Show simple item record

Stratospheric Gas-Phase Production Alone Cannot Explain Observations of Atmospheric Perchlorate on Earth

dc.contributor.authorChan, Yuk-Chun
dc.contributor.authorJaeglé, Lyatt
dc.contributor.authorCampuzano-Jost, Pedro
dc.contributor.authorCatling, David C.
dc.contributor.authorCole-Dai, Jihong
dc.contributor.authorFurdui, Vasile I.
dc.contributor.authorJackson, W. Andrew
dc.contributor.authorJimenez, Jose L.
dc.contributor.authorKim, Dongwook
dc.contributor.authorWedum, Alanna E.
dc.contributor.authorAlexander, Becky
dc.date.accessioned2023-06-01T20:48:02Z
dc.date.available2024-06-01 16:48:00en
dc.date.available2023-06-01T20:48:02Z
dc.date.issued2023-05-16
dc.identifier.citationChan, Yuk-Chun ; Jaeglé, Lyatt ; Campuzano-Jost, Pedro ; Catling, David C.; Cole-Dai, Jihong ; Furdui, Vasile I.; Jackson, W. Andrew; Jimenez, Jose L.; Kim, Dongwook; Wedum, Alanna E.; Alexander, Becky (2023). "Stratospheric Gas- Phase Production Alone Cannot Explain Observations of Atmospheric Perchlorate on Earth." Geophysical Research Letters 50(9): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/176814
dc.description.abstractPerchlorate has been observed in many environments on Earth and Mars but its sources remain poorly quantified. In this study, we use a global three-dimensional chemical transport model to simulate perchlorate’s gas-phase photochemical production, atmospheric transport, and deposition on Earth’s surface. Model predictions are compared to newly compiled observations of atmospheric concentrations, deposition flux, and oxygen isotopic composition of perchlorate. We find that the modeled gas-phase production of perchlorate is consistent with reported stratospheric observations. Nevertheless, we show that this mechanism alone cannot explain the high levels of perchlorate observed at many near-surface sites (aerosol concentrations >0.1 ng m−3 and deposition fluxes >10 g km−2 yr−1) or the low 17O-excess observed in perchlorate sampled from pristine environments (<+18.4‰). We discuss four hypotheses to explain the model-observation discrepancies and recommend laboratory and field observations to address key uncertainties in atmospheric sources of perchlorate.Plain Language SummaryPerchlorate (ClO4−) pollution is an environmental issue because excessive exposure can affect the thyroid and disrupt hormonal balance, especially for infants. Perchlorate on Earth has both human and natural sources. Industrial perchlorate is used for explosives and rocket fuels. Perchlorate also occurs naturally and accumulates in many deserts on Earth and in the soil of Mars. Atmospheric chemistry has long been considered a source of natural perchlorate, but its contribution remains uncertain. In this study, we use a 3-D atmospheric model to estimate how much of the perchlorate occurrence on Earth can be explained by known and plausible reactions between gases containing chlorine and oxygen. We find that these reactions can explain the abundance of stratospheric perchlorate. However, they cannot explain many tropospheric observations of perchlorate, especially those in Antarctica and urban areas. Our analysis of oxygen isotopic anomalies also suggests that stratospheric chemistry alone cannot account for all the natural perchlorate found in deserts. We discuss four possible explanations for the differences between observations and model predictions. We recommend some future research that can reduce the uncertainties in the sources of atmospheric perchlorate and improve our understanding of the occurrence of natural perchlorate in planetary atmospheres.Key PointsWe conduct the first global simulation of atmospheric perchlorate using a three-dimensional chemical transport modelGas-phase production of perchlorate in the stratosphere and its subsequent transport cannot explain observations at many surface sitesAnalysis of modeled and observed 17O excess suggests that non-stratospheric sources are important for the occurrence of natural perchlorate
dc.publisherWiley Periodicals, Inc.
dc.publisherRakuno Gakuen University
dc.subject.otheroxygen isotopes
dc.subject.otherperchlorate
dc.subject.otherGEOS-Chem
dc.subject.otherglobal modeling
dc.subject.otherphotochemistry
dc.subject.other17O excess
dc.titleStratospheric Gas-Phase Production Alone Cannot Explain Observations of Atmospheric Perchlorate on Earth
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176814/1/grl65724.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176814/2/2023GL102745-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176814/3/grl65724_am.pdf
dc.identifier.doi10.1029/2023GL102745
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceKrankowsky, D., Lämmerzahl, P., & Mauersberger, K. ( 2000 ). Isotopic measurements of stratospheric ozone. Geophysical Research Letters, 27 ( 17 ), 2593 – 2595. https://doi.org/10.1029/2000GL011812
dc.identifier.citedreferenceNeu, J. L., Prather, M. J., & Penner, J. E. ( 2007 ). Global atmospheric chemistry: Integrating over fractional cloud cover. Journal of Geophysical Research, 112 ( D11 ), D11306. https://doi.org/10.1029/2006JD008007
dc.identifier.citedreferencePace, C., & Vella, A. J. ( 2019 ). Contamination of water resources of a small island state by fireworks-derived perchlorate: A case study from Malta. Environmental Pollution, 250, 475 – 481. https://doi.org/10.1016/j.envpol.2019.04.012
dc.identifier.citedreferenceParrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller, B., et al. ( 2012 ). Tropospheric bromine chemistry: Implications for present and pre-industrial ozone and mercury. Atmospheric Chemistry and Physics, 12 ( 15 ), 6723 – 6740. https://doi.org/10.5194/acp-12-6723-2012
dc.identifier.citedreferencePoghosyan, A., Sturchio, N. C., Morrison, C. G., Beloso, A. D., Guan, Y., Eiler, J. M., et al. ( 2014 ). Perchlorate in the Great Lakes: Isotopic composition and origin. Environmental Science and Technology, 48 ( 19 ), 11146 – 11153. https://doi.org/10.1021/es502796d
dc.identifier.citedreferencePommereau, J.-P., & Piquard, J. ( 1994 ). Observations of the vertical distribution of stratospheric OClO. Geophysical Research Letters, 21 ( 13 ), 1231 – 1234. https://doi.org/10.1029/94GL00390
dc.identifier.citedreferenceRenard, J. B., Lefevre, F., Pirre, M., Robert, C., & Huguenin, D. ( 1997 ). Vertical profile of night-time stratospheric OClO. Journal of Atmospheric Chemistry, 26 ( 1 ), 65 – 76. https://doi.org/10.1023/A:1005757321761
