Show simple item record

Synthesis and Characteristics of Transferrable Single-Crystalline AlN Nanomembranes

dc.contributor.authorGong, Jiarui
dc.contributor.authorZhou, Jie
dc.contributor.authorWang, Ping
dc.contributor.authorKim, Tae-Hyeon
dc.contributor.authorLu, Kuangye
dc.contributor.authorMin, Seunghwan
dc.contributor.authorSingh, Ranveer
dc.contributor.authorSheikhi, Moheb
dc.contributor.authorAbbasi, Haris Naeem
dc.contributor.authorVincent, Daniel
dc.contributor.authorWang, Ding
dc.contributor.authorCampbell, Neil
dc.contributor.authorGrotjohn, Timothy
dc.contributor.authorRzchowski, Mark
dc.contributor.authorKim, Jeehwan
dc.contributor.authorYu, Edward T.
dc.contributor.authorMi, Zetian
dc.contributor.authorMa, Zhenqiang
dc.date.accessioned2023-06-01T20:48:57Z
dc.date.available2024-06-01 16:48:55en
dc.date.available2023-06-01T20:48:57Z
dc.date.issued2023-05
dc.identifier.citationGong, Jiarui; Zhou, Jie; Wang, Ping; Kim, Tae-Hyeon ; Lu, Kuangye; Min, Seunghwan; Singh, Ranveer; Sheikhi, Moheb; Abbasi, Haris Naeem; Vincent, Daniel; Wang, Ding; Campbell, Neil; Grotjohn, Timothy; Rzchowski, Mark; Kim, Jeehwan; Yu, Edward T.; Mi, Zetian; Ma, Zhenqiang (2023). "Synthesis and Characteristics of Transferrable Single- Crystalline AlN Nanomembranes." Advanced Electronic Materials 9(5): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/176832
dc.description.abstractSingle-crystalline inorganic semiconductor nanomembranes (NMs) have attracted great attention over the last decade, which poses great advantages to complex device integration. Applications in heterogeneous electronics and flexible electronics have been demonstrated with various semiconductor nanomembranes. Single-crystalline aluminum nitride (AlN), as an ultrawide-bandgap semiconductor with great potential in applications such as high-power electronics has not been demonstrated in its NM forms. This very first report demonstrates the creation, transfer-printing, and characteristics of the high-quality single-crystalline AlN NMs. This work successfully transfers the AlN NMs onto various foreign substrates. The crystalline quality of the NMs has been characterized by a broad range of techniques before and after the transfer-printing and no degradation in crystal quality has been observed. Interestingly, a partial relaxation of the tensile stress has been observed when comparing the original as-grown AlN epi and the transferred AlN NMs. In addition, the transferred AlN NMs exhibits the presence of piezoelectricity at the nanoscale, as confirmed by piezoelectric force microscopy. This work also comments on the advantages and the challenges of the approach. Potentially, the novel approach opens a viable path for the development of the AlN-based heterogeneous integration and future novel electronics and optoelectronics.A novel method to fabricate and transfer-print single crystalline aluminum nitride (AlN) nanomembranes to several foreign substrates is demonstrated and no degradation of the AlN nanomembranes is observed by a range of characterization techniques through the whole process, which shows a promising potential for future applications in flexible electronics and heterogeneous integration.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othersingle-crystalline nanomembranes
dc.subject.othertransfer-printing
dc.subject.otherultra-wide bandgap (UWBG)
dc.subject.otherX-ray photoelectron spectroscopy
dc.subject.otherscanning transmission electron microscopy
dc.subject.otherpiezoresponse force microscopy
dc.subject.otheraluminum nitride (AlN)
dc.titleSynthesis and Characteristics of Transferrable Single-Crystalline AlN Nanomembranes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176832/1/aelm202201309-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176832/2/aelm202201309_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176832/3/aelm202201309.pdf
dc.identifier.doi10.1002/aelm.202201309
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceM. Kazan, E. Moussaed, R. Nader, P. Masri, Phys. Status Solidi C 2007, 4, 204.
dc.identifier.citedreferenceJ. Yang, Y. Wang, L. Wang, Z. Tian, Z. Di, Y. Mei, J. Semicond. 2020, 41, 042601.
