Show simple item record

Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications

dc.contributor.authorTakahashi, Haruko
dc.contributor.authorSovadinova, Iva
dc.contributor.authorYasuhara, Kazuma
dc.contributor.authorVemparala, Satyavani
dc.contributor.authorCaputo, Gregory A.
dc.contributor.authorKuroda, Kenichi
dc.date.accessioned2023-06-01T20:47:30Z
dc.date.available2024-06-01 16:47:27en
dc.date.available2023-06-01T20:47:30Z
dc.date.issued2023-05
dc.identifier.citationTakahashi, Haruko; Sovadinova, Iva; Yasuhara, Kazuma; Vemparala, Satyavani; Caputo, Gregory A.; Kuroda, Kenichi (2023). "Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 15(3): n/a-n/a.
dc.identifier.issn1939-5116
dc.identifier.issn1939-0041
dc.identifier.urihttps://hdl.handle.net/2027.42/176805
dc.description.abstractBiomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field.This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesTherapeutic Approaches and Drug Discovery > Nanomedicine for Infectious DiseaseThis review article provides an update on the status of antimicrobial peptide-mimetic polymers and new targets and new methods in the studies of these polymers.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersimulations
dc.subject.otherantimicrobial polymers
dc.subject.othercancer
dc.subject.othercyanobacteria
dc.subject.otherliposome
dc.titleBiomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176805/1/wnan1866.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176805/2/wnan1866_am.pdf
dc.identifier.doi10.1002/wnan.1866
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
dc.identifier.citedreferenceSchardt, L., Martínez Guajardo, A., Koc, J., Clarke, J. L., Finlay, J. A., Clare, A. S., Gardener, H., Swain, G. W., Hunsucker, K., Laschewsky, A., Rosennhahn, A., & Laschewsky, A. ( 2021 ). Low fouling polysulfobetaines with variable hydrophobic content. Macromolecular Rapid Communications, 43 (12), 2100589.
dc.identifier.citedreferencevon Deuster, C. I., & Knecht, V. ( 2011 ). Competing interactions for antimicrobial selectivity based on charge complementarity. Biochimica et Biophysica Acta, 1808 ( 12 ), 2867 – 2876. https://doi.org/10.1016/j.bbamem.2011.08.005
dc.identifier.citedreferenceWang, G., Li, X., & Wang, Z. ( 2016 ). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44 ( D1 ), D1087 – D1093.
dc.identifier.citedreferenceWang, M. N., Zhao, J. Z., Zhang, L. S., Wei, F., Lian, Y., Wu, Y. F., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., & Guo, C. ( 2017 ). Role of tumor microenvironment in tumorigenesis. Journal of Cancer, 8 ( 5 ), 761 – 773. https://doi.org/10.7150/jca.17648
dc.identifier.citedreferenceWang, Y., Schlamadinger, D. E., Kim, J. E., & McCammon, J. A. ( 2012 ). Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1818 ( 5 ), 1402 – 1409.
dc.identifier.citedreferenceWiegand, I., Hilpert, K., & Hancock, R. E. ( 2008 ). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3 ( 2 ), 163 – 175. https://doi.org/10.1038/nprot.2007.521
dc.identifier.citedreferenceWildman, K. A. H., Lee, D. K., & Ramamoorthy, A. ( 2003 ). Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 42 ( 21 ), 6545 – 6558. https://doi.org/10.1021/bi0273563
dc.identifier.citedreferenceWorld Health Organization ( 2003 ). Algae and cyanobacteria in freshwater. In Guidelines for safe recreational water environments (pp. 136 – 154 ). WHO.
dc.identifier.citedreferenceWorld Health Organization. ( 2018 ). Monitoring Global Progress On Addressing Antimicrobial Resistance (AMR).
dc.identifier.citedreferenceWyatt, N. B., Gloe, L. M., Brady, P. V., Hewson, J. C., Grillet, A. M., Hankins, M. G., & Pohl, P. I. ( 2012 ). Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnology and Bioengineering, 109 ( 2 ), 493 – 501.
dc.identifier.citedreferenceXiong, M., Bao, Y., Xu, X., Wang, H., Han, Z., Wang, Z., Liu, Y., Huang, S., Song, Z., Chen, J., Peek, R. M., Jr., Yin, L., Chen, L. F., & Cheng, J. ( 2017 ). Selective killing of helicobacter pylori with pH-responsive helix–coil conformation transitionable antimicrobial polypeptides. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 48 ), 12675 – 12680.
dc.identifier.citedreferenceYandi, W., Mieszkin, S., Callow, M. E., Callow, J. A., Finlay, J. A., Liedberg, B., & Ederth, T. ( 2017 ). Antialgal activity of poly (2-[dimethylamino] ethyl methacrylate) (PDMAEMA) brushes against the marine alga Ulva. Biofouling, 33 ( 2 ), 169 – 183.
dc.identifier.citedreferenceYang, C., Lou, W. Y., Zhong, G. S., Lee, A., Leong, J. Y., Chin, W., Ding, B., Bao, C., Tan, J. P. K., Pu, Q., Gao, S., Xu, L., Hsu, L. Y., Wu, M., Hedrick, J. L., Fan, W., & Yang, Y. Y. ( 2019 ). Degradable antimicrobial polycarbonates with unexpected activity and selectivity for treating multidrug-resistant Klebsiella pneumoniae lung infection in mice. Acta Biomaterialia, 94, 268 – 280. https://doi.org/10.1016/j.actbio.2019.05.057
dc.identifier.citedreferenceYang, D. D., Paterna, N. J., Senetra, A. S., Casey, K. R., Trieu, P. D., Caputo, G. A., Vaden, T. D., & Carone, B. R. ( 2021 ). Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. iScience, 24 ( 1 ), 101853. https://doi.org/10.1016/j.isci.2020.101853
dc.identifier.citedreferenceYasuhara, K., Tsukamoto, M., Kikuchi, J., & Kuroda, K. ( 2022 ). An antimicrobial peptide-mimetic methacrylate random copolymer induces domain formation in a model bacterial membrane. The Journal of Membrane Biology, 255, 513–521. https://doi.org/10.1007/s00232-022-00220-6
dc.identifier.citedreferenceYau, W. M., Wimley, W. C., Gawrisch, K., & White, S. H. ( 1998 ). The preference of tryptophan for membrane interfaces. Biochemistry, 37 ( 42 ), 14713 – 14718. https://doi.org/10.1021/bi980809c
dc.identifier.citedreferenceYoo, B., & Kirshenbaum, K. ( 2008 ). Peptoid architectures: Elaboration, actuation, and application. Current Opinion in Chemical Biology, 12 ( 6 ), 714 – 721. https://doi.org/10.1016/j.cbpa.2008.08.015
dc.identifier.citedreferenceYusuf, R. Z., Duan, Z., Lamendola, D. E., Penson, R. T., & Seiden, M. V. ( 2003 ). Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Current Cancer Drug Targets, 3 ( 1 ), 1 – 19. https://doi.org/10.2174/1568009033333754
dc.identifier.citedreferenceZasloff, M. ( 2002 ). Antimicrobial peptides of multicellular organisms. Nature, 415 ( 6870 ), 389 – 395. https://doi.org/10.1038/415389a
dc.identifier.citedreferenceZeleznik, M. J., Segatta, J. M., & Ju, L.-K. ( 2002 ). Polyethyleneimine-induced flocculation and flotation of cyanobacterium Anabaena flos-aquae for gas vesicle production. Enzyme and Microbial Technology, 31 ( 7 ), 949 – 953.
dc.identifier.citedreferenceZhao, J., Huang, Y. B., Liu, D., & Chen, Y. X. ( 2015 ). Two hits are better than one: Synergistic anticancer activity of a-helical peptides and doxorubicin/epirubicin. Oncotarget, 6 ( 3 ), 1769 – 1778. https://doi.org/10.18632/oncotarget.2754
dc.identifier.citedreferenceZhao, X., Yu, H., Yang, L., Li, Q., & Huang, X. ( 2015 ). Simulating the antimicrobial mechanism of human beta-defensin-3 with coarse-grained molecular dynamics. Journal of Biomolecular Structure & Dynamics, 33 ( 11 ), 2522 – 2529. https://doi.org/10.1080/07391102.2014.1002424
dc.identifier.citedreferenceZhao, Y., Zhang, M., Qiu, S., Wang, J., Peng, J., Zhao, P., Zhu, R., Wang, H., Li, Y., Wang, K., Yan, W., & Wang, R. ( 2016 ). Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express, 6 ( 1 ), 122. https://doi.org/10.1186/s13568-016-0295-8
dc.identifier.citedreferenceZhong, G. S., Yang, C., Liu, S. Q., Zheng, Y. R., Lou, W. Y., Teo, J. Y., Bao, C., Cheng, W., Tan, J. P. K., Gao, S., Park, N., Venkataraman, S., Huang, Y., Tan, M. H., Wang, X., Hedrick, J. L., Fan, W., & Yang, Y. Y. ( 2019 ). Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis. Biomaterials, 199, 76 – 87. https://doi.org/10.1016/j.biomaterials.2019.01.036
dc.identifier.citedreferenceZhou, X. Y., & Zhou, C. C. ( 2018 ). Design, synthesis and applications of antimicrobial peptides and antimicrobial peptide-mimetic copolymers. Progress in Chemistry, 30 ( 7 ), 913 – 920. https://doi.org/10.7536/pc171125
dc.identifier.citedreferenceZhou, Z., Ergene, C., Lee, J. Y., Shirley, D. J., Carone, B. R., Caputo, G. A., & Palermo, E. F. ( 2019 ). Sequence and dispersity are determinants of photodynamic antibacterial activity exerted by peptidomimetic oligo(thiophene)s. ACS Applied Materials & Interfaces, 11 ( 2 ), 1896 – 1906. https://doi.org/10.1021/acsami.8b19098
dc.identifier.citedreferenceAdhikari, H. S., & Yadav, P. N. ( 2018 ). Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. International Journal of Biomaterials, 29, 2952085. https://doi.org/10.1155/2018/2952085
dc.identifier.citedreferenceAhmed, S., Sameen, D. E., Lu, R., Li, R., Dai, J., Qin, W., & Liu, Y. ( 2022 ). Research progress on antimicrobial materials for food packaging. Critical Reviews in Food Science and Nutrition, 62 ( 11 ), 3088 – 3102. https://doi.org/10.1080/10408398.2020.1863327
dc.identifier.citedreferenceAl-Badri, Z. M., Som, A., Lyon, S., Nelson, C. F., Nüsslein, K., & Tew, G. N. ( 2008 ). Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules, 9 ( 10 ), 2805 – 2810. https://doi.org/10.1021/bm800569x
dc.identifier.citedreferenceAlberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. ( 2015 ). In J. Wilson & T. Hunt (Eds.), Molecular biology of the cell ( 6th ed. ). W.W. Norton & Company.