dc.identifier.citedreferenceRivière, E. D., Pirre, M., Berthet, G., Renard, J.-B., & Lefèvre, F. ( 2004 ). Investigating the halogen chemistry from high-latitude nighttime stratospheric measurements of OClO and NO 2. Journal of Atmospheric Chemistry, 48 ( 3 ), 261 – 282. https://doi.org/10.1023/B:JOCH.0000044423.21004.8e
dc.identifier.citedreferenceRivière, E. D., Pirre, M., Berthet, G., Renard, J.-B., Taupin, F. G., Huret, N., et al. ( 2003 ). On the interaction between nitrogen and halogen species in the Arctic polar vortex during THESEO and THESEO 2000. Journal of Geophysical Research, 107 ( D5 ), SOL54-1 – SOL54-11. https://doi.org/10.1029/2002JD002087
dc.identifier.citedreferenceRyan, R. G., Marais, E. A., Balhatchet, C. J., & Eastham, S. D. ( 2022 ). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth’s Future, 10 ( 6 ), e2021EF002612. https://doi.org/10.1029/2021EF002612
dc.identifier.citedreferenceSchmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M. J., et al. ( 2016 ). Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. Journal of Geophysical Research: Atmospheres, 121 ( 19 ), 11819 – 11835. https://doi.org/10.1002/2015JD024229
dc.identifier.citedreferenceSchueler, B., Morton, J., & Mauersberger, K. ( 1990 ). Measurement of isotopic abundances in collected stratospheric ozone samples. Geophysical Research Letters, 17 ( 9 ), 1295 – 1298. https://doi.org/10.1029/GL017i009p01295
dc.identifier.citedreferenceSherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B., et al. ( 2016 ). Iodine’s impact on tropospheric oxidants: A global model study in GEOS-Chem. Atmospheric Chemistry and Physics, 16 ( 2 ), 1161 – 1186. https://doi.org/10.5194/acp-16-1161-2016
dc.identifier.citedreferenceSherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., et al. ( 2016 ). Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 16 ( 18 ), 12239 – 12271. https://doi.org/10.5194/acp-16-12239-2016
dc.identifier.citedreferenceShi, G., Buffen, A. M., Ma, H., Hu, Z., Sun, B., Li, C., et al. ( 2018 ). Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet. Geochimica et Cosmochimica Acta, 231, 1 – 14. https://doi.org/10.1016/j.gca.2018.03.025
dc.identifier.citedreferenceSijimol, M. R., Mohan, M., & Dineep, D. ( 2016 ). Perchlorate contamination in bottled and other drinking water sources of Kerala, southwest coast of India. Energy, Ecology and Environment, 1 ( 3 ), 148 – 156. https://doi.org/10.1007/s40974-016-0018-7
dc.identifier.citedreferenceSimonaitis, R., & Heicklen, J. ( 1975 ). Perchloric acid: A possible sink for stratospheric chlorine. Planetary and Space Science, 23 ( 11 ), 1567 – 1569. https://doi.org/10.1016/0032-0633(75)90010-0
dc.identifier.citedreferenceSturchio, N. C., Beloso, A., Heraty, L. J., Wheatcraft, S., & Schumer, R. ( 2014 ). Isotopic tracing of perchlorate sources in groundwater from Pomona, California. Applied Geochemistry, 43, 80 – 87. https://doi.org/10.1016/j.apgeochem.2014.01.012
dc.identifier.citedreferenceSturchio, N. C., Böhlke, J. K., Gu, B., Horita, J., Brown, G. M., Beloso, A. D., et al. ( 2006 ). Stable isotopic composition of chlorine and oxygen in synthetic and natural perchlorate. In B. Gu & J. D. Coates (Eds.), Perchlorate: Environmental occurrence, interactions and treatment (pp. 93 – 109 ). Springer US. https://doi.org/10.1007/0-387-31113-0_5
dc.identifier.citedreferenceTétard, C., Fussen, D., Vanhellemont, F., Bingen, C., Dekemper, E., Mateshvili, N., et al. ( 2013 ). OClO slant column densities derived from GOMOS averaged transmittance measurements. Atmospheric Measurement Techniques, 6 ( 11 ), 2953 – 2964. https://doi.org/10.5194/amt-6-2953-2013
dc.identifier.citedreferenceVella, A. J., Chircop, C., Micallef, T., & Pace, C. ( 2015 ). Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks. Science of the Total Environment, 521–522, 46 – 51. https://doi.org/10.1016/j.scitotenv.2015.03.071
dc.identifier.citedreferenceVicars, W. C., & Savarino, J. ( 2014 ). Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique. Geochimica et Cosmochimica Acta, 135, 270 – 287. https://doi.org/10.1016/j.gca.2014.03.023
dc.identifier.citedreferenceVisioni, D., Pitari, G., Tuccella, P., & Curci, G. ( 2018 ). Sulfur deposition changes under sulfate geoengineering conditions: Quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmospheric Chemistry and Physics, 18 ( 4 ), 2787 – 2808. https://doi.org/10.5194/acp-18-2787-2018
dc.identifier.citedreferenceWargan, K., & Coy, L. ( 2016 ). Strengthening of the tropopause inversion layer during the 2009 sudden stratospheric warming: A MERRA-2 study. Journal of the Atmospheric Sciences, 73 ( 5 ), 1871 – 1887. https://doi.org/10.1175/JAS-D-15-0333.1
dc.identifier.citedreferenceWargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., & Partyka, G. ( 2017 ). Evaluation of the ozone fields in NASA’s MERRA-2 reanalysis. Journal of Climate, 30 ( 8 ), 2961 – 2988. https://doi.org/10.1175/JCLI-D-16-0699.1
dc.identifier.citedreferenceWu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., & Rind, D. ( 2007 ). Why are there large differences between models in global budgets of tropospheric ozone? Journal of Geophysical Research, 112 ( D5 ), D05302. https://doi.org/10.1029/2006JD007801
dc.identifier.citedreferenceXu, Z. F., & Lin, M. C. ( 2003 ). Ab initio studies of ClO x reactions. IX. Combination and disproportionation reactions of ClO and s-ClO 3 radicals. The Journal of Chemical Physics, 119 ( 17 ), 8897 – 8904. https://doi.org/10.1063/1.1613632
dc.identifier.citedreferenceXu, Z.-F., Zhu, R., & Lin, M. C. ( 2003 ). Ab initio studies of ClO x reactions. 3. Kinetics and mechanism for the OH + OClO reaction. The Journal of Physical Chemistry A, 107 ( 7 ), 1040 – 1049. https://doi.org/10.1021/jp021183+
dc.identifier.citedreferenceYang, L., Sonk, J. A., & Barker, J. R. ( 2015 ). HO + OClO reaction system: Featuring a barrierless entrance channel with two transition states. The Journal of Physical Chemistry A, 119 ( 22 ), 5723 – 5731. https://doi.org/10.1021/acs.jpca.5b03487
dc.identifier.citedreferenceYe, L., You, H., Yao, J., Kang, X., & Tang, L. ( 2013 ). Seasonal variation and factors influencing perchlorate in water, snow, soil and corns in Northeastern China. Chemosphere, 90 ( 10 ), 2493 – 2498. https://doi.org/10.1016/j.chemosphere.2012.10.058
