Show simple item record

Porous PDMS-Based Microsystem (ExoSponge) for Rapid Cost-Effective Tumor Extracellular Vesicle Isolation and Mass Spectrometry-Based Metabolic Biomarker Screening

dc.contributor.authorMarvar, Joseph
dc.contributor.authorKumari, Abha
dc.contributor.authorOnukwugha, Nna-Emeka
dc.contributor.authorAchreja, Abhinav
dc.contributor.authorMeurs, Noah
dc.contributor.authorAnimasahun, Olamide
dc.contributor.authorRoy, Jyotirmoy
dc.contributor.authorPaserba, Miya
dc.contributor.authorRaju, Kruthi Srinivasa
dc.contributor.authorFortna, Shawn
dc.contributor.authorRamnath, Nithya
dc.contributor.authorNagrath, Deepak
dc.contributor.authorKang, Yoon-Tae
dc.contributor.authorNagrath, Sunitha
dc.date.accessioned2023-06-01T20:47:37Z
dc.date.available2024-06-01 16:47:35en
dc.date.available2023-06-01T20:47:37Z
dc.date.issued2023-05
dc.identifier.citationMarvar, Joseph; Kumari, Abha; Onukwugha, Nna-Emeka ; Achreja, Abhinav; Meurs, Noah; Animasahun, Olamide; Roy, Jyotirmoy; Paserba, Miya; Raju, Kruthi Srinivasa; Fortna, Shawn; Ramnath, Nithya; Nagrath, Deepak; Kang, Yoon-Tae ; Nagrath, Sunitha (2023). "Porous PDMS- Based Microsystem (ExoSponge) for Rapid Cost- Effective Tumor Extracellular Vesicle Isolation and Mass Spectrometry- Based Metabolic Biomarker Screening." Advanced Materials Technologies 8(9): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/176808
dc.description.abstractPolydimethylsiloxane (PDMS) is an inexpensive robust polymer that is commonly used as the fundamental fabrication material for soft-lithography-based microfluidic devices. Owing to its versatile material properties, there are some attempts to use PDMS as a porous 3D structure for sensing. However, reliable and easy fabrication has been challenging along with the inherent hydrophobic nature of PDMS hindering its use in biomedical sensing applications. Herein, a cleanroom-free inexpensive method to create 3D porous PDMS structures, “ExoSponge” and the effective surface modification to functionalize its 3D porous structure is reported. The ability of ExoSponge to recover cancer-associated extracellular vesicles (EVs) from complex biological samples of up to 10 mL in volume is demonstrated. When compared to ultracentrifugation, the ExoSponge showes a significant increase in cancer EV isolation of more than 210%. Targeted ultra-high pressure liquid chromatography-tandem mass spectrometry (LC-MS/MS) is further employed to profile 70 metabolites in the EVs recovered from the lung cancer patient’s plasma. The resulting profiles reveal the potential intraexosomal metabolite biomarker, phenylacetylglutamine (PAG), in non-small cell lung cancer. The high sensitivity, simple usage, and cost-effectiveness of the ExoSponge platform creates huge potential for rapid, economical and yet specific isolation of exosomes enabling future diagnostic applications of EVs in cancers.Analysis of extracellular vesicles (EVs) as biomarkers in liquid biopsy systems has been a promising avenue in disease detection. While there are many technologies developed for the isolation of EVs, their procedures typically require expensive machinery or are limited by their low throughput. The porous polydimethylsiloxane (PDMS)-based microsystem, ExoSponge, introduces a scalable, cost-effective platform for EV isolation and metabolic biomarker screening.
dc.publisherWiley Periodicals, Inc.
dc.publisherHumana Press
dc.subject.othermicrosystems
dc.subject.otherpolydimethylsiloxane sponges
dc.subject.otherporous polydimethylsiloxane
dc.subject.otherliquid biopsy
dc.subject.otherextracellular vesicles
dc.subject.othercirculating biomarkers
dc.titlePorous PDMS-Based Microsystem (ExoSponge) for Rapid Cost-Effective Tumor Extracellular Vesicle Isolation and Mass Spectrometry-Based Metabolic Biomarker Screening
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176808/1/admt202201937-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176808/2/admt202201937_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176808/3/admt202201937.pdf
dc.identifier.doi10.1002/admt.202201937
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceA. Achreja, H. Zhao, L. Yang, T. H. Yun, J. Marini, D. Nagrath, Metab. Eng. 2017, 43, 156.
dc.identifier.citedreferenceE. Multia, T. Liangsupree, M. Jussila, J. Ruiz-Jimenez, M. Kemell, M.-L. Riekkola, Anal. Chem. 2020, 92, 13058.
dc.identifier.citedreferenceP. Zhang, M. He, Y. Zeng, Lab Chip 2016, 16, 3033.