dc.identifier.citedreferenceAlfei, S., & Schito, A. M. ( 2020 ). Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: A review. Polymers, 12 ( 5 ), 47. https://doi.org/10.3390/polym12051195
dc.identifier.citedreferenceAndreev, K., Martynowycz, M. W., Huang, M. L., Kuzmenko, I., Bu, W., Kirshenbaum, K., & Gidalevitz, D. ( 2018 ). Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochimica et Biophysica Acta - Biomembranes, 1860 ( 6 ), 1414 – 1423. https://doi.org/10.1016/j.bbamem.2018.03.021
dc.identifier.citedreferenceAntimicrobial Resistance Consortium. ( 2022 ). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399, 629 – 655. https://doi.org/10.1016/S0140-6736(21)02724-0
dc.identifier.citedreferenceArora, M., & Sahoo, D. ( 2015 ). Green algae. In The algae world (pp. 91 – 120 ). Springer.
dc.identifier.citedreferenceArrington, S. A., Zeleznik, M. J., Ott, D. W., & Ju, L.-K. ( 2003 ). Effects of polyethyleneimine on cyanobacterium Anabaena flos-aquae during cell flocculation and flotation. Enzyme and Microbial Technology, 32 ( 2 ), 290 – 293.
dc.identifier.citedreferenceBaul, U., Kuroda, K., & Vemparala, S. ( 2014 ). Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes. The Journal of Chemical Physics, 141 ( 8 ), 084902. https://doi.org/10.1063/1.4893440
dc.identifier.citedreferenceBelli, C., Trapani, D., Viale, G., D’Amico, P., Duso, B. A., Della Vigna, P., Orsi, F., & Curigliano, G. ( 2018 ). Targeting the microenvironment in solid tumors. Cancer Treatment Reviews, 65, 22 – 32. https://doi.org/10.1016/j.ctrv.2018.02.004
dc.identifier.citedreferenceBhat, R., Foster, L. L., Rani, G., Vemparala, S., & Kuroda, K. ( 2021 ). The function of peptide-mimetic anionic groups and salt bridges in the antimicrobial activity and conformation of cationic amphiphilic copolymers. RSC Advances, 11 ( 36 ), 22044 – 22056. https://doi.org/10.1039/d1ra02730a
dc.identifier.citedreferenceBocchinfuso, G., Bobone, S., Mazzuca, C., Palleschi, A., & Stella, L. ( 2011 ). Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cellular and Molecular Life Sciences, 68 ( 13 ), 2281 – 2301. https://doi.org/10.1007/s00018-011-0719-1
dc.identifier.citedreferenceBocchinfuso, G., Palleschi, A., Orioni, B., Grande, G., Formaggio, F., Toniolo, C., Park, Y., Hahm, K. S., & Stella, L. ( 2009 ). Different mechanisms of action of antimicrobial peptides: Insights from fluorescence spectroscopy experiments and molecular dynamics simulations. Journal of Peptide Science, 15 ( 9 ), 550 – 558.
dc.identifier.citedreferenceBrauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. ( 2016 ). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 14 ( 5 ), 320 – 330. https://doi.org/10.1038/nrmicro.2016.34
dc.identifier.citedreferenceBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. ( 2018 ). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68 ( 6 ), 394 – 424. https://doi.org/10.3322/caac.21492
dc.identifier.citedreferenceBriand, E., Bormans, M., Gugger, M., Dorrestein, P. C., & Gerwick, W. H. ( 2016 ). Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environmental Microbiology, 18 ( 2 ), 384 – 400. https://doi.org/10.1111/1462-2920.12904
dc.identifier.citedreferenceBryant, D. A. ( 2006 ). The molecular biology of cyanobacteria (Vol. 1 ). Springer Science & Business Media.
dc.identifier.citedreferenceCDC. ( 2019 ). Antibiotic Resistance threats in the United States, 2019. U.S. Department of Health and Human Services, CDC. Retrieved from. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
dc.identifier.citedreferenceChakrabarty, A., Chakraborty, S., Bhattacharya, R., & Chowdhury, G. ( 2021 ). Senescence-induced Chemoresistance in triple negative breast cancer and evolution-based treatment strategies. Frontiers in Oncology, 11, 674354. https://doi.org/10.3389/fonc.2021.674354
dc.identifier.citedreferenceChakraborty, A., Kobzev, E., Chan, J., de Zoysa, G. H., Sarojini, V., Piggot, T. J., & Allison, J. R. ( 2021 ). Molecular dynamics simulation of the interaction of two linear Battacin analogs with model gram-positive and gram-negative bacterial cell membranes. ACS Omega, 6 ( 1 ), 388 – 400. https://doi.org/10.1021/acsomega.0c04752
dc.identifier.citedreferenceChakraborty, S., Liu, R., Hayouka, Z., Chen, X., Ehrhardt, J., Lu, Q., Burke, E., Yang, Y., Weisblum, B., Wong, G. C., Masters, K. S., & Gellman, S. H. ( 2014 ). Ternary Nylon-3 copolymers as host-defense peptide mimics: Beyond hydrophobic and cationic subunits. Journal of the American Chemical Society, 136 ( 41 ), 14530 – 14535. https://doi.org/10.1021/ja507576a
dc.identifier.citedreferenceChen, A., Karanastasis, A., Casey, K. R., Necelis, M., Carone, B. R., Caputo, G. A., & Palermo, E. F. ( 2020 ). Cationic molecular umbrellas as antibacterial agents with remarkable cell-type selectivity. ACS Applied Materials & Interfaces, 12 ( 19 ), 21270 – 21282. https://doi.org/10.1021/acsami.9b19076
dc.identifier.citedreferenceChen, C. H., & Lu, T. K. ( 2020 ). Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics, 9 ( 1 ). https://doi.org/10.3390/antibiotics9010024
dc.identifier.citedreferenceChen, J., Wang, F. Y. K., Liu, Q. M., & Du, J. Z. ( 2014 ). Antibacterial polymeric nanostructures for biomedical applications. Chemical Communications, 50 ( 93 ), 14482 – 14493. https://doi.org/10.1039/c4cc03001j
dc.identifier.citedreferenceChen, M. C., Koh, P. W., Ponnusamy, V. K., & Lee, S. L. ( 2022 ). Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: Review. Progress in Organic Coatings, 163, 106660. https://doi.org/10.1016/j.porgcoat.2021.106660
dc.identifier.citedreferenceChen, X., Daliri, E. B.-M., Tyagi, A., & Oh, D.-H. ( 2021 ). Cariogenic biofilm: Pathology-related phenotypes and targeted therapy. Microorganisms, 9 ( 6 ), 1311.
dc.identifier.citedreferenceCheng, J., Chin, W., Dong, H., Xu, L., Zhong, G., Huang, Y., Li, L., Xu, K., Wu, M., Hedrick, J. L., Yang, Y. Y., & Fan, W. ( 2015 ). Biodegradable antimicrobial polycarbonates with in vivo efficacy against multidrug-resistant MRSA systemic infection. Advanced Healthcare Materials, 4 ( 14 ), 2128 – 2136. https://doi.org/10.1002/adhm.201500471
dc.identifier.citedreferenceChin, W., Yang, C., Ng, V. W. L., Huang, Y., Cheng, J., Tong, Y. W., Coady, D. J., Fan, W., Hedrick, J. L., & Yang, Y. Y. ( 2013 ). Biodegradable broad-spectrum antimicrobial polycarbonates: Investigating the role of chemical structure on activity and selectivity. Macromolecules, 46 ( 22 ), 8797 – 8807. https://doi.org/10.1021/ma4019685
dc.identifier.citedreferenceChin, W., Zhong, G. S., Pu, Q. Q., Yang, C., Lou, W. Y., De Sessions, P. F., Periaswamy, B., Lee, A., Liang, Z. C., Ding, X., Gao, S., Chu, C. W., Bianco, S., Bao, C., Tong, Y. W., Fan, W., Wu, M., Hedrick, J. L., & Yang, Y. Y. ( 2018 ). A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nature Communications, 9, 14. https://doi.org/10.1038/s41467-018-03325-6
dc.identifier.citedreferenceColak, S., & Tew, G. N. ( 2012 ). Amphiphilic polybetaines: The effect of side-chain hydrophobicity on protein adsorption. Biomacromolecules, 13 ( 5 ), 1233 – 1239. https://doi.org/10.1021/bm201791p
dc.identifier.citedreferenceCree, I. A., & Charlton, P. ( 2017 ). Molecular chess? Hallmarks of anti-cancer drug resistance! BMC Cancer, 17, 8. https://doi.org/10.1186/s12885-016-2999-1
dc.identifier.citedreferenceCrofts, T. S., Gasparrini, A. J., & Dantas, G. ( 2017 ). Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 15 ( 7 ), 422 – 434. https://doi.org/10.1038/nrmicro.2017.28
dc.identifier.citedreferenceDeGrado, W. F., Schneider, J. P., & Hamuro, Y. ( 1999 ). The twists and turns of beta-peptides. The Journal of Peptide Research, 54 ( 3 ), 206 – 217. https://doi.org/10.1034/j.1399-3011.1999.00131.x
dc.identifier.citedreferenceDeplazes, E., Chin, Y. K. Y., King, G. F., & Mancera, R. L. ( 2020 ). The unusual conformation of cross-strand disulfide bonds is critical to the stability of β-hairpin peptides. Proteins: Structure, Function, and Bioinformatics, 88 ( 3 ), 485 – 502.