dc.identifier.citedreferenceA. Khandelwal, N. Athreya, M. Q. Tu, L. L. Janavicius, Z. Yang, O. Milenkovic, J.-P. Leburton, C. M. Schroeder, X. Li, Microsyst. Nanoeng. 2022, 8, 27.
dc.identifier.citedreferenceA. Khandelwal, Z. Ren, S. Namiki, Z. Yang, N. Choudhary, C. Li, P. Wang, Z. Mi, X. Li, ACS Appl. Mater. Interfaces 2022, 14, 29014.
dc.identifier.citedreferenceE. Azrak, L. G. Michaud, A. Reinhardt, S. Tardif, M. Bousquet, N. Vaxelaire, J. Eymery, F. Fournel, P. Montmeat, ECS J. Solid State Sci. Technol. 2021, 10, 064001.
dc.identifier.citedreferenceY. Jia, H. Wu, J. Zhao, H. Guo, Y. Zeng, B. Wang, C. Zhang, Y. Zhang, J. Ning, J. Zhang, CrystEngComm 2021, 23, 7406.
dc.identifier.citedreferenceZ. Shi, X. Lu, X. Tang, D. Wang, Z. Cong, X. Ma, Y. Hao, Appl. Surf. Sci. 2022, 585, 152378.
dc.identifier.citedreferenceP. Scherrer, Kolloidchemie Ein Lehrbuch, Springer, Berlin 1912, p. 387.
dc.identifier.citedreferenceA. Patterson, Phys. Rev. 1939, 56, 978.
dc.identifier.citedreferenceT. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. Nikishin, N. Faleev, H. Temkin, S. Zollner, Phys. Rev. B 2001, 63, 125313.
dc.identifier.citedreferenceV. Lughi, D. R. Clarke, Appl. Phys. Lett. 2006, 89, 241911.
dc.identifier.citedreferenceM. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada, J. Appl. Phys. 1990, 68, 1272.
dc.identifier.citedreferenceD. Zagorac, J. Zagorac, M. Djukic, D. Jordanov, B. Matović, Theor. Appl. Fract. Mech. 2019, 103, 102289.
dc.identifier.citedreferenceW. Yim, R. Paff, J. Appl. Phys. 1974, 45, 1456.
dc.identifier.citedreferenceP. Wang, Y. Yuan, C. Zhao, X. Wang, X. Zheng, X. Rong, T. Wang, B. Sheng, Q. Wang, Y. Zhang, Nano Lett. 2016, 16, 1328.
dc.identifier.citedreferenceP. Wang, D. Wang, S. Mondal, Y. Wu, T. Ma, Z. Mi, ACS Appl. Mater. Interfaces 2022, 14, 15747.
dc.identifier.citedreferenceC. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. Lu, E. T. Yu, Nano Lett. 2017, 17, 5464.
dc.identifier.citedreferenceC. J. Brennan, K. Koul, N. Lu, E. T. Yu, Appl. Phys. Lett. 2020, 116, 053101.
dc.identifier.citedreferenceB. J. Rodriguez, A. Gruverman, A. Kingon, R. Nemanich, J. Cryst. Growth 2002, 246, 252.
dc.identifier.citedreferenceJ.-H. Li, L. Chen, V. Nagarajan, R. Ramesh, A. Roytburd, Appl. Phys. Lett. 2004, 84, 2626.
dc.identifier.citedreferenceJ. Wortman, R. Evans, J. Appl. Phys. 1965, 36, 153.
dc.identifier.citedreferenceA. Wright, J. Appl. Phys. 1997, 82, 2833.
dc.identifier.citedreferenceE. Österlund, J. Kinnunen, V. Rontu, A. Torkkeli, M. Paulasto-Kröckel, J. Alloys Compd. 2019, 772, 306.
dc.identifier.citedreferenceI. Guy, S. Muensit, E. Goldys, Appl. Phys. Lett. 1999, 75, 4133.
dc.identifier.citedreferenceC. Lueng, H. L. Chan, C. Surya, C. Choy, J. Appl. Phys. 2000, 88, 5360.
dc.identifier.citedreferenceF. Bernardini, V. Fiorentini, Appl. Phys. Lett. 2002, 80, 4145.