dc.identifier.citedreferenceY.-T. Kang, Y. J. Kim, J. Bu, Y.-H.o Cho, S.-W. Han, B.-I.n Moon, Nanoscale 2017, 9, 13495.
dc.identifier.citedreferenceK. Lee, H. Shao, R. Weissleder, H. Lee, ACS Nano 2015, 9, 2321.
dc.identifier.citedreferenceF. Liu, O. Vermesh, V. Mani, T. J. Ge, S. J. Madsen, A. Sabour, E.n-C. Hsu, G. Gowrishankar, M. Kanada, J. V. Jokerst, R. G. Sierra, E. Chang, K. Lau, K. Sridhar, A. Bermudez, S. J. Pitteri, T. Stoyanova, R. Sinclair, V. S. Nair, S. S. Gambhir, U. Demirci, ACS Nano 2017, 11, 10712.
dc.identifier.citedreferenceY.-T. Kang, Y. J. Kim, B. Rupp, E. Purcell, T. Hadlock, N. Ramnath, S. Nagrath, Anal. Sens. 2021, 1, 117.
dc.identifier.citedreferenceK. Raj M, S. Chakraborty, J. Appl. Polym. Sci. 2020, 137, 48958.
dc.identifier.citedreferenceT. Fujii, Microelectron. Eng. 2002, 61–62, 907.
dc.identifier.citedreferenceK. Takeuchi, N. Takama, R. Kinoshita, T. Okitsu, B. Kim, Biomed. Microdevices 2020, 22, 79.
dc.identifier.citedreferenceQ.i Li, T. Duan, J. Shao, H. Yu, J. Med. Aromat. Plant Sci. 2018, 53, 11873.
dc.identifier.citedreferenceS. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, A. K. Bose, S. Hajian, V. Palaniappan, B. B. Narakathu, B. J. Bazuin, M. Z. Atashbar, ACS Sens. 2021, 6, 938.
dc.identifier.citedreferenceC. Yu, C. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, L. Jiang, Adv. Mater. Interfaces 2016, 4, 1600862.
dc.identifier.citedreferenceA. Norfatriah, A. S. Ahmad Syamaizar, A. S. Zuruzi, IOP Conf. Ser.: Mater. Sci. Eng. 2018, 342, 012050.
dc.identifier.citedreferenceS. Yoon, M. Seok, M. Kim, Y.-H. Cho, Sci. Rep. 2021, 11, 938.
dc.identifier.citedreferenceM. G. King, A. J. Baragwanath, M. C. Rosamond, D. Wood, A. J. Gallant, Procedia Chem. 2009, 1,, 568.
dc.identifier.citedreferenceJ. Suthar, E. S. Parsons, B. W. Hoogenboom, G. R. Williams, S. Guldin, Anal. Chem. 2020, 92, 4082.
dc.identifier.citedreferenceY.-T. Kang, E. Purcell, C. Palacios-Rolston, T.-W. Lo, N. Ramnath, S. Jolly, S. Nagrath, Small 2019, 15, 1903600.
dc.identifier.citedreferenceA. Achreja, N. Meurs, D. Nagrath, Metabolic Flux Analysis in Eukaryotic Cells, Methods in Molecular Biology, Vol. 2088, Humana Press, New York 2020.
dc.identifier.citedreferenceH. Zhao, L. Yang, J. Baddour, A. Achreja, V. Bernard, T. Moss, J. C. Marini, T. Tudawe, E. G. Seviour, F. A. San Lucas, H. Alvarez, S. Gupta, S. N. Maiti, L. Cooper, D. Peehl, P. T. Ram, A. Maitra, D. Nagrath, Elife 2016, 5, 10250.
dc.identifier.citedreferenceS. R. Kumar, E. T. Kimchi, Y. Manjunath, S. Gajagowni, A. J. Stuckel, J. T. Kaifi, Sci. Rep. 2020, 10, 2800.
dc.identifier.citedreferenceH. Zhao, A. Achreja, E. Iessi, M. Logozzi, D. Mizzoni, R. Di Raimo, D. Nagrath, S. Fais, Biochim. Biophys. Acta, Rev. Cancer 2018, 1869, 64.
dc.identifier.citedreferenceY. Du, L. Chen, X.-S. Li, X.-L. Li, X.-D. Xu, S.-B. Tai, G.-L. Yang, Q. Tang, H. Liu, S.-H. Liu, S.-Y. Zhang, Y. Cheng, Schizophr. Bull. 2021, 47, 615.
dc.identifier.citedreferenceL. Tao, J. Zhou, C. Yuan, L. Zhang, D. Li, D. Si, D. Xiu, L. Zhong, Metabolomics 2019, 15, 86.
dc.identifier.citedreferenceA. Zebrowska, A. Skowronek, A. Wojakowska, P. Widlak, M. Pietrowska, Int. J. Mol. Sci. 2019, 20, 3461.