dc.identifier.citedreferenceZahn, A., Franz, P., Bechtel, C., Grooß, J.-U., & Röckmann, T. ( 2006 ). Modelling the budget of middle atmospheric water vapour isotopes. Atmospheric Chemistry and Physics, 6 ( 8 ), 2073 – 2090. https://doi.org/10.5194/acp-6-2073-2006
dc.identifier.citedreferenceZhu, R. S., & Lin, M. C. ( 2002 ). Ab initio studies of ClO x reactions. 2. Unimolecular decomposition of s-ClO 3 and the bimolecular O + OClO reaction. The Journal of Physical Chemistry A, 106 ( 36 ), 8386 – 8390. https://doi.org/10.1021/jp020015e
dc.identifier.citedreferenceZhu, R. S., & Lin, M. C. ( 2003 ). Ab initio studies of ClO x reactions. VIII. Isomerization and decomposition of ClO 2 radicals and related bimolecular processes. The Journal of Chemical Physics, 119 ( 4 ), 2075 – 2082. https://doi.org/10.1063/1.1585027
dc.identifier.citedreferenceAbbatt, J. P. D. ( 1996 ). Heterogeneous interactions of BrO and ClO: Evidence for BrO surface recombination and reaction with HSO 3 − /SO 3 2−. Geophysical Research Letters, 23 ( 13 ), 1681 – 1684. https://doi.org/10.1029/96GL01430
dc.identifier.citedreferenceAlexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., & Kasibhatla, P. ( 2020 ). Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations. Atmospheric Chemistry and Physics, 20 ( 6 ), 3859 – 3877. https://doi.org/10.5194/acp-20-3859-2020
dc.identifier.citedreferenceAndraski, B. J., Jackson, W. A., Welborn, T. L., Böhlke, J. K., Sevanthi, R., & Stonestrom, D. A. ( 2014 ). Soil, plant, and terrain effects on natural perchlorate distribution in a desert landscape. Journal of Environmental Quality, 43 ( 3 ), 980 – 994. https://doi.org/10.2134/jeq2013.11.0453
dc.identifier.citedreferenceArenas-Díaz, F., Fuentes, B., Reyers, M., Fiedler, S., Böhm, C., Campos, E., et al. ( 2022 ). Dust and aerosols in the Atacama Desert. Earth-Science Reviews, 226, 103925. https://doi.org/10.1016/j.earscirev.2022.103925
dc.identifier.citedreferenceBao, H., & Gu, B. ( 2004 ). Natural perchlorate has a unique oxygen isotope signature. Environmental Science and Technology, 38 ( 19 ), 5073 – 5077. https://doi.org/10.1021/es049516z
dc.identifier.citedreferenceBöhlke, J. K., Hatzinger, P. B., Sturchio, N. C., Gu, B., Abbene, I., & Mroczkowski, S. J. ( 2009 ). Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York. Environmental Science and Technology, 43 ( 15 ), 5619 – 5625. https://doi.org/10.1021/es9006433
dc.identifier.citedreferenceBrinjikji, M., & Lyons, J. R. ( 2021 ). Mass-independent fractionation of oxygen isotopes in the atmosphere. Reviews in Mineralogy and Geochemistry, 86 ( 1 ), 197 – 216. https://doi.org/10.2138/rmg.2021.86.06
dc.identifier.citedreferenceCalderón, R., Godoy, F., Escudey, M., & Palma, P. ( 2017 ). A review of perchlorate (ClO 4 − ) occurrence in fruits and vegetables. Environmental Monitoring and Assessment, 189 ( 2 ), 1 – 13. https://doi.org/10.1007/s10661-017-5793-x
dc.identifier.citedreferenceCao, F., Sturchio, N. C., Ollivier, P., Devau, N., Heraty, L. J., & Jaunat, J. ( 2020 ). Sources and behavior of perchlorate in a shallow Chalk aquifer under military (World War I) and agricultural influences. Journal of Hazardous Materials, 398, 123072. https://doi.org/10.1016/j.jhazmat.2020.123072
dc.identifier.citedreferenceCarrier, B. L., & Kounaves, S. P. ( 2015 ). The origins of perchlorate in the Martian soil. Geophysical Research Letters, 42 ( 10 ), 3739 – 3745. https://doi.org/10.1002/2015GL064290
dc.identifier.citedreferenceCatling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. ( 2010 ). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research, 115 ( E1 ), E00E11. https://doi.org/10.1029/2009JE003425
dc.identifier.citedreferenceChan, Y., Evans, M. J., He, P., Holmes, C. D., Jaeglé, L., Kasibhatla, P., et al. ( 2021 ). Heterogeneous nitrate production mechanisms in intense haze Events in the North China Plain. Journal of Geophysical Research: Atmospheres, 126 ( 9 ), e2021JD034688. https://doi.org/10.1029/2021JD034688
dc.identifier.citedreferenceChen, Q., Geng, L., Schmidt, J. A., Xie, Z., Kang, H., Dachs, J., et al. ( 2016 ). Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer. Atmospheric Chemistry and Physics, 16 ( 17 ), 11433 – 11450. https://doi.org/10.5194/acp-16-11433-2016
dc.identifier.citedreferenceChin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., & Thompson, A. M. ( 2000 ). Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. Journal of Geophysical Research, 105 ( D20 ), 24671 – 24687. https://doi.org/10.1029/2000JD900384
dc.identifier.citedreferenceCole-Dai, J., Peterson, K. M., Kennedy, J. A., Cox, T. S., & Ferris, D. G. ( 2018 ). Evidence of influence of human activities and volcanic eruptions on environmental perchlorate from a 300-year Greenland ice core record. Environmental Science & Technology, 52 ( 15 ), 8373 – 8380. https://doi.org/10.1021/acs.est.8b01890
dc.identifier.citedreferenceCrawford, T. Z., Kub, A. D., Peterson, K. M., Cox, T. S., & Cole-Dai, J. ( 2017 ). Reduced perchlorate in West Antarctica snow during stratospheric ozone hole. Antarctic Science, 29 ( 3 ), 292 – 296. https://doi.org/10.1017/S0954102016000705
dc.identifier.citedreferenceDasgupta, P. K., Dyke, J. V., Kirk, A. B., & Jackson, W. A. ( 2006 ). Perchlorate in the United States. Analysis of relative source contributions to the food chain. Environmental Science & Technology, 40 ( 21 ), 6608 – 6614. https://doi.org/10.1021/es061321z
dc.identifier.citedreferenceDasgupta, P. K., Martinelango, P. K., Jackson, W. A., Anderson, T. A., Tian, K., Tock, R. W., & Rajagopalan, S. ( 2005 ). The origin of naturally occurring perchlorate: The role of atmospheric processes. Environmental Science and Technology, 39 ( 6 ), 1569 – 1575. https://doi.org/10.1021/es048612x
dc.identifier.citedreferenceDominguez, G., Jackson, T., Brothers, L., Barnett, B., Nguyen, B., & Thiemens, M. H. ( 2008 ). Discovery and measurement of an isotopically distinct source of sulfate in Earth’s atmosphere. Proceedings of the National Academy of Sciences, 105 ( 35 ), 12769 – 12773. https://doi.org/10.1073/pnas.0805255105
dc.identifier.citedreferenceDu, Z., Xiao, C., Furdui, V. I., & Zhang, W. ( 2019 ). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment, 656, 1121 – 1132. https://doi.org/10.1016/J.SCITOTENV.2018.11.456