dc.identifier.citedreferenceP. Wang, D. A. Laleyan, A. Pandey, Y. Sun, Z. Mi, Appl. Phys. Lett. 2020, 116, 151903.
dc.identifier.citedreferenceP. Wang, B. Wang, D. A. Laleyan, A. Pandey, Y. Wu, Y. Sun, X. Liu, Z. Deng, E. Kioupakis, Z. Mi, Appl. Phys. Lett. 2021, 118, 032102.
dc.identifier.citedreferenceP. Reddy, I. Bryan, Z. Bryan, W. Guo, L. Hussey, R. Collazo, Z. Sitar, J. Appl. Phys. 2014, 116, 123701.
dc.identifier.citedreferenceD. A. Shirley, Phys. Rev. B 1972, 5, 4709.
dc.identifier.citedreferenceJ. Gong, K. Lu, J. Kim, T. Ng, D. Kim, J. Zhou, D. Liu, J. Kim, B. S. Ooi, Z. Ma, Jpn. J. Appl. Phys. 2021, 61, 011003.
dc.identifier.citedreferenceJ. Gong, Z. Zheng, D. Vincent, J. Zhou, J. Kim, D. Kim, T. K. Ng, B. S. Ooi, K. J. Chen, Z. Ma, J. Appl. Phys. 2022, 132, 135302.
dc.identifier.citedreferenceC. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou, Nano Energy 2018, 51, 146.
dc.identifier.citedreferenceY. Jia, J. S. Wallace, E. Echeverria, J. A. Gardella Jr, U. Singisetti, Phys. Status Solidi B 2017, 254, 1600681.
dc.identifier.citedreferenceK. S. Howard, R. McAllister, AIChE J. 1957, 3, 325.
dc.identifier.citedreferenceS. Enders, H. Kahl, J. Winkelmann, J. Chem. Eng. Data 2007, 52, 1072.
dc.identifier.citedreferenceN. Wu, X. Li, S. Liu, M. Zhang, S. Ouyang, Appl. Sci. 2019, 9, 1235.
dc.identifier.citedreferenceG. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. R. Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, Mater. Today 2007, 10, 36.
dc.identifier.citedreferenceH. Kim, C. S. Chang, S. Lee, J. Jiang, J. Jeong, M. Park, Y. Meng, J. Ji, Y. Kwon, X. Sun, Nat. Rev. Methods Primers 2022, 2, 1.
dc.identifier.citedreferenceH. Ahmad, J. Lindemuth, Z. Engel, C. M. Matthews, T. M. McCrone, W. A. Doolittle, Adv. Mater. 2021, 33, 2104497.
dc.identifier.citedreferenceH. Ahmad, Z. Engel, C. M. Matthews, S. Lee, W. A. Doolittle, J. Appl. Phys. 2022, 131, 175701.
dc.identifier.citedreferenceM. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 2006, 5, 33.
dc.identifier.citedreferenceJ. Rogers, M. Lagally, R. Nuzzo, Nature 2011, 477, 45.
dc.identifier.citedreferenceA. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, J. A. Rogers, Adv. Mater. 2012, 24, 5284.
dc.identifier.citedreferenceD. Liu, S. J. Cho, J.-H. Seo, K. Kim, M. Kim, J. Shi, X. Yin, W. Choi, C. Zhang, J. Kim, M. A. Baboli, J. Park, J. Bong, I.-K. Lee, J. Gong, S. Mikael, J. H. Ryu, P. K. Mohseni, X. Li, S. Gong, X. Wang, Z. Ma, arXiv preprint arXiv:1812.10225, 2018.
dc.identifier.citedreferenceD.-Y. Khang, H. Jiang, Y. Huang, J. A. Rogers, Science 2006, 311, 208.
dc.identifier.citedreferenceY. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2006, 1, 201.
dc.identifier.citedreferenceJ.-H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, J. A. Rogers, Science 2006, 314, 1754.
dc.identifier.citedreferenceD.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507.
dc.identifier.citedreferenceJ. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, Nat. Mater. 2008, 7, 907.
dc.identifier.citedreferenceA. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, M. G. Lagally, ACS Nano 2011, 5, 1179.