dc.identifier.citedreferenceDi Pippo, F., Di Gregorio, L., Congestri, R., Tandoi, V., & Rossetti, S. ( 2018 ). Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 94 ( 5 ), fyi044. https://doi.org/10.1093/femsec/fiy044
dc.identifier.citedreferenceDiederichs, S., Bartsch, L., Berkmann, J. C., Frose, K., Heitmann, J., Hoppe, C., Iggena, D., Jazmati, D., Karschnia, P., Linsenmeier, M., Maulhardt, T., Möhrmann, L., Morstein, J., Paffenholz, S. V., Röpenack, P., Rückert, T., Sandig, L., Schell, M., Steinmann, A., … Wullenkord, R. ( 2016 ). The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Molecular Medicine, 8 ( 5 ), 442 – 457. https://doi.org/10.15252/emmm.201506055
dc.identifier.citedreferenceDimova, R., & Marques, C. M. ( 2020 ). The giant vesicle book. Retrieved from https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5981840.
dc.identifier.citedreferenceDing, X. K., Wang, A. Z., Tong, W., & Xu, F. J. ( 2019 ). Biodegradable antibacterial polymeric nanosystems: A new hope to cope with multidrug-resistant bacteria. Small, 15 ( 20 ), 29. https://doi.org/10.1002/smll.201900999
dc.identifier.citedreferenceDoktorova, M., Heberle, F. A., Eicher, B., Standaert, R. F., Katsaras, J., London, E., Pabst, G., & Marquardt, D. ( 2018 ). Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nature Protocols, 13 ( 9 ), 2086 – 2101. https://doi.org/10.1038/s41596-018-0033-6
dc.identifier.citedreferenceD’Souza, A. R., Necelis, M. R., Kulesha, A., Caputo, G. A., & Makhlynets, O. V. ( 2021 ). Beneficial impacts of incorporating the non-natural amino acid azulenyl-alanine into the Trp-rich antimicrobial peptide buCATHL4B. Biomolecules, 11 ( 3 ), 421. Retrieved from. https://www.mdpi.com/2218-273X/11/3/421
dc.identifier.citedreferenceEngler, A. C., Wiradharma, N., Ong, Z. Y., Coady, D. J., Hedrick, J. L., & Yang, Y. Y. ( 2012 ). Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today, 7 ( 3 ), 201 – 222. https://doi.org/10.1016/j.nantod.2012.04.003
dc.identifier.citedreferenceEpand, R., & Epand, R. ( 2011 ). Bacterial membrane lipids in the action of antimicrobial agents. Journal of Peptide Science, 17 ( 5 ), 298 – 305. https://doi.org/10.1002/psc.1319
dc.identifier.citedreferenceErgene, C., & Palermo, E. F. ( 2017 ). Cationic poly(benzyl ether)s as self-immolative antimicrobial polymers. Biomacromolecules, 18 ( 10 ), 3400 – 3409. https://doi.org/10.1021/acs.biomac.7b01062
dc.identifier.citedreferenceErgene, C., & Palermo, E. F. ( 2018 ). Antimicrobial synthetic polymers: An update on structure-activity relationships. Current Pharmaceutical Design, 24 ( 8 ), 855 – 865. https://doi.org/10.2174/1381612824666180213140732
dc.identifier.citedreferenceErgene, C., Yasuhara, K., & Palermo, E. F. ( 2018 ). Biomimetic antimicrobial polymers: Recent advances in molecular design. Polymer Chemistry, 9 ( 18 ), 2407 – 2427. https://doi.org/10.1039/C8PY00012C
dc.identifier.citedreferenceEtayash, H., & Hancock, R. E. W. ( 2021 ). Host defense peptide-mimicking polymers and polymeric-brush-tethered host defense peptides: Recent developments, limitations, and potential success. Pharmaceutics, 13 ( 11 ), 1820. Retrieved from. https://www.mdpi.com/1999-4923/13/11/1820
dc.identifier.citedreferenceFelicio, M. R., Silva, O. N., Goncalves, S., Santos, N. C., & Franco, O. L. ( 2017 ). Peptides with dual antimicrobial and anticancer activities. Frontiers in Chemistry, 5, 9. https://doi.org/10.3389/fchem.2017.00005
dc.identifier.citedreferenceFeng, K., Ni, C., Yu, L., Zhou, W., & Li, X. ( 2019 ). Synthesis and evaluation of acrylate resins suspending indole derivative structure in the side chain for marine antifouling. Colloids and Surfaces B: Biointerfaces, 184, 110518.
dc.identifier.citedreferenceFischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., & Kissel, T. ( 2003 ). In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 24 ( 7 ), 1121 – 1131. https://doi.org/10.1016/S0142-9612(02)00445-3
dc.identifier.citedreferenceFisher, R. A., Gollan, B., & Helaine, S. ( 2017 ). Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 15 ( 8 ), 453 – 464. https://doi.org/10.1038/nrmicro.2017.42
dc.identifier.citedreferenceFoster, L. L., Mizutani, M., Oda, Y., Palermo, E. F., & Kuroda, K. ( 2017 ). Design and synthesis of amphiphilic vinyl copolymers with antimicrobial activity. In C. Scholz (Ed.), Polymers for biomedicine: Synthesis, characterization, and applications (p. 245 ). Wiley.
dc.identifier.citedreferenceFouad, Y. A., & Aanei, C. ( 2017 ). Revisiting the hallmarks of cancer. American Journal of Cancer Research, 7 ( 5 ), 1016 – 1036.
dc.identifier.citedreferenceGalli, G., & Martinelli, E. ( 2017 ). Amphiphilic polymer platforms: Surface engineering of films for marine antibiofouling. Macromolecular Rapid Communications, 38 ( 8 ), 1600704.
dc.identifier.citedreferenceGalm, U., Hager, M. H., Van Lanen, S. G., Ju, J. H., Thorson, J. S., & Shen, B. ( 2005 ). Antitumor antibiotics: Bleomycin, endiynes, and mitomycin. Chemical Reviews, 105 ( 2 ), 739 – 758. https://doi.org/10.1021/cr030117g
dc.identifier.citedreferenceGaspar, D., Veiga, A. S., & Castanho, M. A. ( 2013 ). From antimicrobial to anticancer peptides: A review. Frontiers in Microbiology, 4, 294. https://doi.org/10.3389/fmicb.2013.00294
dc.identifier.citedreferenceGhosh, C., Sarkar, P., Issa, R., & Haldar, J. ( 2019 ). Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends in Microbiology, 27 ( 4 ), 323 – 338. https://doi.org/10.1016/j.tim.2018.12.010
dc.identifier.citedreferenceGibney, K. A., Sovadinova, I., Lopez, A. I., Urban, M., Ridgway, Z., Caputo, G. A., & Kuroda, K. ( 2012 ). Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromolecular Bioscience, 12 ( 9 ), 1279 – 1289. https://doi.org/10.1002/mabi.201200052
dc.identifier.citedreferenceGillet, J. P., & Gottesman, M. M. ( 2010 ). Mechanisms of multidrug resistance in cancer. Methods in Molecular Biology, 596, 47 – 76. https://doi.org/10.1007/978-1-60761-416-6_4
dc.identifier.citedreferenceGodballe, T., Nilsson, L. L., Petersen, P. D., & Jenssen, H. ( 2011 ). Antimicrobial beta-peptides and alpha-peptoids. Chemical Biology & Drug Design, 77 ( 2 ), 107 – 116. https://doi.org/10.1111/j.1747-0285.2010.01067.x
dc.identifier.citedreferenceGoderecci, S. S., Kaiser, E., Yanakas, M., Norris, Z., Scaturro, J., Oszust, R., Medina, C. D., Waechter, F., Heon, M., Krchnavek, R. R., Yu, L., Lofland, S. E., Demarest, R. M., Caputo, G. A., & Hettinger, J. D. ( 2017 ). Silver oxide coatings with high silver-ion elution rates and characterization of bactericidal activity. Molecules, 22 ( 9 ), 1487–1501. https://doi.org/10.3390/molecules22091487
dc.identifier.citedreferenceGonzalo, S., Rodea-Palomares, I., Leganés, F., García-Calvo, E., Rosal, R., & Fernández-Piñas, F. ( 2015 ). First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: A linkage with toxicity and oxidative stress. Nanotoxicology, 9 ( 6 ), 706 – 718.