dc.identifier.citedreferenceEastham, S. D., Fritz, T., Sanz-Morère, I., Prashanth, P., Allroggen, F., Prinn, R. G., et al. ( 2022 ). Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate. Environmental Science: Atmospheres, 2 ( 3 ), 388 – 403. https://doi.org/10.1039/D1EA00081K
dc.identifier.citedreferenceEastham, S. D., Weisenstein, D. K., & Barrett, S. R. H. ( 2014 ). Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem. Atmospheric Environment, 89, 52 – 63. https://doi.org/10.1016/j.atmosenv.2014.02.001
dc.identifier.citedreferenceEmerson, E. W., Hodshire, A. L., DeBolt, H. M., Bilsback, K. R., Pierce, J. R., McMeeking, G. R., & Farmer, D. K. ( 2020 ). Revisiting particle dry deposition and its role in radiative effect estimates. Proceedings of the National Academy of Sciences, 117 ( 42 ), 26076 – 26082. https://doi.org/10.1073/pnas.2014761117
dc.identifier.citedreferenceEstrada, N. L., Anderson, T. A., Böhlke, J. K., Gu, B., Hatzinger, P. B., Mroczkowski, S. J., et al. ( 2021 ). Origin of the isotopic composition of natural perchlorate: Experimental results for the impact of reaction pathway and initial ClOx reactant. Geochimica et Cosmochimica Acta, 311, 292 – 315. https://doi.org/10.1016/j.gca.2021.06.039
dc.identifier.citedreferenceFurdui, V. I., & Tomassini, F. ( 2010 ). Trends and sources of perchlorate in Arctic snow. Environmental Science and Technology, 44 ( 2 ), 588 – 592. https://doi.org/10.1021/es902243b
dc.identifier.citedreferenceFurdui, V. I., Zheng, J., & Furdui, A. ( 2018 ). Anthropogenic perchlorate increases since 1980 in the Canadian high arctic. Environmental Science & Technology, 52 ( 3 ), 972 – 981. https://doi.org/10.1021/acs.est.7b03132
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. ( 2017 ). The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). Journal of Climate, 30 ( 14 ), 5419 – 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceGreen, T. J., Islam, M., Canosa-Mas, C., Marston, G., & Wayne, R. P. ( 2004 ). Higher oxides of chlorine: Absorption cross-sections of Cl2O6 and C12O4, the decomposition of Cl2O6, and the reactions of OClO with O and O3. Journal of Photochemistry and Photobiology A: Chemistry, 162 ( 2–3 ), 353 – 370. https://doi.org/10.1016/S1010-6030(03)00379-4
dc.identifier.citedreferenceGrothe, H., & Willner, H. ( 1994 ). Chlortrioxid: Spektroskopische Eigenschaften, Molekülstruktur und photochemisches Verhalten. Angewandte Chemie, 106 ( 14 ), 1581 – 1583. https://doi.org/10.1002/ange.19941061433
dc.identifier.citedreferenceHanda, D., Okada, K., Nakajima, H., & Arakaki, T. ( 2010 ). Perchlorate ion in aerosols collected at Cape Hedo, Okinawa, Japan. Earozoru Kenkyu, 25 ( 3 ), 269 – 273. https://doi.org/10.11203/jar.25.269
dc.identifier.citedreferenceHecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. ( 2009 ). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science, 325 ( 5936 ), 64 – 67. https://doi.org/10.1126/science.1172466
dc.identifier.citedreferenceHer, N., Jeong, H., Kim, J., & Yoon, Y. ( 2011 ). Occurrence of perchlorate in drinking water and seawater in South Korea. Archives of Environmental Contamination and Toxicology, 61 ( 2 ), 166 – 172. https://doi.org/10.1007/s00244-010-9616-0
dc.identifier.citedreferenceJackson, W. A., Böhlke, J. K., Andraski, B. J., Fahlquist, L., Bexfield, L., Eckardt, F. D., et al. ( 2015 ). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochimica et Cosmochimica Acta, 164, 502 – 522. https://doi.org/10.1016/j.gca.2015.05.016
dc.identifier.citedreferenceJackson, W. A., Davila, A. F., Böhlke, J. K., Sturchio, N. C., Sevanthi, R., Estrada, N., et al. ( 2016 ). Deposition, accumulation, and alteration of Cl-NO3-ClO4- and ClO3- salts in a hyper-arid polar environment: Mass balance and isotopic constraints. Geochimica et Cosmochimica Acta, 182, 197 – 215. https://doi.org/10.1016/j.gca.2016.03.012
dc.identifier.citedreferenceJackson, W. A., Karl Böhlke, J., Gu, B., Hatzinger, P. B., & Sturchio, N. C. ( 2010 ). Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environmental Science and Technology, 44 ( 13 ), 4869 – 4876. https://doi.org/10.1021/es903802j
dc.identifier.citedreferenceJackson, W. A., Wang, S., Rao, B., Anderson, T., & Estrada, N. L. ( 2018 ). Heterogeneous production of perchlorate and chlorate by ozone oxidation of chloride: Implications on the Source of (per)chlorate in the solar system. ACS Earth and Space Chemistry, 2 ( 2 ), 87 – 94. https://doi.org/10.1021/acsearthspacechem.7b00087
dc.identifier.citedreferenceJaeglé, L., Yung, Y. L., Toon, G. C., Sen, B., & Blavier, J.-F. ( 1996 ). Balloon observations of organic and inorganic chlorine in the stratosphere: The role of HClO 4 production on sulfate aerosols. Geophysical Research Letters, 23 ( 14 ), 1749 – 1752. https://doi.org/10.1029/96GL01543
dc.identifier.citedreferenceJiang, S., Cole-Dai, J., An, C., Shi, G., Yu, J., & Sun, B. ( 2020 ). Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production. Atmospheric Environment, 238, 117743. https://doi.org/10.1016/j.atmosenv.2020.117743
dc.identifier.citedreferenceJiang, S., Cox, T. S., Cole-Dai, J., Peterson, K. M., & Shi, G. ( 2016 ). Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophysical Research Letters, 43 ( 18 ), 9913 – 9919. https://doi.org/10.1002/2016GL070203
dc.identifier.citedreferenceJiang, S., Shi, G., Cole-Dai, J., An, C., & Sun, B. ( 2021 ). Occurrence, latitudinal gradient and potential sources of perchlorate in the atmosphere across the hemispheres (31°N to 80°S). Environment International, 156, 106611. https://doi.org/10.1016/j.envint.2021.106611
dc.identifier.citedreferenceKang, N., Anderson, T. A., & Andrew Jackson, W. ( 2006 ). Photochemical formation of perchlorate from aqueous oxychlorine anions. Analytica Chimica Acta, 567 ( 1 SPEC. ISS ), 48 – 56. https://doi.org/10.1016/j.aca.2006.01.085
dc.identifier.citedreferenceKang, N., Anderson, T. A., Rao, B., & Jackson, W. A. ( 2009 ). Characteristics of perchlorate formation via photodissociation of aqueous chlorite. Environmental Chemistry, 6 ( 1 ), 53. https://doi.org/10.1071/EN08094
dc.identifier.citedreferenceKang, N., Jackson, W. A., Dasgupta, P. K., & Anderson, T. A. ( 2008 ). Perchlorate production by ozone oxidation of chloride in aqueous and dry systems. Science of the Total Environment, 405 ( 1–3 ), 301 – 309. https://doi.org/10.1016/j.scitotenv.2008.07.010