dc.identifier.citedreferenceL. Zhang, Q. Li, R. Yang, Z. Xu, Y. Kang, P. Xue, Biomed. Microdevices 2019, 21, 58.
dc.identifier.citedreferenceW. Chen, S. Weng, F. Zhang, S. Allen, X. Li, L. Bao, R. H. W. Lam, J. A. Macoska, S. D. Merajver, J. Fu, ACS Nano 2013, 7, 566.
dc.identifier.citedreferenceM. Mokhtarani, G. A. Diaz, W. Rhead, U. Lichter-Konecki, J. Bartley, A. Feigenbaum, N. Longo, W. Berquist, S. A. Berry, R. Gallagher, D. Bartholomew, C. O. Harding, M. S. Korson, S. E. Mccandless, W. Smith, J. Vockley, S. Bart, D. Kronn, R. Zori, S. Cederbaum, N. Dorrani, J. L. Merritt, S. Sreenath-Nagamani, M. Summar, C. Lemons, K. Dickinson, D. F. Coakley, T. L. Moors, B. Lee, B. F. Scharschmidt, Mol. Genet. Metab. 2012, 107, 308.
dc.identifier.citedreferenceM. C. Machado, F. Pinheiro Da Silva, J. Intensive Care 2014, 2, 22.
dc.identifier.citedreferenceI. Nemet, P. P. Saha, N. Gupta, W. Zhu, K. A. Romano, S. M. Skye, T. Cajka, M. L. Mohan, L. Li, Y. Wu, M. Funabashi, A. E. Ramer-Tait, S. V. Naga Prasad, O. Fiehn, F. E. Rey, W. H. W. Tang, M. A. Fischbach, J. A. Didonato, S. L. Hazen, Cell 2020, 180, 862.
dc.identifier.citedreferenceC. A. Reichard, B. D. Naelitz, Z. Wang, X. Jia, J. Li, M. J. Stampfer, E. A. Klein, S. L. Hazen, N. Sharifi, Cancer Epidemiol., Biomarkers Prev. 2022, 31, 192.
dc.identifier.citedreferenceJ. S. Lee, L. Adler, H. Karathia, N. Carmel, S. Rabinovich, N. Auslander, R. Keshet, N. Stettner, A. Silberman, L. Agemy, D. Helbling, R. Eilam, Q. Sun, A. Brandis, S. Malitsky, M. Itkin, H. Weiss, S. Pinto, S. Kalaora, R. Levy, E. Barnea, A. Admon, D. Dimmock, N. Stern-Ginossar, A. Scherz, S. C. S. Nagamani, M. Unda, D. M. Wilson, R. Elhasid, A. Carracedo, et al., Cell 2018, 174, 1559.
dc.identifier.citedreferenceA. P. Gomes, D. Ilter, V. Low, J. E. Endress, J. Fernández-García, A. Rosenzweig, T. Schild, D. Broekaert, A. Ahmed, M. Planque, I. Elia, J. Han, C. Kinzig, E. Mullarky, A. P. Mutvei, J. Asara, R. De Cabo, L. C. Cantley, N. Dephoure, S.-M. Fendt, J. Blenis, Nature 2020, 585, 283.
dc.identifier.citedreferenceM. Amjadi, M. S. Kim, I. Park, in 14th IEEE Int. Conf. on Nanotechnology, IEEE, Toronto, Canada 2014, p. 764 – 767.
dc.identifier.citedreferenceL.i-W. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty, C. Wang, ACS Appl. Mater. Interfaces. 2022, 14, 9570.
dc.identifier.citedreferenceY. J. Kim, Y.-T. Kang, Y.-H. Cho, Anal. Chem. 2016, 88, 7938.
dc.identifier.citedreferenceM. Simons, G. Raposo, Curr. Opin. Cell Biol. 2009, 21, 575.
dc.identifier.citedreferenceT. L. Whiteside, Adv. Clin. Chem. 2016, 74, 103.
dc.identifier.citedreferenceR. E. Lane, D. Korbie, M. M. Hill, M. Trau, Clin. Transl. Med. 2018, 7, 14.
dc.identifier.citedreferenceD. Hanahan, R. A. Weinberg, Cell 2011, 144, 646.
dc.identifier.citedreferenceN. Ludwig, T. L. Whiteside, T. E. Reichert, Int. J. Mol. Sci. 2019, 20, 4684.
dc.identifier.citedreferenceZ. Niu, R. T. K. Pang, W. Liu, Q. Li, R. Cheng, W. S. B. Yeung, PLoS One 2017, 12, 0186534.
dc.identifier.citedreferenceE. Multia, C. J. Y. Tear, M. Palviainen, P. Siljander, M.-L. Riekkola, Anal. Chim. Acta 2019, 1091, 160.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.