identifier.citedreferenceM. A. Osipov, B. T. Pickup, D. A. Dunmur, Mol. Phys. 1995, 84, 1193.
dc.identifier.citedreferenceA. B. Harris, R. D. Kamien, T. C. Lubensky, Rev. Mod. Phys. 1999, 71, 1745.
dc.identifier.citedreferenceP. Kumar, T. Vo, M. Cha, A. Visheratin, J.-Y. Kim, W. Xu, J. Schwartz, A. Simon, D. Katz, E. Marino, W. J. Choi, S. Chen, C. Murray, R. Hovden, S. Glotzer, N. A. Kotov, Nature 2022 https://doi.org/10.1038/s41586-023-05733-1.
dc.identifier.citedreferenceS. Jiang, M. Chekini, Z. -. B. Qu, Y. Wang, A. Yeltik, Y. Liu, A. Kotlyar, T. Zhang, B. Li, H. V. Demir, N. A. Kotov, J. Am. Chem. Soc. 2017, 139, 13701.
dc.identifier.citedreferenceJ. L. Shelton, K. E. Knowles, J. Phys. Chem. Lett. 2021, 12, 3343.
dc.identifier.citedreferenceP.-P. Wang, S.-J. Yu, A. O. Govorov, M. Ouyang, Nat. Commun. 2017, 8, 14312.
dc.identifier.citedreferenceJ. Yan, W. Feng, J.-Y. Kim, J. Lu, P. Kumar, Z. Mu, X. Wu, X. Mao, N. A. Kotov, Chem. Mater. 2020, 32, 476.
dc.identifier.citedreferenceL. Ma, Y. Cao, Y. Duan, L. Han, S. Che, Angew. Chem., Int. Ed. 2017, 56, 8657.
dc.identifier.citedreferenceN. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao, F. Cheng, Adv. Funct. Mater. 2019, 29, 1807331.
dc.identifier.citedreferenceY. Kim, B. Yeom, O. Arteaga, S. Jo Yoo, S. -. G. Lee, J. -. G. Kim, N. A. Kotov, Nat. Mater. 2016, 15, 461.
dc.identifier.citedreferenceP. T. Probst, M. Mayer, V. Gupta, A. M. Steiner, Z. Zhou, G. K. Auernhammer, T. A. F. König, A. Fery, Nat. Mater. 2021, 20, 1024.
dc.identifier.citedreferenceZ. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, J. Am. Chem. Soc. 2012, 134, 3322.
dc.identifier.citedreferenceY. Wang, Y.-M. Zhang, S. X-A. Zhang, Acc. Chem. Res. 2021, 54, 2216.
dc.identifier.citedreferenceK. Ariga, J. P. Hill, Q. Ji, Phys. Chem. Chem. Phys. 2007, 9, 2319.
dc.identifier.citedreferenceS. Zhao, F. Caruso, L. Dahne, G. Decher, B. G. de Geest, J. Fan, N. Feliu, Y. Gogotsi, P. T. Hammond, M. C. Hersam, A. Khademhosseini, N. Kotov, S. Leporatti, Y. Li, F. Lisdat, L. M. Liz-Marzan, S. Moya, P. Mulvaney, A. L. Rogach, S. Roy, D. G. Shchukin, A. G. Skirtach, M. M. Stevens, G. B. Sukhorukov, P. S. Weiss, Z. Yue, D. Zhu, W. J. Parak, ACS Nano 2019, 13, 6151.
dc.identifier.citedreferenceG. Yang, Q. Li, K. Ma, C. Hong, C. Wang, J. Mater. Chem. A 2020, 8, 8084.
dc.identifier.citedreferenceR. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Mater. Sci. Eng., B 2015, 192, 3.
dc.identifier.citedreferenceJ. Yeom, U. S. Santos, M. Chekini, M. Cha, A. F. De Moura, N. A. Kotov, Science 2018, 359, 309.
dc.identifier.citedreferenceS. Knoppe, T. Bürgi, Acc. Chem. Res. 2014, 47, 1318.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.