dc.identifier.citedreferenceKnowland, K. E., Keller, C. A., Wales, P. A., Wargan, K., Coy, L., Johnson, M. S., et al. ( 2022 ). NASA GEOS composition forecast modeling system GEOS-CF v1.0: Stratospheric composition. Journal of Advances in Modeling Earth Systems, 14 ( 6 ), e2021MS002852. https://doi.org/10.1029/2021MS002852
dc.identifier.citedreferenceKopitzky, R., Grothe, H., & Willner, H. ( 2002 ). Chlorine oxide radicals ClO x (x=1–4) studied by matrix isolation spectroscopy. Chemistry – A European Journal, 8 ( 24 ), 5601 – 5621. https://doi.org/10.1002/1521-3765(20021216)8:24<5601::AID-CHEM5601>3.0.CO;2-Z
dc.identifier.citedreferenceLee, C. C.-W., Savarino, J., Cachier, H., & Thiemens, M. H. ( 2002 ). Sulfur (32S, 33S, 34S, 36S) and oxygen (16O,17O,18O) isotopic ratios of primary sulfate produced from combustion processes. Tellus B: Chemical and Physical Meteorology, 54 ( 3 ), 193 – 200. https://doi.org/10.3402/tellusb.v54i3.16660
dc.identifier.citedreferenceLi, J., Lowenstein, T. K., Brown, C. B., Ku, T.-L., & Luo, S. ( 1996 ). A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 123 ( 1 ), 179 – 203. https://doi.org/10.1016/0031-0182(95)00123-9
dc.identifier.citedreferenceLin, X., He, L., Zhang, R., Guo, X., & Li, H. ( 2019 ). Rainwater in Guangzhou, China: Oxidizing properties and physicochemical characteristics. Atmospheric Pollution Research, 10 ( 1 ), 303 – 312. https://doi.org/10.1016/j.apr.2018.08.005
dc.identifier.citedreferenceLiu, D., & Kounaves, S. P. ( 2019 ). The role of titanium dioxide (TiO 2 ) in the production of perchlorate (ClO 4 − ) from chlorite (ClO 2 − ) and chlorate (ClO 3 − ) on Earth and Mars. ACS Earth and Space Chemistry, 3 ( 8 ), 1678 – 1684. https://doi.org/10.1021/acsearthspacechem.9b00134
dc.identifier.citedreferenceLiu, H., Jacob, D. J., Bey, I., & Yantosca, R. M. ( 2001 ). Constraints from 210 Pb and 7 Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research, 106 ( D11 ), 12109 – 12128. https://doi.org/10.1029/2000JD900839
dc.identifier.citedreferenceLobert, J. M., Keene, W. C., Logan, J. A., & Yevich, R. ( 1999 ). Global chlorine emissions from biomass burning: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research, 104 ( D7 ), 8373 – 8389. https://doi.org/10.1029/1998JD100077
dc.identifier.citedreferenceMartinelango, P. K., Tian, K., & Dasgupta, P. K. ( 2006 ). Perchlorate in seawater. Bioconcentration of iodide and perchlorate by various seaweed species. Analytica Chimica Acta, 567 ( 1 SPEC. ISS ), 100 – 107. https://doi.org/10.1016/j.aca.2006.02.015
dc.identifier.citedreferenceMcCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M., & Li, Y.-F. ( 1999 ). Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research, 104 ( D7 ), 8391 – 8403. https://doi.org/10.1029/1999JD900025
dc.identifier.citedreferenceMichalski, G., Bockheim, J. G., Kendall, C., & Thiemens, M. ( 2005 ). Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica. Geophysical Research Letters, 32 ( 13 ), L13817. https://doi.org/10.1029/2004GL022121
dc.identifier.citedreferenceMichalski, G., Böhlke, J. K., & Thiemens, M. ( 2004 ). Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions. Geochimica et Cosmochimica Acta, 68 ( 20 ), 4023 – 4038. https://doi.org/10.1016/j.gca.2004.04.009
dc.identifier.citedreferenceMunster, J., & Hanson, G. N. ( 2009 ). Perchlorate and ion chemistry of road runoff. Environmental Chemistry, 6 ( 1 ), 28. https://doi.org/10.1071/EN08085
dc.identifier.citedreferenceMunster, J., Hanson, G. N., Jackson, W. A., & Rajagopalan, S. ( 2009 ). The fallout from fireworks: Perchlorate in total deposition. Water, Air, and Soil Pollution, 198 ( 1–4 ), 149 – 153. https://doi.org/10.1007/s11270-008-9833-6
dc.identifier.citedreferenceMurphy, D. M., & Thomson, D. S. ( 2000 ). Halogen ions and NO + in the mass spectra of aerosols in the upper troposphere and lower stratosphere. Geophysical Research Letters, 27 ( 19 ), 3217 – 3220. https://doi.org/10.1029/1999GL011267
dc.identifier.citedreferenceNiziński, P., Błażewicz, A., Kończyk, J., & Michalski, R. ( 2021 ). Perchlorate – Properties, toxicity and human health effects: An updated review. Reviews on Environmental Health, 36 ( 2 ), 199 – 222. https://doi.org/10.1515/reveh-2020-0006
dc.identifier.citedreferenceQin, X., Zhang, T., Gan, Z., & Sun, H. ( 2014 ). Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: Environmental source analysis. Chemosphere, 111, 201 – 208. https://doi.org/10.1016/j.chemosphere.2014.03.082
dc.identifier.citedreferenceRajagopalan, S., Anderson, T., Cox, S., Harvey, G., Cheng, Q., & Jackson, W. A. ( 2009 ). Perchlorate in wet deposition across North America. Environmental Science & Technology, 43 ( 3 ), 616 – 622. https://doi.org/10.1021/es801737u
dc.identifier.citedreferenceRao, B. A., Mohan, S., Neuber, A., & Jackson, W. A. ( 2012 ). Production of perchlorate by laboratory simulated lightning process. Water, Air, and Soil Pollution, 223 ( 1 ), 275 – 287. https://doi.org/10.1007/s11270-011-0857-y
dc.identifier.citedreferenceRao, B. A., Wake, C. P., Anderson, T., & Jackson, W. A. ( 2012 ). Perchlorate depositional history as recorded in North American ice cores from the eclipse icefield, Canada, and the Upper Fremont Glacier, USA. Water, Air, and Soil Pollution, 223 ( 1 ), 181 – 188. https://doi.org/10.1007/s11270-011-0849-y
dc.identifier.citedreferenceRoberts, J. M. ( 2009 ). Constraints on the possible atmospheric sources of perchlorate. Environmental Chemistry, 6 ( 1 ), 3. https://doi.org/10.1071/EN08089
dc.identifier.citedreferenceSarbassov, Y., Duan, L., Manovic, V., & Anthony, E. J. ( 2018 ). Sulfur trioxide formation/emissions in coal-fired air- and oxy-fuel combustion processes: A review. Greenhouse Gases: Science and Technology, 8 ( 3 ), 402 – 428. https://doi.org/10.1002/ghg.1767
dc.identifier.citedreferenceShi, Y., Zhang, N., Gao, J., Li, X., & Cai, Y. ( 2011 ). Effect of fireworks display on perchlorate in air aerosols during the Spring Festival. Atmospheric Environment, 45 ( 6 ), 1323 – 1327. https://doi.org/10.1016/j.atmosenv.2010.11.056
dc.identifier.citedreferenceShirahata, S. ( 2012 ). Analysis of perchlorate distribution in Lake Toyako (Master thesis). Rakuno Gakuen University. Retrieved from http://hdl.handle.net/10659/3354
dc.identifier.citedreferenceSmith, M. L., Claire, M. W., Catling, D. C., & Zahnle, K. J. ( 2014 ). The formation of sulfate, nitrate and perchlorate salts in the Martian atmosphere. Icarus, 231, 51 – 64. https://doi.org/10.1016/J.ICARUS.2013.11.031