dc.identifier.citedreferenceGrace, J. L., Huang, J. X., Cheah, S.-E., Truong, N. P., Cooper, M. A., Li, J., Davis, T. P., Quinn, J. F., Velkov, T., & Whittaker, M. R. ( 2016 ). Antibacterial low molecular weight cationic polymers: Dissecting the contribution of hydrophobicity, chain length and charge to activity. RSC Advances, 6 ( 19 ), 15469 – 15477. https://doi.org/10.1039/C5RA24361K
dc.identifier.citedreferenceHall, C. W., & Mah, T. F. ( 2017 ). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41 ( 3 ), 276 – 301. https://doi.org/10.1093/femsre/fux010
dc.identifier.citedreferenceHan, W., Clarke, W., & Pratt, S. ( 2014 ). Composting of waste algae: A review. Waste Management, 34 ( 7 ), 1148 – 1155. https://doi.org/10.1016/j.wasman.2014.01.019
dc.identifier.citedreferenceHasan, M., Karal, M., Levadnyy, V., & Yamazaki, M. ( 2018 ). Mechanism of initial stage of pore formation induced by antimicrobial peptide Magainin 2. Langmuir, 34 ( 10 ), 3349 – 3362. https://doi.org/10.1021/acs.langmuir.7b04219
dc.identifier.citedreferenceHauer, T., Capek, P., & Bohmova, P. ( 2016 ). Main photoautotrophic components of biofilms in natural draft cooling towers. Folia Microbiologia (Praha), 61 ( 3 ), 255 – 260. https://doi.org/10.1007/s12223-015-0429-4
dc.identifier.citedreferenceHay, W. T., Fanta, G. F., Rich, J., Evans, K. O., Skory, C. D., & Selling, G. W. ( 2020 ). Antimicrobial properties of amylose-fatty ammonium salt inclusion complexes. Carbohydrate Polymers, 230, 115666.
dc.identifier.citedreferenceHecht, S. M. ( 2000 ). Bleomycin: New perspectives on the mechanism of action. Journal of Natural Products, 63 ( 1 ), 158 – 168. https://doi.org/10.1021/np990549f
dc.identifier.citedreferenceHicks, R. P., Abercrombie, J. J., Wong, R. K., & Leung, K. P. ( 2013 ). Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens. Bioorganic & Medicinal Chemistry, 21 ( 1 ), 205 – 214. https://doi.org/10.1016/j.bmc.2012.10.039
dc.identifier.citedreferenceHitchner, M. A., Necelis, M. R., Shirley, D., & Caputo, G. A. ( 2021 ). Effect of non-natural hydrophobic amino acids on the efficacy and properties of the antimicrobial peptide C18G. Probiotics and Antimicrobial Proteins, 13 ( 2 ), 527 – 541. https://doi.org/10.1007/s12602-020-09701-3
dc.identifier.citedreferenceHitchner, M. A., Santiago-Ortiz, L. E., Necelis, M. R., Shirley, D. J., Palmer, T. J., Tarnawsky, K. E., Vaden, T. D., & Caputo, G. A. ( 2019 ). Activity and characterization of a pH-sensitive antimicrobial peptide. Biochimica et Biophysica Acta - Biomembranes, 1861 ( 10 ), 182984. https://doi.org/10.1016/j.bbamem.2019.05.006
dc.identifier.citedreferenceHoiczyk, E., & Hansel, A. ( 2000 ). Cyanobacterial cell walls: News from an unusual prokaryotic envelope. Journal of Bacteriology, 182 ( 5 ), 1191 – 1199.
dc.identifier.citedreferenceHorn, J. N., Cravens, A., & Grossfield, A. ( 2013 ). Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics. Biophysical Journal, 105 ( 7 ), 1612 – 1623. https://doi.org/10.1016/j.bpj.2013.08.034
dc.identifier.citedreferenceHousman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. ( 2014 ). Drug Resistance in cancer: An overview. Cancers, 6 ( 3 ), 1769 – 1792. https://doi.org/10.3390/cancers6031769
dc.identifier.citedreferenceHu, K., Schmidt, N. W., Zhu, R., Jiang, Y., Lai, G. H., Wei, G., Palermo, E. F., Kuroda, K., Wong, G. C. L., & Yang, L. ( 2013 ). A critical evaluation of random copolymer mimesis of homogeneous antimicrobial peptides. Macromolecules, 46 ( 5 ), 1908 – 1915.
dc.identifier.citedreferenceHu, T., Li, Z., Gao, C. Y., & Cho, C. H. ( 2016 ). Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World Journal of Gastroenterology, 22 ( 30 ), 6876 – 6889. https://doi.org/10.3748/wjg.v22.i30.6876
dc.identifier.citedreferenceHuan, Y. C., Kong, Q., Mou, H. J., & Yi, H. X. ( 2020 ). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 21. https://doi.org/10.3389/fmicb.2020.582779
dc.identifier.citedreferenceHuang, W., Seo, J., Willingham, S. B., Czyzewski, A. M., Gonzalgo, M. L., Weissman, I. L., & Barron, A. E. ( 2014 ). Learning from host-defense peptides: Cationic, amphipathic Peptoids with potent anticancer activity. PLoS One, 9 ( 2 ), 10. https://doi.org/10.1371/journal.pone.0090397
dc.identifier.citedreferenceIvanov, I., Vemparala, S., Pophristic, V., Kuroda, K., DeGrado, W. F., McCammon, J. A., & Klein, M. L. ( 2006 ). Characterization of nonbiological antimicrobial polymers in aqueous solution and at water-lipid interfaces from all-atom molecular dynamics. Journal of the American Chemical Society, 128 ( 6 ), 1778 – 1779. https://doi.org/10.1021/ja0564665
dc.identifier.citedreferenceJafari, A., Babajani, A., Sarrami Forooshani, R., Yazdani, M., & Rezaei-Tavirani, M. ( 2022 ). Clinical applications and anticancer effects of antimicrobial peptides: From bench to bedside. Frontiers in Oncology, 12, 819563. https://doi.org/10.3389/fonc.2022.819563
dc.identifier.citedreferenceJamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. ( 2018 ). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81 ( 1 ), 7 – 11. https://doi.org/10.1016/j.jcma.2017.07.012
dc.identifier.citedreferenceJanssen, C., Vangheluwe, M., & Sprang, P. V. ( 2000 ). A brief review and critical evaluation of the status of microbiotests. In G. Persoone, C. Janssen, & W. de Coen (Eds.), New microbiotests for routine toxicity screening and biomonitoring (pp. 27 – 37 ). Springer.
dc.identifier.citedreferenceJia, X. J., Zhang, C., Qiu, J. F., Wang, L. L., Bao, J. L., Wang, K., Zhang, Y., Chen, M., Wan, J., Su, H., Han, J., & He, C. W. ( 2015 ). Purification, structural characterization and anticancer activity of the novel polysaccharides from Rhynchosia minima root. Carbohydrate Polymers, 132, 67 – 71. https://doi.org/10.1016/j.carbpol.2015.05.059
dc.identifier.citedreferenceJiang, Z., Vasil, A. I., Hale, J. D., Hancock, R. E., Vasil, M. L., & Hodges, R. S. ( 2008 ). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers, 90 ( 3 ), 369 – 383. https://doi.org/10.1002/bip.20911
dc.identifier.citedreferenceJoo, J. C., Kim, G. Y., Lee, M. J., Ahn, C. H., Lee, S., Park, J. R., & Kim, J. K. ( 2020 ). Growth inhibition of Microcystis aeruginosa using TiO(2)-embedded expanded polystyrene balls. Journal of Nanoscience and Nanotechnology, 20 ( 9 ), 5775 – 5779. https://doi.org/10.1166/jnn.2020.17637
dc.identifier.citedreferenceJudzewitsch, P. R., Nguyen, T. K., Shanmugam, S., Wong, E. H. H., & Boyer, C. ( 2018 ). Towards sequence-controlled antimicrobial polymers: Effect of polymer block order on antimicrobial activity. Angewandte Chemie (International Edition in English), 57 ( 17 ), 4559 – 4564. https://doi.org/10.1002/anie.201713036
dc.identifier.citedreferenceKakuda, S., Suresh, P., Li, G., & London, E. ( 2022 ). Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation. Journal of Lipid Research, 63 ( 1 ), 100155. https://doi.org/10.1016/j.jlr.2021.100155
dc.identifier.citedreferenceKang, H. K., Kim, C., Seo, C. H., & Park, Y. ( 2017 ). The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology, 55 ( 1 ), 1 – 12. https://doi.org/10.1007/s12275-017-6452-1
dc.identifier.citedreferenceKaral, M., Alam, J., Takahashi, T., Levadny, V., & Yamazaki, M. ( 2015 ). Stretch-activated pore of the antimicrobial peptide, Magainin 2. Langmuir, 31 ( 11 ), 3391 – 3401. https://doi.org/10.1021/la503318z
dc.identifier.citedreferenceKenawy, E.-R., Worley, S., & Broughton, R. ( 2007 ). The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules, 8 ( 5 ), 1359 – 1384.
dc.identifier.citedreferenceKester, J. C., & Fortune, S. M. ( 2014 ). Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49 ( 2 ), 91 – 101. https://doi.org/10.3109/10409238.2013.869543
dc.identifier.citedreferenceKhandelia, H., & Kaznessis, Y. N. ( 2007 ). Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation. Biochimica et Biophysica Acta, 1768 ( 3 ), 509 – 520. https://doi.org/10.1016/j.bbamem.2006.11.015
dc.identifier.citedreferenceKlapper, I., Gilbert, P., Ayati, B. P., Dockery, J., & Stewart, P. S. ( 2007 ). Senescence can explain microbial persistence. Microbiology, 153 ( Pt 11 ), 3623 – 3630. https://doi.org/10.1099/mic.0.2007/006734-0
dc.identifier.citedreferenceKoehbach, J., & Craik, D. J. ( 2019 ). The vast structural diversity of antimicrobial peptides. Trends in Pharmacological Sciences, 40 ( 7 ), 517 – 528. https://doi.org/10.1016/j.tips.2019.04.012
dc.identifier.citedreferenceKohn, E. M., Shirley, D. J., Arotsky, L., Picciano, A. M., Ridgway, Z., Urban, M. W., Carone, B., & Caputo, G. A. ( 2018 ). Role of cationic side chains in the antimicrobial activity of C18G. Molecules, 23 ( 2 ), 17. https://doi.org/10.3390/molecules23020329
dc.identifier.citedreferenceKottmann, A., Mejía, E., Hémery, T., Klein, J., & Kragl, U. ( 2017 ). Recent developments in the preparation of silicones with antimicrobial properties. Chemistry – An Asian Journal, 12 ( 11 ), 1168 – 1179. https://doi.org/10.1002/asia.201700244
dc.identifier.citedreferenceKouno, T., Fujitani, N., Mizuguchi, M., Osaki, T., Nishimura, S.-i., Kawabata, S.-i., Aizawa, T., Demura, M., Nitta, K., & Kawano, K. ( 2008 ). A novel β-defensin structure: A potential strategy of big defensin for overcoming resistance by gram-positive bacteria. Biochemistry, 47 ( 40 ), 10611 – 10619.
