Show simple item record

Dimer model and holomorphic functions on t-embeddings of planar graphs

dc.contributor.authorChelkak, Dmitry
dc.contributor.authorLaslier, Benoît
dc.contributor.authorRusskikh, Marianna
dc.date.accessioned2023-06-01T20:48:23Z
dc.date.available2024-06-01 16:48:21en
dc.date.available2023-06-01T20:48:23Z
dc.date.issued2023-05
dc.identifier.citationChelkak, Dmitry; Laslier, Benoît ; Russkikh, Marianna (2023). "Dimer model and holomorphic functions on t- embeddings of planar graphs." Proceedings of the London Mathematical Society 126(5): 1656-1739.
dc.identifier.issn0024-6115
dc.identifier.issn1460-244X
dc.identifier.urihttps://hdl.handle.net/2027.42/176820
dc.description.abstractWe introduce the framework of discrete holomorphic functions on t-embeddings of weighted bipartite planar graphs; t-embeddings also appeared under the name Coulomb gauges in a recent paper (Kenyon, Lam, Ramassamy, and Russkikh, Dimers and circle patterns, 2018). We argue that this framework is particularly relevant for the analysis of scaling limits of the height fluctuations in the corresponding dimer models. In particular, it unifies both Kenyon’s interpretation of dimer observables as derivatives of harmonic functions on T-graphs and the notion of s-holomorphic functions originated in Smirnov’s work on the critical Ising model. We develop an a priori regularity theory for such functions and provide a meta-theorem on convergence of the height fluctuations to the Gaussian Free Field. We also discuss how several more standard discretizations of complex analysis fit this general framework.
dc.publisherWorld Sci. Publ
dc.publisherWiley Periodicals, Inc.
dc.titleDimer model and holomorphic functions on t-embeddings of planar graphs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176820/1/plms12516.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176820/2/plms12516_am.pdf
dc.identifier.doi10.1112/plms.12516
dc.identifier.sourceProceedings of the London Mathematical Society
dc.identifier.citedreferenceR. Kenyon and A. Okounkov, Limit shapes and the complex Burgers equation, Acta Math. 199 ( 2007 ), no. 2, 263 – 302.
dc.identifier.citedreferenceR. Kenyon, Conformal invariance of domino tiling, Ann. Probab. 28 ( 2000 ), no. 2, 759 – 795.
dc.identifier.citedreferenceR. Kenyon, Dominos and the Gaussian free field, Ann. Probab. 29 ( 2001 ), no. 3, 1128 – 1137.
dc.identifier.citedreferenceR. Kenyon, Height fluctuations in the honeycomb dimer model, Comm. Math. Phys. 281 ( 2008 ), no. 3, 675 – 709.
dc.identifier.citedreferenceR. Kenyon, Lectures on dimers, Statistical mechanics, IAS/Park City Math. Ser., vol. 16, Amer. Math. Soc., Providence, RI, 2009, pp. 191 – 230.
dc.identifier.citedreferenceR. Kenyon, W. Y. Lam, S. Ramassamy, and M. Russkikh, Dimers and circle patterns, Ann. Sci. Éc. Norm. Supér. (4) 55 ( 2022 ), no.  3, 863 – 901.
dc.identifier.citedreferenceR. W. Kenyon and S. Sheffield, Dimers, tilings and trees, J. Combin. Theory Ser. B. 92 ( 2004 ), no. 2, 295 – 317.
dc.identifier.citedreferenceB. Laslier, Central limit theorem for lozenge tilings with curved limit shape, arXiv:2102.05544, 2021.
dc.identifier.citedreferenceZ. Li, Conformal invariance of dimer heights on isoradial double graphs, Ann. Inst. Henri Poincaré D. 4 ( 2017 ), no. 3, 273 – 307.
dc.identifier.citedreferenceM. Lis, Circle patterns and critical Ising models, Commun. Math. Phys. 370 ( 2019 ), no. 2, 507 – 530.
dc.identifier.citedreferenceC. Mercat, Discrete Riemann surfaces and the Ising model, Commun. Math. Phys. 218 ( 2001 ), no. 1, 177 – 216.
dc.identifier.citedreferenceO. Paris-Romaskevich, Trees and flowers on a billiard table, arXiv:1907.01178, 2019.
dc.identifier.citedreferenceL. Petrov, Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab. 43 ( 2015 ), no. 1, 1 – 43.
dc.identifier.citedreferenceM. Russkikh, Dimers in piecewise Temperleyan domains, Comm. Math. Phys. 359 ( 2018 ), no. 1, 189 – 222.
dc.identifier.citedreferenceM. Russkikh, Dominos in hedgehog domains, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD) 8 ( 2021 ), no. 1, 1 – 33.
dc.identifier.citedreferenceS. Sheffield, Gaussian free fields for mathematicians, Probab. Theory Relat. Fields 139 ( 2007 ), no. 3–4, 521 – 541.
dc.identifier.citedreferenceS. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. of Math. (2). 172 ( 2010 ), no. 2, 1435 – 1467.
dc.identifier.citedreferenceS. Smirnov, Discrete complex analysis and probability, Proceedings of the International Congress of Mathematicians, vol. I, Hindustan Book Agency, New Delhi, 2010, pp. 595 – 621.