dc.identifier.citedreferenceStanford, B. D., Pisarenko, A. N., Dryer, D. J., Zeigler-Holady, J. C., Gamage, S., Quiñones, O., et al. ( 2013 ). Chlorate, perchlorate, and bromate in onsite-generated hypochlorite systems. Journal AWWA, 105 ( 3 ), E93 – E102. https://doi.org/10.5942/jawwa.2013.105.0014
dc.identifier.citedreferenceSteinmaus, C. M. ( 2016 ). Perchlorate in water supplies: Sources, exposures, and health effects. Current Environmental Health Reports, 3 ( 2 ), 136 – 143. https://doi.org/10.1007/s40572-016-0087-y
dc.identifier.citedreferenceSturchio, N. C., Hoaglund, J. R., Marroquin, R. J., Beloso, A. D., Heraty, L. J., Bortz, S. E., & Patterson, T. L. ( 2012 ). Isotopic mapping of groundwater perchlorate plumes. Ground Water, 50 ( 1 ), 94 – 102. https://doi.org/10.1111/j.1745-6584.2011.00802.x
dc.identifier.citedreferenceTakeuchi, M., Yoshioka, K., Toyama, Y., Kagami, A., & Tanaka, H. ( 2012 ). On-line measurement of perchlorate in atmospheric aerosol based on ion chromatograph coupled with particle collector and post-column concentrator. Talanta, 97, 527 – 532. https://doi.org/10.1016/j.talanta.2012.05.009
dc.identifier.citedreferenceThiemens, M. H. ( 2006 ). History and applications of mass-independent isotope effects. Annual Review of Earth and Planetary Sciences, 34 ( 1 ), 217 – 262. https://doi.org/10.1146/annurev.earth.34.031405.125026
dc.identifier.citedreferenceUrbansky, E. T. ( 2002 ). Perchlorate as an environmental contaminant. Environmental Science and Pollution Research, 9 ( 3 ), 187 – 192. https://doi.org/10.1007/BF02987487
dc.identifier.citedreferenceVan Stempvoort, D. R., MacKay, D. R., Brown, S. J., & Collins, P. ( 2020 ). Environmental fluxes of perchlorate in rural catchments, Ontario, Canada. Science of the Total Environment, 720, 137426. https://doi.org/10.1016/j.scitotenv.2020.137426
dc.identifier.citedreferenceVan Stempvoort, D. R., Struger, J., & Brown, S. J. ( 2019 ). Perchlorate in environmental waters of the Laurentian Great Lakes watershed: Evidence for uneven loading. Journal of Great Lakes Research, 45 ( 2 ), 240 – 251. https://doi.org/10.1016/j.jglr.2018.12.007
dc.identifier.citedreferenceWan, Y., Wu, Q., Abualnaja, K. O., Asimakopoulos, A. G., Covaci, A., Gevao, B., et al. ( 2015 ). Occurrence of perchlorate in indoor dust from the United States and eleven other countries: Implications for human exposure. Environment International, 75, 166 – 171. https://doi.org/10.1016/j.envint.2014.11.005
dc.identifier.citedreferenceWang, C., Zhai, Y., Zhu, Y., Li, X., Li, C., & Zeng, G. ( 2017 ). Concentration and exposure evaluation of perchlorate in size-segregated airborne particulate matter from Changsha, China. Water, Air, & Soil Pollution, 228 ( 9 ), 369. https://doi.org/10.1007/s11270-017-3555-6
dc.identifier.citedreferenceWang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., et al. ( 2014 ). Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. Journal of Geophysical Research: Atmospheres, 119 ( 1 ), 195 – 206. https://doi.org/10.1002/2013JD020824
dc.identifier.citedreferenceWang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., et al. ( 2021 ). Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 21 ( 18 ), 13973 – 13996. https://doi.org/10.5194/acp-21-13973-2021
dc.identifier.citedreferenceWayne, R. P., Poulet, G., Biggs, P., Burrows, J. P., Cox, R. A., Crutzen, P. J., et al. ( 1995 ). Halogen oxides: Radicals, sources and reservoirs in the laboratory and in the atmosphere. Atmospheric Environment, 29 ( 20 ), 2677 – 2881. https://doi.org/10.1016/1352-2310(95)98124-Q
dc.identifier.citedreferenceWu, Z., Wang, A., Farrell, W. M., Yan, Y., Wang, K., Houghton, J., & Jackson, A. W. ( 2018 ). Forming perchlorates on Mars through plasma chemistry during dust events. Earth and Planetary Science Letters, 504, 94 – 105. https://doi.org/10.1016/j.epsl.2018.08.040
dc.identifier.citedreferenceYamada, E., Asano, H., & Fuse, Y. ( 2009 ). Behavior of atmospheric perchlorate in Kyoto City. BUNSEKI KAGAKU, 58 ( 4 ), 241 – 247. https://doi.org/10.2116/bunsekikagaku.58.241
dc.identifier.citedreferenceYamada, E., Asano, H., & Fuse, Y. ( 2012 ). Environmental behavior of perchlorate and its effect on the agricultural products in Kyoto. Journal of Environment and Safety, 3 ( 2 ), 94 – 104. https://doi.org/10.11162/daikankyo.3.2_97
dc.identifier.citedreferenceYao, L., Yang, L., Chen, J., Toda, K., Wang, X., Zhang, J., et al. ( 2015 ). Levels, indoor–outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia. Chemosphere, 135, 31 – 37. https://doi.org/10.1016/j.chemosphere.2015.03.026
dc.identifier.citedreferenceZhang, B., Shen, H., Yun, X., Zhong, Q., Henderson, B. H., Wang, X., et al. ( 2022 ). Global emissions of hydrogen chloride and particulate chloride from continental sources. Environmental Science & Technology, 56 ( 7 ), 3894 – 3904. https://doi.org/10.1021/acs.est.1c05634
dc.identifier.citedreferenceZheng, Q., Qiu, H., Zhu, Z., Gong, W., Zhang, D., Ma, J., et al. ( 2022 ). Perchlorate in fine particulate matter in Shenzhen, China, and implications for human inhalation exposure. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01381-y
dc.identifier.citedreferenceZhu, H., Qin, X., Xue, L., Zhang, L., & Yuan, M. ( 2021 ). Distribution characteristics and health risk assessment of perchlorate in PM2.5 in ambient air from six cities in Beijing-Tianjin-Hebei and its surrounding regions. Environmental Chemistry, 40 ( 9 ), 2762 – 2767. https://doi.org/10.7524/j.issn.0254-6108.2020042905
dc.identifier.citedreferenceZhu, R. S., & Lin, M. C. ( 2001 ). Ab initio study of ammonium perchlorate combustion initiation processes: Unimolecular decomposition of perchloric acid and the related OH+ ClO 3 reaction. PhysChemComm, 4 ( 25 ), 1 – 6. https://doi.org/10.1039/b109523b
dc.identifier.citedreferenceZhu, R. S., & Lin, M. C. ( 2003 ). Towards reliable prediction of kinetics and mechanisms for elementary processes: Key combustion initiation reactions of ammonium perchlorate. Theoretical and Computational Chemistry, 13, 373 – 443. https://doi.org/10.1016/S1380-7323(03)80032-8
dc.identifier.citedreferenceAlexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., et al. ( 2005 ). Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. Journal of Geophysical Research, 110 ( D10 ), D10307. https://doi.org/10.1029/2004JD005659