dc.identifier.citedreferenceKrumm, C., & Tiller, J. C. ( 2017 ). Chapter 15: Antimicrobial polymers and surfaces—Natural mimics or surpassing nature? In Bio-inspired polymers (pp. 490 – 522 ). The Royal Society of Chemistry.
dc.identifier.citedreferenceKuroda, K., & Caputo, G. A. ( 2013 ). Antimicrobial polymers as synthetic mimics of host-defense peptides. WIREs Nanomedicine and Nanobiotechnology, 5 ( 1 ), 49 – 66. https://doi.org/10.1002/wnan.1199
dc.identifier.citedreferenceKuroda, K., Caputo, G. A., & DeGrado, W. F. ( 2009 ). The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry, 15 ( 5 ), 1123 – 1133. https://doi.org/10.1002/chem.200801523
dc.identifier.citedreferenceKuroda, K., & DeGrado, W. F. ( 2005 ). Amphiphilic polymethacrylate derivatives as antimicrobial agents. Journal of the American Chemical Society, 127 ( 12 ), 4128 – 4129. https://doi.org/10.1021/ja044205+
dc.identifier.citedreferenceKuroki, A., Sangwan, P., Qu, Y., Peltier, R., Sanchez-Cano, C., Moat, J., Dowson, C. G., Williams, E. G. L., Locock, K. E. S., Hartlieb, M., & Perrier, S. ( 2017 ). Sequence control as a powerful tool for improving the selectivity of antimicrobial polymers. ACS Applied Materials & Interfaces, 9 ( 46 ), 40117 – 40126. https://doi.org/10.1021/acsami.7b14996
dc.identifier.citedreferenceKuwano, M., Sonoda, K., Murakami, Y., Watari, K., & Ono, M. ( 2016 ). Overcoming drug resistance to receptor tyrosine kinase inhibitors: Learning from lung cancer. Pharmacology & Therapeutics, 161, 97 – 110. https://doi.org/10.1016/j.pharmthera.2016.03.002
dc.identifier.citedreferenceKyzioł, A., Khan, W., Sebastian, V., & Kyzioł, K. ( 2020 ). Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chemical Engineering Journal, 385, 123888.
dc.identifier.citedreferenceLadokhin, A. S., Selsted, M. E., & White, S. H. ( 1997 ). Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: Pore formation by melittin. Biophysical Journal, 72 ( 4 ), 1762 – 1766. https://doi.org/10.1016/S0006-3495(97)78822-2
dc.identifier.citedreferenceLázár, V., Nagy, I., Spohn, R., Csörgő, B., Györkei, Á., Nyerges, A., Horváth, B., Vörös, A., Busa-Fekete, R., Hrtyan, M., Bogos, B., Méhi, O., Fekete, G., Szappanos, B., Kégl, B., Papp, B., & Pál, C. ( 2014 ). Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nature Communications, 5, 12. https://doi.org/10.1038/ncomms5352
dc.identifier.citedreferenceLe, C. F., Fang, C. M., & Sekaran, S. D. ( 2017 ). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 61 ( 4 ), 16. https://doi.org/10.1128/aac.02340-16
dc.identifier.citedreferenceLeary, M., Heerboth, S., Lapinska, K., & Sarkar, S. ( 2018 ). Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers, 10 ( 12 ), 18. https://doi.org/10.3390/cancers10120483
dc.identifier.citedreferenceLee, M., Sun, T., Hung, W., & Huang, H. ( 2013 ). Process of inducing pores in membranes by melittin. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 35 ), 14243 – 14248. https://doi.org/10.1073/pnas.1307010110
dc.identifier.citedreferenceLee, M. T., Hung, W. C., Chen, F. Y., & Huang, H. W. ( 2008 ). Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 13 ), 5087 – 5092. https://doi.org/10.1073/pnas.0710625105
dc.identifier.citedreferenceLee, M. W., Chakraborty, S., Schmidt, N. W., Murgai, R., Gellman, S. H., & Wong, G. C. L. ( 2014 ). Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838 ( 9 ), 2269 – 2279. https://doi.org/10.1016/j.bbamem.2014.04.007
dc.identifier.citedreferenceLehrer, R. I., & Lu, W. ( 2012 ). Alpha-defensins in human innate immunity. Immunological Reviews, 245 ( 1 ), 84 – 112. https://doi.org/10.1111/j.1600-065X.2011.01082.x
dc.identifier.citedreferenceLeonardi, A. K., & Ober, C. K. ( 2019 ). Polymer-based marine antifouling and fouling release surfaces: Strategies for synthesis and modification. Annual Review of Chemical and Biomolecular Engineering, 10, 241 – 264.
dc.identifier.citedreferenceLeontiadou, H., Mark, A. E., & Marrink, S. J. ( 2006 ). Antimicrobial peptides in action. Journal of the American Chemical Society, 128 ( 37 ), 12156 – 12161. https://doi.org/10.1021/ja062927q
dc.identifier.citedreferenceLi, J., Hu, S., Jian, W., Xie, C., & Yang, X. ( 2021 ). Plant antimicrobial peptides: Structures, functions, and applications. Botanical Studies, 62 ( 1 ), 5. https://doi.org/10.1186/s40529-021-00312-x
dc.identifier.citedreferenceLi, J., Lakshminarayanan, R., Bai, Y., Liu, S., Zhou, L., Pervushin, K., Verma, C., & Beuerman, R. W. ( 2012 ). Molecular dynamics simulations of a new branched antimicrobial peptide: A comparison of force fields. The Journal of Chemical Physics, 137 ( 21 ), 215101.
dc.identifier.citedreferenceLi, J., Liu, S., Lakshminarayanan, R., Bai, Y., Pervushin, K., Verma, C., & Beuerman, R. W. ( 2013 ). Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochimica et Biophysica Acta, 1828 ( 3 ), 1112 – 1121. https://doi.org/10.1016/j.bbamem.2012.12.015
dc.identifier.citedreferenceLi, M. H., Raleigh, D. P., & London, E. ( 2021 ). Preparation of asymmetric vesicles with trapped CsCl avoids osmotic imbalance, non-physiological external solutions, and minimizes leakage. Langmuir, 37 ( 39 ), 11611 – 11617. https://doi.org/10.1021/acs.langmuir.1c01971
dc.identifier.citedreferenceLienkamp, K., Madkour, A. E., Musante, A., Nelson, C. F., Nüsslein, K., & Tew, G. N. ( 2008 ). Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. Journal of the American Chemical Society, 130 ( 30 ), 9836 – 9843. https://doi.org/10.1021/ja801662y
dc.identifier.citedreferenceLiu, D., Choi, S., Chen, B., Doerksen, R. J., Clements, D. J., Winkler, J. D., Klein, M. L., & DeGrado, W. F. ( 2004 ). Nontoxic membrane-active antimicrobial arylamide oligomers. Angewandte Chemie International Edition, 43 ( 9 ), 1158 – 1162.
dc.identifier.citedreferenceLiu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., Sang, M., & Zhang, C. ( 2013 ). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6 ( 1 ), 1 – 11.
dc.identifier.citedreferenceLiu, L., Courtney, K. C., Huth, S. W., Rank, L. A., Weisblum, B., Chapman, E. R., & Gellman, S. H. ( 2021 ). Beyond amphiphilic balance: Changing subunit stereochemistry alters the pore-forming activity of Nylon-3 polymers. Journal of the American Chemical Society, 143 ( 8 ), 3219 – 3230. https://doi.org/10.1021/jacs.0c12731
dc.identifier.citedreferenceLocock, K. E., Michl, T. D., Valentin, J. D., Vasilev, K., Hayball, J. D., Qu, Y., Traven, A., Griesser, H. J., Meagher, L., & Haeussler, M. ( 2013 ). Guanylated polymethacrylates: A class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules, 14 ( 11 ), 4021 – 4031. https://doi.org/10.1021/bm401128r
dc.identifier.citedreferenceLocock, K. E. S., Michl, T. D., Stevens, N., Hayball, J. D., Vasilev, K., Postma, A., Griesser, H. J., Meagher, L., & Haeussler, M. ( 2014 ). Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Letters, 3 ( 4 ), 319 – 323. https://doi.org/10.1021/mz5001527
dc.identifier.citedreferenceLopez Cascales, J. J., Zenak, S., Garcia de la Torre, J., Lezama, O. G., Garro, A., & Enriz, R. D. ( 2018 ). Small cationic peptides: Influence of charge on their antimicrobial activity. ACS Omega, 3 ( 5 ), 5390 – 5398. https://doi.org/10.1021/acsomega.8b00293
dc.identifier.citedreferenceLowrence, R. C., Subramaniapillai, S. G., Ulaganathan, V., & Nagarajan, S. ( 2019 ). Tackling drug resistance with efflux pump inhibitors: From bacteria to cancerous cells. Critical Reviews in Microbiology, 45 ( 3 ), 334 – 353. https://doi.org/10.1080/1040841x.2019.1607248
dc.identifier.citedreferenceLu, J., Xu, H., Xia, J., Ma, J., Xu, J., Li, Y., & Feng, J. ( 2020 ). D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic Resistance and their proteolytic degradation characteristics. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.563030
dc.identifier.citedreferenceLuo, Z., Wu, Y.-L., Li, Z., & Loh, X. J. ( 2019 ). Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications. Biotechnology Journal, 14 ( 12 ), 1900283. https://doi.org/10.1002/biot.201900283
dc.identifier.citedreferenceLv, L., Zhang, X., & Qiao, J. ( 2018 ). Flocculation of low algae concentration water using polydiallyldimethylammonium chloride coupled with polysilicate aluminum ferrite. Environmental Technology, 39 ( 1 ), 83 – 90.