dc.identifier.citedreferenceW. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 ( 1990 ), no. 8, 757 – 773.
dc.identifier.citedreferenceN. C. Affolter, Miquel dynamics, Clifford lattices and the dimer model, Lett. Math. Phys. 111 ( 2021 ), no. 3, 23. Id/No 61.
dc.identifier.citedreferenceA. Aggarwal, Universality for lozenge tiling local statistics, arXiv:1907.09991, 2019.
dc.identifier.citedreferenceN. Berestycki, B. Laslier, and G. Ray, A note on dimers and T-graphs, arXiv:1610.07994, 2016.
dc.identifier.citedreferenceN. Berestycki, B. Laslier, and G. Ray, Dimers and imaginary geometry, Ann. Probab. 48 ( 2020 ), no. 1, 1 – 52.
dc.identifier.citedreferenceC. Boutillier, B. de Tilière, and K. Raschel, The Z $Z$ -invariant Ising model via dimers, Probab. Theory Related Fields 174 ( 2019 ), no. 1–2, 235 – 305.
dc.identifier.citedreferenceR. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 ( 1940 ), 312 – 340.
dc.identifier.citedreferenceA. Bufetov and V. Gorin, Fluctuations of particle systems determined by Schur generating functions, Adv. Math. 338 ( 2018 ), 702 – 781.
dc.identifier.citedreferenceD. Chelkak, Robust discrete complex analysis: a toolbox, Ann. Probab. 44 ( 2016 ), no. 1, 628 – 683.
dc.identifier.citedreferenceD. Chelkak, Planar Ising model at criticality: state-of-the-art and perspectives, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Invited Lectures, vol. IV, World Sci. Publ., Hackensack, NJ, 2018, pp. 2801 – 2828.
dc.identifier.citedreferenceD. Chelkak, Ising model and s-embeddings of planar graphs, arXiv:2006.14559, 2020.
dc.identifier.citedreferenceD. Chelkak, A. Glazman, and S. Smirnov, Discrete stress-energy tensor in the loop O(n) model, arXiv:1604.06339, 2016.
dc.identifier.citedreferenceD. Chelkak, B. Laslier, and M. Russkikh, Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces, arXiv:2109.06272, 2021.
dc.identifier.citedreferenceD. Chelkak and S. Ramassamy, Fluctuations in the Aztec diamonds via a Lorentz-minimal surface, arXiv:2002.07540, 2020.
dc.identifier.citedreferenceD. Chelkak and S. Smirnov, Discrete complex analysis on isoradial graphs, Adv. Math. 228 ( 2011 ), no. 3, 1590 – 1630.
dc.identifier.citedreferenceD. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math. 189 ( 2012 ), no. 3, 515 – 580.
dc.identifier.citedreferenceH. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 ( 2001 ), no. 2, 297 – 346.
dc.identifier.citedreferenceF. Colomo and A. Sportiello, Arctic curves of the six-vertex model on generic domains: the tangent method, J. Stat. Phys. 164 ( 2016 ), no. 6, 1488 – 1523.
dc.identifier.citedreferenceP. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, Springer, New York, NY, 1997.
dc.identifier.citedreferenceJ. Dubédat, Exact bosonization of the Ising model, arXiv:1112.4399, 2011.
dc.identifier.citedreferenceJ. Dubédat, Double dimers, conformal loop ensembles and isomonodromic deformations, J. Eur. Math. Soc. (JEMS). 21 ( 2019 ), no. 1, 1 – 54.
dc.identifier.citedreferenceR. J. Duffin, Potential theory on a rhombic lattice, J. Comb. Theory. 5 ( 1968 ), 258 – 272.
dc.identifier.citedreferenceI. A. Dynnikov and S. P. Novikov, Geometry of the triangle equation on two-manifolds, Mosc. Math. J. 3 ( 2003 ), no. 2, 419 – 438.
dc.identifier.citedreferenceJ. Ferrand, Fonctions préharmoniques et fonctions préholomorphes, Bull. Sci. Math., II. Sér. 68 ( 1944 ), 152 – 180.
dc.identifier.citedreferenceA. Giuliani, V. Mastropietro, and F. L. Toninelli, Non-integrable dimers: universal fluctuations of tilted height profiles, Commun. Math. Phys. 377 ( 2020 ), no. 3, 1883 – 1959.
dc.identifier.citedreferenceV. Gorin, Lectures on random lozenge tilings, vol. 193, Cambridge University Press, Cambridge, 2021.
dc.identifier.citedreferenceO. Gurel-Gurevich, D. C. Jerison, and A. Nachmias, The Dirichlet problem for orthodiagonal maps, Adv. Math. 374 ( 2020 ), 53. Id/No 107379.
dc.identifier.citedreferenceT. Hull (ed.), Origami 3 $^3$. Proceedings of the Third International Meeting of Origami Science, Mathematics, and Education (3OSME), (Asilomar, CA, USA, 2001), A. K. Peters, Natick, MA, 2002.
dc.identifier.citedreferenceR. Kenyon, The Laplacian and Dirac operators on critical planar graphs, Invent. Math. 150 ( 2002 ), no. 2, 409 – 439.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.