dc.identifier.citedreferenceAlexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg, D. A., & Sletten, R. S. ( 2012 ). Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. Journal of Geophysical Research, 117 ( D6 ), D06304. https://doi.org/10.1029/2011JD016773
dc.identifier.citedreferenceAli, M. A., & Rajakumar, B. ( 2011 ). Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory. Computational and Theoretical Chemistry, 964 ( 1 ), 283 – 290. https://doi.org/10.1016/j.comptc.2011.01.013
dc.identifier.citedreferenceBarron, L., Nesterenko, P. N., & Paull, B. ( 2006 ). Rapid on-line preconcentration and suppressed micro-bore ion chromatography of part per trillion levels of perchlorate in rainwater samples. Analytica Chimica Acta, 567 ( 1 ), 127 – 134. https://doi.org/10.1016/j.aca.2006.01.038
dc.identifier.citedreferenceBegović, N., Marković, Z., Anić, S., & Kolar-Anić, L. ( 2004 ). Computational investigation of HIO and HIO 2 isomers. The Journal of Physical Chemistry A, 108 ( 4 ), 651 – 657. https://doi.org/10.1021/jp034492o
dc.identifier.citedreferenceBöhlke, J. K., Sturchio, N. C., Gu, B., Horita, J., Brown, G. M., Jackson, W. A., et al. ( 2005 ). Perchlorate isotope forensics. Analytical Chemistry, 77 ( 23 ), 7838 – 7842. https://doi.org/10.1021/ac051360d
dc.identifier.citedreferenceBrasseur, G. P., & Solomon, S. ( 2005 ). Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere (Vol. 32 ). Springer Netherlands. https://doi.org/10.1007/1-4020-3824-0
dc.identifier.citedreferenceBurkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Cappa, C., Crounse, J. D., et al. ( 2020 ). Chemical kinetics and photochemical data for use in atmospheric studies; Evaluation number 19. Jet Propulsion Laboratory. Retrieved from http://hdl.handle.net/2014/49199
dc.identifier.citedreferenceCoy, L., Wargan, K., Molod, A. M., McCarty, W. R., & Pawson, S. ( 2016 ). Structure and dynamics of the quasi-biennial oscillation in MERRA-2. Journal of Climate, 29 ( 14 ), 5339 – 5354. https://doi.org/10.1175/JCLI-D-15-0809.1
dc.identifier.citedreferencede Souza, G. L. C., & Brown, A. ( 2014 ). Probing ground and low-lying excited states for HIO 2 isomers. The Journal of Chemical Physics, 141 ( 23 ), 234303. https://doi.org/10.1063/1.4903789
dc.identifier.citedreferenceDomae, M., Katsumara, Y., Jiang, P. Y., Nagaishi, R., Hasegawa, C., Ishigure, K., & Yoshida, Y. ( 1994 ). Observation of chlorine oxide (ClO3) radical in aqueous chlorate solution by pulse radiolysis. The Journal of Physical Chemistry, 98 ( 1 ), 190 – 192. https://doi.org/10.1021/j100052a031
dc.identifier.citedreferenceDubey, M. K., Mohrschladt, R., Donahue, N. M., & Anderson, J. G. ( 1997 ). Isotope specific kinetics of hydroxyl radical (OH) with water (H 2 O): Testing models of reactivity and atmospheric fractionation. The Journal of Physical Chemistry A, 101 ( 8 ), 1494 – 1500. https://doi.org/10.1021/jp962332p
dc.identifier.citedreferenceFrancisco, J. S. ( 1998 ). Oxygen atom exchange in reactions of OH radicals with NO and ClO. Chemical Physics Letters, 285 ( 1 ), 138 – 142. https://doi.org/10.1016/S0009-2614(98)00010-4
dc.identifier.citedreferenceFussen, D., Vanhellemont, F., Dodion, J., Bingen, C., Mateshvili, N., Daerden, F., et al. ( 2006 ). A global OClO stratospheric layer discovered in GOMOS stellar occultation measurements. Geophysical Research Letters, 33 ( 13 ), L13815. https://doi.org/10.1029/2006GL026406
dc.identifier.citedreferenceGan, Z., Sun, H., Wang, R., & Deng, Y. ( 2014 ). Occurrence and exposure evaluation of perchlorate in outdoor dust and soil in mainland China. Science of the Total Environment, 470–471, 99 – 106. https://doi.org/10.1016/j.scitotenv.2013.09.067
dc.identifier.citedreferenceGoodeve, C. F., & Richardson, F. D. ( 1937 ). The absorption spectrum of chlorine trioxide and chlorine hexoxide. Transactions of the Faraday Society, 33 ( 0 ), 453 – 457. https://doi.org/10.1039/TF9373300453
dc.identifier.citedreferenceGreenblatt, G. D., & Howard, C. J. ( 1989 ). Oxygen atom exchange in the interaction of hydroxyl-(18OH) with several small molecules. The Journal of Physical Chemistry, 93 ( 3 ), 1035 – 1042. https://doi.org/10.1021/j100340a006
dc.identifier.citedreferenceHathorn, B. C., & Marcus, R. A. ( 1999 ). An intramolecular theory of the mass-independent isotope effect for ozone. I. The Journal of Chemical Physics, 111 ( 9 ), 4087 – 4100. https://doi.org/10.1063/1.480267
dc.identifier.citedreferenceHatzinger, P. B., Böhlke, J. K., Jackson, W. A., Gu, B., Mroczkowski, S. J., & Sturchio, N. C. ( 2022 ). Isotopic discrimination of natural and anthropogenic perchlorate sources in groundwater in a semi-arid region of northeastern Oregon (USA). Applied Geochemistry, 139, 105232. https://doi.org/10.1016/j.apgeochem.2022.105232
dc.identifier.citedreferenceHatzinger, P. B., Böhlke, J. K., Sturchio, N. C., & Gu, B. ( 2013 ). Validation of chlorine and oxygen isotope ratios to differentiate perchlorate sources and document perchlorate biodegradation (Final Report). Environmental Security Technology Certification Program. Retrieved from http://www.serdp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-200509
dc.identifier.citedreferenceHatzinger, P. B., Böhlke, J. K., Sturchio, N. C., Izbicki, J., & Teague, N. ( 2018 ). Four-dimensional isotopic approach to identify perchlorate sources in groundwater: Application to the Rialto-Colton and Chino subbasins, southern California (USA). Applied Geochemistry, 97, 213 – 225. https://doi.org/10.1016/j.apgeochem.2018.08.020
dc.identifier.citedreferenceHegglin, M. I., Tegtmeier, S., Anderson, J., Bourassa, A. E., Brohede, S., Degenstein, D., et al. ( 2021 ). Overview and update of the SPARC data initiative: Comparison of stratospheric composition measurements from satellite limb sounders. Earth System Science Data, 13 ( 5 ), 1855 – 1903. https://doi.org/10.5194/essd-13-1855-2021
dc.identifier.citedreferenceHeidenreich, J. E., & Thiemens, M. H. ( 1986 ). A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: The role of molecular symmetry in isotope chemistry. The Journal of Chemical Physics, 84 ( 4 ), 2129 – 2136. https://doi.org/10.1063/1.450373
dc.identifier.citedreferenceHelsel, D. R. ( 2013 ). Statistics for censored environmental data using Minitab and R. Wiley.