dc.identifier.citedreferenceLyon-Colbert, A., Su, S., & Cude, C. ( 2018 ). A systematic literature review for evidence of Aphanizomenon flos-aquae toxigenicity in recreational waters and toxicity of dietary supplements: 2000–2017. Toxins, 10 ( 7 ), 254.
dc.identifier.citedreferenceMagana, M., Pushpanathan, M., Santos, A. L., Leanse, L., Fernandez, M., Ioannidis, A., Giulianotti, M. A., Apidianakis, Y., Bradfute, S., Ferguson, A. L., Cherkasov, A., Seleem, M. N., Pinilla, C., de la Fuente-Nunez, C., Lazaridis, T., Dai, T., Houghten, R. A., Hancock, R. E. W., & Tegos, G. P. ( 2020 ). The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 20 ( 9 ), e216 – e230. https://doi.org/10.1016/S1473-3099(20)30327-3
dc.identifier.citedreferenceMahlapuu, M., Bjorn, C., & Ekblom, J. ( 2020 ). Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Critical Reviews in Biotechnology, 40 ( 7 ), 978 – 992. https://doi.org/10.1080/07388551.2020.1796576
dc.identifier.citedreferenceMaik-Rachline, G., & Seger, R. ( 2016 ). The ERK cascade inhibitors: Towards overcoming resistance. Drug Resistance Updates, 25, 1 – 12. https://doi.org/10.1016/j.drup.2015.12.001
dc.identifier.citedreferenceMarketsandMarkets. Antimicrobial plastics market by additive (inorganic, organic), type (commodity plastics, engineering plastics, high-performance plastics), application and region (APAC, North America, Europe, MEA, South America)—Global Forecast to 2026. Retrieved from https://www.marketsandmarkets.com/Market-Reports/antimicrobial-plastic-market-20591555.html.
dc.identifier.citedreferenceMarturano, V., Cerruti, P., & Ambrogi, V. ( 2017 ). Polymer additives. Physical Sciences Reviews, 2 ( 6 ), 20160130. https://doi.org/10.1515/psr-2016-0130
dc.identifier.citedreferenceMatthijs, H. C. P., Jancula, D., Visser, P. M., & Marsalek, B. ( 2016 ). Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology, 50 ( 3 ), 443 – 460. https://doi.org/10.1007/s10452-016-9577-0
dc.identifier.citedreferenceMatyus, E., Kandt, C., & Tieleman, D. P. ( 2007 ). Computer simulation of antimicrobial peptides. Current Medicinal Chemistry, 14 ( 26 ), 2789 – 2798.
dc.identifier.citedreferenceMellati, A., Valizadeh Kiamahalleh, M., Dai, S., Bi, J., Jin, B., & Zhang, H. ( 2016 ). Influence of polymer molecular weight on the in vitro cytotoxicity of poly (N-isopropylacrylamide). Materials Science and Engineering: C, 59, 509 – 513. https://doi.org/10.1016/j.msec.2015.10.043
dc.identifier.citedreferenceMichl, T. D., Hibbs, B., Hyde, L., Postma, A., Tran, D. T. T., Zhalgasbaikyzy, A., Vasilev, K., Meagher, L., Griesser, H. J., & Locock, K. E. S. ( 2020 ). Bacterial membrane permeability of antimicrobial polymethacrylates: Evidence for a complex mechanism from super-resolution fluorescence imaging. Acta Biomaterialia, 108, 168 – 177. https://doi.org/10.1016/j.actbio.2020.03.011
dc.identifier.citedreferenceMihajlovic, M., & Lazaridis, T. ( 2012 ). Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochimica et Biophysica Acta, 1818 ( 5 ), 1274 – 1283. https://doi.org/10.1016/j.bbamem.2012.01.016
dc.identifier.citedreferenceMikula, P., Mlnaříková, M., Nadres, E. T., Takahashi, H., Babica, P., Kuroda, K., Bláha, L., & Sovadinová, I. ( 2021 ). Synthetic biomimetic polymethacrylates: Promising platform for the design of anti-cyanobacterial and anti-algal agents. Polymers, 13 ( 7 ), 1025.
dc.identifier.citedreferenceMikula, P., Mlnarikova, M., Takahashi, H., Babica, P., Kuroda, K., Blaha, L., & Sovadinova, I. ( 2018 ). Branched poly (ethylene imine) s as anti-algal and anti-cyanobacterial agents with selective flocculation behavior to cyanobacteria over algae. Macromolecular Bioscience, 18 ( 10 ), 1800187.
dc.identifier.citedreferenceMizutani, M., Palermo, E. F., Thoma, L. M., Satoh, K., Kamigaito, M., & Kuroda, K. ( 2012 ). Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Biomacromolecules, 13 ( 5 ), 1554 – 1563. https://doi.org/10.1021/bm300254s
dc.identifier.citedreferenceMoriarty, T., Elborn, J., & Tunney, M. ( 2007 ). Effect of pH on the antimicrobial susceptibility of planktonic and biofilm-grown clinical Pseudomonas aeruginosa isolates. British Journal of Biomedical Science, 64 ( 3 ), 101 – 104.
dc.identifier.citedreferenceMortazavian, H., Foster, L. L., Bhat, R., Patel, S., & Kuroda, K. ( 2018 ). Decoupling the functional roles of cationic and hydrophobic groups in the antimicrobial and hemolytic activities of methacrylate random copolymers. Biomacromolecules, 19 ( 11 ), 4370 – 4378. https://doi.org/10.1021/acs.biomac.8b01256
dc.identifier.citedreferenceMukherjee, I., Ghosh, A., Bhadury, P., & De, P. ( 2017 ). Side-chain amino acid-based cationic antibacterial polymers: Investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega, 2 ( 4 ), 1633 – 1644. https://doi.org/10.1021/acsomega.7b00181
dc.identifier.citedreferenceNecelis, M. R., Santiago-Ortiz, L. E., & Caputo, G. A. ( 2021 ). Investigation of the role of aromatic residues in the antimicrobial peptide BuCATHL4B. Protein and Peptide Letters, 28 ( 4 ), 388 – 402. https://doi.org/10.2174/0929866527666200813202918
dc.identifier.citedreferenceNederberg, F., Zhang, Y., Tan, J. P., Xu, K., Wang, H., Yang, C., Gao, S., Guo, X. D., Fukushima, K., Li, L., Hedrick, J. L., & Yang, Y. Y. ( 2011 ). Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chemistry, 3 ( 5 ), 409 – 414. https://doi.org/10.1038/nchem.1012
dc.identifier.citedreferenceOda, Y., Kanaoka, S., Sato, T., Aoshima, S., & Kuroda, K. ( 2011 ). Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules, 12 ( 10 ), 3581 – 3591. https://doi.org/10.1021/bm200780r
dc.identifier.citedreferenceOda, Y., Yasuhara, K., Kanaoka, S., Sato, T., Aoshima, S., & Kuroda, K. ( 2018 ). Aggregation of cationic amphiphilic block and random copoly(vinyl ether)s with antimicrobial activity. Polymers, 10 ( 1 ), 93–103. https://doi.org/10.3390/polym10010093
dc.identifier.citedreferenceOng, Z. Y., Coady, D. J., Tan, J. P., Li, Y., Chan, J. M., Yang, Y. Y., & Hedrick, J. L. ( 2016 ). Design and synthesis of biodegradable grafted cationic polycarbonates as broad spectrum antimicrobial agents. Journal of Polymer Science Part A: Polymer Chemistry, 54 ( 8 ), 1029 – 1035.
dc.identifier.citedreferenceOren, Z., & Shai, Y. ( 1997 ). Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: Structure-function study. Biochemistry, 36 ( 7 ), 1826 – 1835. https://doi.org/10.1021/bi962507l
dc.identifier.citedreferenceOrioni, B., Bocchinfuso, G., Kim, J. Y., Palleschi, A., Grande, G., Bobone, S., Park, Y., Kim, J. I., Hahm, K. S., & Stella, L. ( 2009 ). Membrane perturbation by the antimicrobial peptide PMAP-23: A fluorescence and molecular dynamics study. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1788 ( 7 ), 1523 – 1533.
dc.identifier.citedreferencePaerl, H. W., & Paul, V. J. ( 2012 ). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46 ( 5 ), 1349 – 1363. https://doi.org/10.1016/j.watres.2011.08.002
dc.identifier.citedreferencePalermo, E. F., & Kuroda, K. ( 2010 ). Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied Microbiology and Biotechnology, 87 ( 5 ), 1605 – 1615. https://doi.org/10.1007/s00253-010-2687-z
dc.identifier.citedreferencePalermo, E. F., Lee, D. K., Ramamoorthy, A., & Kuroda, K. ( 2011 ). Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. The Journal of Physical Chemistry. B, 115 ( 2 ), 366 – 375. https://doi.org/10.1021/jp1083357
dc.identifier.citedreferencePalermo, E. F., Vemparala, S., & Kuroda, K. ( 2012 ). Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules, 13 ( 5 ), 1632 – 1641. https://doi.org/10.1021/bm300342u
dc.identifier.citedreferencePark, N. H., Cheng, W., Lai, F., Yang, C., Florez de Sessions, P., Periaswamy, B., Wenhan Chu, C., Bianco, S., Liu, S., Venkataraman, S., Chen, Q., Yang, Y. Y., & Hedrick, J. L. ( 2018 ). Addressing drug resistance in cancer with macromolecular chemotherapeutic agents. Journal of the American Chemical Society, 140 ( 12 ), 4244 – 4252. https://doi.org/10.1021/jacs.7b11468
dc.identifier.citedreferencePatrulea, V., Borchard, G., & Jordan, O. ( 2020 ). An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics, 12 ( 9 ), 39. https://doi.org/10.3390/pharmaceutics12090840
dc.identifier.citedreferencePazgier, M., Hoover, D. M., Yang, D., Lu, W., & Lubkowski, J. ( 2006 ). Human beta-defensins. Cellular and Molecular Life Sciences, 63 ( 11 ), 1294 – 1313. https://doi.org/10.1007/s00018-005-5540-2
dc.identifier.citedreferencePercival, S. L., McCarty, S., Hunt, J. A., & Woods, E. J. ( 2014 ). The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair and Regeneration, 22 ( 2 ), 174 – 186.
dc.identifier.citedreferencePercival, S. L., McCarty, S. M., & Lipsky, B. ( 2015 ). Biofilms and wounds: An overview of the evidence. Advances in Wound Care, 4 ( 7 ), 373 – 381. https://doi.org/10.1089/wound.2014.0557
dc.identifier.citedreferencePerreault, F., Bogdan, N., Morin, M., Claverie, J., & Popovic, R. ( 2012 ). Interaction of gold nanoglycodendrimers with algal cells ( Chlamydomonas reinhardtii ) and their effect on physiological processes. Nanotoxicology, 6 ( 2 ), 109 – 120.
dc.identifier.citedreferencePersson, S., Killian, J. A., & Lindblom, G. ( 1998 ). Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophysical Journal, 75 ( 3 ), 1365 – 1371. https://doi.org/10.1016/s0006-3495(98)74054-8
dc.identifier.citedreferencePeterson, E., & Kaur, P. ( 2018 ). Antibiotic Resistance mechanisms in bacteria: Relationships between Resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 21. https://doi.org/10.3389/fmicb.2018.02928
dc.identifier.citedreferencePetit, A.-N., Debenest, T., Eullaffroy, P., & Gagné, F. ( 2012 ). Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii. Nanotoxicology, 6 ( 3 ), 315 – 326.
dc.identifier.citedreferencePetit, A.-N., Eullaffroy, P., Debenest, T., & Gagné, F. ( 2010 ). Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquatic Toxicology, 100 ( 2 ), 187 – 193.
dc.identifier.citedreferencePolyansky, A. A., Ramaswamy, R., Volynsky, P. E., Sbalzarini, I. F., Marrink, S. J., & Efremov, R. G. ( 2010 ). Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. Journal of Physical Chemistry Letters, 1 ( 20 ), 3108 – 3111. https://doi.org/10.1021/jz101163e
dc.identifier.citedreferencePorter, E. A., Wang, X., Lee, H. S., Weisblum, B., & Gellman, S. H. ( 2000 ). Non-haemolytic beta-amino-acid oligomers. Nature, 404 ( 6778 ), 565. https://doi.org/10.1038/35007145
dc.identifier.citedreferencePreece, E. P., Hardy, F. J., Moore, B. C., & Bryan, M. ( 2017 ). A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae, 61, 31 – 45.
dc.identifier.citedreferenceQiu, H., Feng, K., Gapeeva, A., Meurisch, K., Kaps, S., Li, X., Yu, L., Mishra, Y. K., Adelung, R., & Baum, M. ( 2022 ). Functional polymer materials for modern marine biofouling control. Progress in Polymer Science, 127, 101516.
dc.identifier.citedreferenceRani, G., Kuroda, K., & Vemparala, S. ( 2020 ). Aggregation dynamics of methacrylate binary and ternary biomimetic polymers in solution. arXiv: Soft condensed matter.
dc.identifier.citedreferenceRani, G., Kuroda, K., & Vemparala, S. ( 2021 ). Towards designing globular antimicrobial peptide mimics: Role of polar functional groups in biomimetic ternary antimicrobial polymers. Soft Matter, 17 ( 8 ), 2090 – 2103. https://doi.org/10.1039/d0sm01896a
dc.identifier.citedreferenceReeves, J. P., & Dowben, R. M. ( 1969 ). Formation and properties of thin-walled phospholipid vesicles. Journal of Cellular Physiology, 73 ( 1 ), 49 – 60. https://doi.org/10.1002/jcp.1040730108
dc.identifier.citedreferenceRen, W., Cheng, W. R., Wang, G., & Liu, Y. ( 2017 ). Developments in antimicrobial polymers. Journal of Polymer Science Part A - Polymer Chemistry, 55 ( 4 ), 632 – 639. https://doi.org/10.1002/pola.28446
dc.identifier.citedreferenceRen, X., & Liang, J. ( 2016 ). Chapter 9: Smart anti-microbial composite coatings for textiles and plastics. In M. F. Montemor (Ed.), Smart composite coatings and membranes (pp. 235 – 259 ). Woodhead Publishing.
dc.identifier.citedreferenceRiga, E. K., Vöhringer, M., Widyaya, V. T., & Lienkamp, K. ( 2017 ). Polymer-based surfaces designed to reduce biofilm formation: From antimicrobial polymers to strategies for long-term applications. Macromolecular Rapid Communications, 38 ( 20 ), 1700216.
dc.identifier.citedreferenceRomo, T. D., Bradney, L. A., Greathouse, D. V., & Grossfield, A. ( 2011 ). Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808 ( 8 ), 2019 – 2030.
dc.identifier.citedreferenceRosenfeld, Y., Lev, N., & Shai, Y. ( 2010 ). Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry, 49 ( 5 ), 853 – 861. https://doi.org/10.1021/bi900724x
dc.identifier.citedreferenceRzepiela, A. J., Sengupta, D., Goga, N., & Marrink, S. J. ( 2010 ). Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discussions, 144, 431 – 443. https://doi.org/10.1039/b901615e, discussion 445–481.
dc.identifier.citedreferenceSadhasivam, G., Gelber, C., Zakin, V., Margel, S., & Shapiro, O. H. ( 2019 ). N-halamine derivatized nanoparticles with selective cyanocidal activity: Potential for targeted elimination of harmful cyanobacterial blooms. Environmental Science & Technology, 53 ( 15 ), 9160 – 9170.
dc.identifier.citedreferenceSaint Jean, K. D., Henderson, K. D., Chrom, C. L., Abiuso, L. E., Renn, L. M., & Caputo, G. A. ( 2018 ). Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics and Antimicrobial Proteins, 10 ( 3 ), 408 – 419. https://doi.org/10.1007/s12602-017-9345-z
dc.identifier.citedreferenceSaison, C., Perreault, F., Daigle, J.-C., Fortin, C., Claverie, J., Morin, M., & Popovic, R. ( 2010 ). Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquatic Toxicology, 96 ( 2 ), 109 – 114.
dc.identifier.citedreferenceSanto, K. P., Irudayam, S. J., & Berkowitz, M. L. ( 2013 ). Melittin creates transient pores in a lipid bilayer: Results from computer simulations. The Journal of Physical Chemistry. B, 117 ( 17 ), 5031 – 5042. https://doi.org/10.1021/jp312328n
dc.identifier.citedreferenceSantos, M. R. E., Fonseca, A. C., Mendona, P. V., Branco, R., Serra, A. C., Morais, P. V., & Coelho, J. F. J. ( 2016 ). Recent developments in antimicrobial polymers: A review. Materials, 9 ( 7 ), 33. https://doi.org/10.3390/ma9070599
dc.identifier.citedreferenceSchifano, N. P., & Caputo, G. A. ( 2021 ). Investigation of the role of hydrophobic amino acids on the structure-activity relationship in the antimicrobial venom peptide Ponericin L1. The Journal of Membrane Biology, 255, 537–551. https://doi.org/10.1007/s00232-021-00204-y
dc.identifier.citedreferenceSchmidt, F., & Efferth, T. ( 2016 ). Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals, 9 ( 2 ), 11. https://doi.org/10.3390/ph9020033
dc.identifier.citedreferenceScott, R. W., & Tew, G. N. ( 2017 ). Mimics of host defense proteins; strategies for translation to therapeutic applications. Current Topics in Medicinal Chemistry, 17 ( 5 ), 576 – 589. https://doi.org/10.2174/1568026616666160713130452
dc.identifier.citedreferenceSelim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., & Elmarakbi, A. ( 2017 ). Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science, 87, 1 – 32. https://doi.org/10.1016/j.pmatsci.2017.02.001
dc.identifier.citedreferenceSemeraro, E. F., Marx, L., Mandl, J., Letofsky-Papst, I., Mayrhofer, C., Frewein, M. P. K., Scott, H. L., Prévost, S., Bergler, H., Lohner, K., & Pabst, G. ( 2022 ). Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell. eLife, 11. https://doi.org/10.7554/eLife.72850
dc.identifier.citedreferenceSenetra, A. S., Necelis, M. R., & Caputo, G. A. ( 2020 ). Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Peptide Science, 112 ( 3 ). https://doi.org/10.1002/pep2.24162
dc.identifier.citedreferenceSengupta, D., Leontiadou, H., Mark, A. E., & Marrink, S. J. ( 2008 ). Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta, 1778 ( 10 ), 2308 – 2317. https://doi.org/10.1016/j.bbamem.2008.06.007
dc.identifier.citedreferenceSepehri, A., PeBenito, L., Pino-Angeles, A., & Lazaridis, T. ( 2020 ). What makes a good pore former: A study of synthetic Melittin derivatives. Biophysical Journal, 118 ( 8 ), 1901 – 1913. https://doi.org/10.1016/j.bpj.2020.02.024
dc.identifier.citedreferenceShai, Y. ( 2002 ). Mode of action of membrane active antimicrobial peptides. Biopolymers, 66 ( 4 ), 236 – 248. https://doi.org/10.1002/bip.10260
dc.identifier.citedreferenceShai, Y., & Oren, Z. ( 1996 ). Diastereoisomers of cytolysins, a novel class of potent antibacterial peptides. The Journal of Biological Chemistry, 271 ( 13 ), 7305 – 7308. https://doi.org/10.1074/jbc.271.13.7305
dc.identifier.citedreferenceSimons, K., & Toomre, D. ( 2000 ). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1 ( 1 ), 31 – 39. https://doi.org/10.1038/35036052
dc.identifier.citedreferenceSkovsgaard, T., & Nissen, N. I. ( 1975 ). Adriamycin, an antitumor antibiotic—Review with special reference to daunomycin. Danish Medical Bulletin, 22 ( 2 ), 62 – 73.