dc.identifier.citedreferenceHoering, T. C., Ishimori, F. T., & McDonald, H. O. ( 1958 ). The oxygen exchange between oxy-anions and water. II. Chlorite, chlorate and perchlorate ions 1. Journal of the American Chemical Society, 80 ( 15 ), 3876 – 3879. https://doi.org/10.1021/ja01548a020
dc.identifier.citedreferenceHoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. ( 2018 ). Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11 ( 1 ), 369 – 408. https://doi.org/10.5194/gmd-11-369-2018
dc.identifier.citedreferenceIshino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., et al. ( 2017 ). Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d’Urville, coastal Antarctica. Atmospheric Chemistry and Physics, 17 ( 5 ), 3713 – 3727. https://doi.org/10.5194/acp-17-3713-2017
dc.identifier.citedreferenceJackson, W. A., Brundrett, M., Böhlke, J. K., Hatzinger, P. B., Mroczkowski, S. J., & Sturchio, N. C. ( 2021 ). Isotopic composition of natural and synthetic chlorate (δ18O, Δ17O, δ37Cl, 36Cl/Cl): Methods and initial results. Chemosphere, 274, 129586. https://doi.org/10.1016/j.chemosphere.2021.129586
dc.identifier.citedreferenceJaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., & Lin, J.-T. ( 2011 ). Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 11 ( 7 ), 3137 – 3157. https://doi.org/10.5194/acp-11-3137-2011
dc.identifier.citedreferenceKannan, K., Praamsma, M. L., Oldi, J. F., Kunisue, T., & Sinha, R. K. ( 2009 ). Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere, 76 ( 1 ), 22 – 26. https://doi.org/10.1016/j.chemosphere.2009.02.054
dc.identifier.citedreferenceKent Murmann, R., & Thompson, R. C. ( 1970 ). Exchange between aqueous ClO 2 and H 2 O. Journal of Inorganic and Nuclear Chemistry, 32 ( 4 ), 1404 – 1406. https://doi.org/10.1016/0022-1902(70)80147-6
dc.identifier.citedreferenceKrankowsky, D., Lämmerzahl, P., Mauersberger, K., Janssen, C., Tuzson, B., & Röckmann, T. ( 2007 ). Stratospheric ozone isotope fractionations derived from collected samples. Journal of Geophysical Research, 112 ( D8 ), D08301. https://doi.org/10.1029/2006JD007855
dc.identifier.citedreferenceLämmerzahl, P., Röckmann, T., Brenninkmeijer, C. A. M., Krankowsky, D., & Mauersberger, K. ( 2002 ). Oxygen isotope composition of stratospheric carbon dioxide. Geophysical Research Letters, 29 ( 12 ), 23-1 – 23-4. https://doi.org/10.1029/2001GL014343
dc.identifier.citedreferenceLi, Y., Liao, R., Gan, Z., Qu, B., Wang, R., Chen, M., et al. ( 2018 ). Seasonal variation and exposure risks of perchlorate in soil, indoor dust, and outdoor dust in China. Archives of Environmental Contamination and Toxicology, 75 ( 3 ), 367 – 376. https://doi.org/10.1007/s00244-018-0526-x
dc.identifier.citedreferenceLi, Y., Shen, Y., Pi, L., Hu, W., Chen, M., Luo, Y., et al. ( 2016 ). Particle size distribution and perchlorate levels in settled dust from urban roads, parks, and roofs in Chengdu, China. Environmental Science: Processes & Impacts, 18 ( 1 ), 72 – 77. https://doi.org/10.1039/C5EM00435G
dc.identifier.citedreferenceLin, J. T., & McElroy, M. B. ( 2010 ). Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. Atmospheric Environment, 44 ( 14 ), 1726 – 1739. https://doi.org/10.1016/j.atmosenv.2010.02.009
dc.identifier.citedreferenceLin, S.-J., & Rood, R. B. ( 1996 ). Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Review, 124 ( 9 ), 2046 – 2070. https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
dc.identifier.citedreferenceLópez, M. I., & Sicre, J. E. ( 1990 ). Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide. Journal of Physical Chemistry, 94 ( 9 ), 3860 – 3863. https://doi.org/10.1021/j100372a094
dc.identifier.citedreferenceLyons, J. R. ( 2001 ). Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophysical Research Letters, 28 ( 17 ), 3231 – 3234. https://doi.org/10.1029/2000GL012791
dc.identifier.citedreferenceMauersberger, K., Lämmerzahl, P., & Krankowsky, D. ( 2001 ). Stratospheric ozone isotope enrichments—Revisited. Geophysical Research Letters, 28 ( 16 ), 3155 – 3158. https://doi.org/10.1029/2001GL013439
dc.identifier.citedreferenceMauldin, R. L., III, Burkholder, J. B., & Ravishankara, A. R. ( 1997 ). The reaction of O( 3 P) with OClO. International Journal of Chemical Kinetics, 29 ( 2 ), 139 – 147. https://doi.org/10.1002/(SICI)1097-4601(1997)29:2<139::AID-KIN8>3.0.CO;2-V
dc.identifier.citedreferenceMeena, G. S., & Devara, P. C. S. ( 2011 ). Zenith scattered light measurement: Observations of BrO and OClO. International Journal of Remote Sensing, 32 ( 23 ), 8595 – 8613. https://doi.org/10.1080/01431161.2010.542621
dc.identifier.citedreferenceMeinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., et al. ( 2017 ). Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10 ( 5 ), 2057 – 2116. https://doi.org/10.5194/gmd-10-2057-2017
dc.identifier.citedreferenceMichalski, G., & Bhattacharya, S. K. ( 2009 ). The role of symmetry in the mass independent isotope effect in ozone. Proceedings of the National Academy of Sciences, 106 ( 14 ), 5493 – 5496. https://doi.org/10.1073/pnas.0812755106
dc.identifier.citedreferenceMunster, J. ( 2008 ). Nonpoint sources of nitrate and perchlorate in urban land use to groundwater. Stony Brook University. Retrieved from http://hdl.handle.net/11401/72036
dc.identifier.citedreferenceMurray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., & Koshak, W. J. ( 2012 ). Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. Journal of Geophysical Research, 117 ( D20 ). https://doi.org/10.1029/2012JD017934
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.