dc.identifier.citedreferenceSoliman, W., Bhattacharjee, S., & Kaur, K. ( 2009 ). Interaction of an antimicrobial peptide with a model lipid bilayer using molecular dynamics simulation. Langmuir, 25 ( 12 ), 6591 – 6595. https://doi.org/10.1021/la900365g
dc.identifier.citedreferenceSovadinova, I., Palermo, E. F., Urban, M., Mpiga, P., Caputo, G. A., & Kuroda, K. ( 2011 ). Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers, 3 ( 3 ), 1512 – 1532. https://doi.org/10.3390/polym3031512
dc.identifier.citedreferenceStavrakoudis, A., Tsoulos, I. G., Shenkarev, Z. O., & Ovchinnikova, T. V. ( 2009 ). Molecular dynamics simulation of antimicrobial peptide arenicin-2: Beta-hairpin stabilization by noncovalent interactions. Biopolymers, 92 ( 3 ), 143 – 155. https://doi.org/10.1002/bip.21149
dc.identifier.citedreferenceSteiner, U. K. ( 2021 ). Senescence in bacteria and its underlying mechanisms. Frontiers in Cell and Development Biology, 9, 668915. https://doi.org/10.3389/fcell.2021.668915
dc.identifier.citedreferenceStone, T. A., Cole, G. B., Ravamehr-Lake, D., Nguyen, H. Q., Khan, F., Sharpe, S., & Deber, C. M. ( 2019 ). Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. Journal of Medicinal Chemistry, 62 ( 13 ), 6276 – 6286. https://doi.org/10.1021/acs.jmedchem.9b00657
dc.identifier.citedreferenceSu, J., Marrink, S. J., & Melo, M. N. ( 2020 ). Localization preference of antimicrobial peptides on liquid-disordered membrane domains. Frontiers in Cell and Development Biology, 8. https://doi.org/10.3389/fcell.2020.00350
dc.identifier.citedreferenceSun, D., Babar Shahzad, M., Li, M., Wang, G., & Xu, D. ( 2015 ). Antimicrobial materials with medical applications. Materials Technology, 30 ( sup6 ), B90 – B95. https://doi.org/10.1179/1753555714Y.0000000239
dc.identifier.citedreferenceSun, H., Greathouse, D. V., Andersen, O. S., & Koeppe, R. E., 2nd. ( 2008 ). The preference of tryptophan for membrane interfaces: Insights from N-methylation of tryptophans in gramicidin channels. The Journal of Biological Chemistry, 283 ( 32 ), 22233 – 22243. https://doi.org/10.1074/jbc.M802074200
dc.identifier.citedreferenceTakahashi, D., Shukla, S. K., Prakash, O., & Zhang, G. ( 2010 ). Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 92 ( 9 ), 1236 – 1241. https://doi.org/10.1016/j.biochi.2010.02.023
dc.identifier.citedreferenceTakahashi, H., Caputo, G. A., & Kuroda, K. ( 2021 ). Amphiphilic polymer therapeutics: An alternative platform in the fight against antibiotic resistant bacteria. Biomaterials Science, 9 ( 8 ), 2758 – 2767. https://doi.org/10.1039/d0bm01865a
dc.identifier.citedreferenceTakahashi, H., Caputo, G. A., Vemparala, S., & Kuroda, K. ( 2017 ). Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjugate Chemistry, 28 ( 5 ), 1340 – 1350. https://doi.org/10.1021/acs.bioconjchem.7b00114
dc.identifier.citedreferenceTakahashi, H., Yumoto, K., Yasuhara, K., Nadres, E. T., Kikuchi, Y., Buttitta, L., Taichman, R. S., & Kuroda, K. ( 2019 ). Anticancer polymers designed for killing dormant prostate cancer cells. Scientific Reports, 9, 11. https://doi.org/10.1038/s41598-018-36608-5
dc.identifier.citedreferenceTamba, Y., Ariyama, H., Levadny, V., & Yamazaki, M. ( 2010 ). Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. The Journal of Physical Chemistry. B, 114 ( 37 ), 12018 – 12026. https://doi.org/10.1021/jp104527y
dc.identifier.citedreferenceTamba, Y., & Yamazaki, M. ( 2005 ). Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry, 44 ( 48 ), 15823 – 15833. https://doi.org/10.1021/bi051684w
dc.identifier.citedreferenceTamba, Y., & Yamazaki, M. ( 2009 ). Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane Interface. The Journal of Physical Chemistry. B, 113 ( 14 ), 4846 – 4852. https://doi.org/10.1021/jp8109622
dc.identifier.citedreferenceTan, J., Tay, J., Hedrick, J., & Yang, Y. Y. ( 2020 ). Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials, 252, 40. https://doi.org/10.1016/j.biomaterials.2020.120078
dc.identifier.citedreferenceTan, L. T. H., Chan, K. G., Pusparajah, P., Lee, W. L., Chuah, L. H., Khan, T. M., Lee, L. H., & Goh, B. H. ( 2017 ). Targeting membrane lipid a potential cancer cure? Frontiers in Pharmacology, 8, 6. https://doi.org/10.3389/fphar.2017.00012
dc.identifier.citedreferenceTang, J., Signarvic, R. S., DeGrado, W. F., & Gai, F. ( 2007 ). Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers. Biochemistry, 46 ( 48 ), 13856 – 13863. https://doi.org/10.1021/bi7018404
dc.identifier.citedreferenceTashiro, T. ( 2001 ). Antibacterial and bacterium adsorbing macromolecules. Macromolecular Materials and Engineering, 286 ( 2 ), 63 – 87.
dc.identifier.citedreferenceTew, G. N., Liu, D., Chen, B., Doerksen, R. J., Kaplan, J., Carroll, P. J., Klein, M. L., & DeGrado, W. F. ( 2002 ). De novo design of biomimetic antimicrobial polymers. Proceedings of the National Academy of Sciences of the United States of America, 99 ( 8 ), 5110 – 5114.
dc.identifier.citedreferenceThøgersen, L., Schiøtt, B., Vosegaard, T., Nielsen, N. C., & Tajkhorshid, E. ( 2008 ). Peptide aggregation and pore formation in a lipid bilayer: A combined coarse-grained and all atom molecular dynamics study. Biophysical Journal, 95 ( 9 ), 4337 – 4347.
dc.identifier.citedreferenceThoma, L. M., Boles, B. R., & Kuroda, K. ( 2014 ). Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules, 15 ( 8 ), 2933 – 2943. https://doi.org/10.1021/bm500557d
dc.identifier.citedreferenceTixier, C., Sancelme, M., Bonnemoy, F., Cuer, A., & Veschambre, H. ( 2001 ). Degradation products of a phenylurea herbicide, diuron: Synthesis, ecotoxicity, and biotransformation. Environmental Toxicology and Chemistry, 20 ( 7 ), 1381 – 1389. https://doi.org/10.1897/1551-5028(2001)020<1381:dpoaph>2.0.co;2
dc.identifier.citedreferenceTornesello, A. L., Borrelli, A., Buonaguro, L., Buonaguro, F. M., & Tornesello, M. L. ( 2020 ). Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules, 25 ( 12 ). https://doi.org/10.3390/molecules25122850
dc.identifier.citedreferenceTsukamoto, M., Zappala, E., Caputo, G., Kikuchi, J., Najarian, K., Kuroda, K., & Yasuhara, K. ( 2021 ). Mechanistic study of membrane disruption by antimicrobial methacrylate random copolymers by the single giant vesicle method. Langmuir, 37 ( 33 ), 9982 – 9995. https://doi.org/10.1021/acs.langmuir.1c01047
dc.identifier.citedreferenceTyagi, A., & Mishra, A. ( 2021 ). Optimal balance of hydrophobic content and degree of polymerization results in a potent membrane-targeting antibacterial polymer. ACS Omega, 6 ( 50 ), 34724 – 34735. https://doi.org/10.1021/acsomega.1c05148
dc.identifier.citedreferenceTyagi, A., & Mishra, A. ( 2022 ). Progress of antimicrobial plastics and its applications. In M. S. J. Hashmi (Ed.), Encyclopedia of materials: Plastics and polymers (pp. 1040 – 1046 ). Elsevier.
dc.identifier.citedreferenceUtsugi, T., Schroit, A. J., Connor, J., Bucana, C. D., & Fidler, I. J. ( 1991 ). Elevated expression of phosphatidylserine IN the outer-membrane leaflet of human tumor-cells and recognition by activated human blood monocytes. Cancer Research, 51 ( 11 ), 3062 – 3066.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.