dc.identifier.citedreferenceJ. H. Seo, T. Y. Oh, J. Park, W. Zhou, B. K. Ju, Z. Ma, Adv. Funct. Mater. 2013, 23, 3398.
dc.identifier.citedreferenceS.-K. Kang, R. K. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Nature 2016, 530, 71.
dc.identifier.citedreferenceJ.-H. Seo, K. Zhang, M. Kim, W. Zhou, Z. Ma, npj Flexible Electron. 2017, 1, 1.
dc.identifier.citedreferenceD. Liu, S. J. Cho, J. Park, J.-H. Seo, R. Dalmau, D. Zhao, K. Kim, J. Gong, M. Kim, I.-K. Lee, Appl. Phys. Lett. 2018, 112, 081101.
dc.identifier.citedreferenceD. Liu, S. J. Cho, J. Park, J. Gong, J.-H. Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A. R. Kalapala, Appl. Phys. Lett. 2018, 113, 011111.
dc.identifier.citedreferenceY. Liu, L. Wang, L. Wang, X. Wu, Z. Hao, J. Yu, Y. Luo, C. Sun, Y. Han, B. Xiong, Semicond. Sci. Technol. 2019, 34, 105023.
dc.identifier.citedreferenceY. Zheng, M. N. Hasan, J. H. Seo, Adv. Mater. Technol. 2021, 6, 2100254.
dc.identifier.citedreferenceK. Kim, J. Jang, H. Kim, Results Phys. 2021, 25, 104279.
dc.identifier.citedreferenceC. Chen, C. Li, S. Min, Q. Guo, Z. Xia, D. Liu, Z. Ma, F. Xia, Nano Lett. 2021, 21, 8385.
dc.identifier.citedreferenceM. N. Hasan, Y. Zheng, J. Lai, E. Swinnich, O. G. Licata, M. A. Baboli, B. Mazumder, P. K. Mohseni, J. H. Seo, Adv. Mater. Interfaces 2022, 9, 2101531.
dc.identifier.citedreferenceZ. Xia, H. Song, M. Kim, M. Zhou, T.-H. Chang, D. Liu, X. Yin, K. Xiong, H. Mi, X. Wang, Sci. Adv. 2017, 3, e1602783.
dc.identifier.citedreferenceS.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, J. Wu, J. Yoon, C.-J. Yu, Z. Liu, Science 2009, 325, 977.
dc.identifier.citedreferenceJ. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, Nature 2010, 465, 329.
dc.identifier.citedreferenceJ. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang, J. A. Rogers, Adv. Mater. 2011, 23, 986.
dc.identifier.citedreferenceK. Xiong, H. Mi, T. H. Chang, D. Liu, Z. Xia, M. Y. Wu, X. Yin, S. Gong, W. Zhou, J. C. Shin, Energy Sci. Eng. 2018, 6, 47.
dc.identifier.citedreferenceS. J. Cho, D. Liu, A. Hardy, J. Kim, J. Gong, C. J. Herrera-Rodriguez, E. Swinnich, X. Konstantinou, G.-Y. Oh, D. G. Kim, AIP Adv. 2020, 10, 125226.
dc.identifier.citedreferenceS. H. Park, G. Yuan, D. Chen, K. Xiong, J. Song, B. Leung, J. Han, Nano Lett. 2014, 14, 4293.
dc.identifier.citedreferenceT.-H. Chang, K. Xiong, S. H. Park, G. Yuan, Z. Ma, J. Han, Sci. Rep. 2017, 7, 6360.
dc.identifier.citedreferenceY.-Y. Zhang, Y.-X. Zheng, J.-Y. Lai, J.-H. Seo, K. H. Lee, C. S. Tan, S. An, S.-H. Shin, B. Son, M. Kim, ACS Nano 2021, 15, 8386.
dc.identifier.citedreferenceY. Y. Zhang, S. An, Y. Zheng, J. Lai, J. H. Seo, K. H. Lee, M. Kim, Adv. Electron. Mater. 2022, 8, 2100652.
dc.identifier.citedreferenceM. Kim, J.-H. Seo, D. Zhao, S.-C. Liu, K. Kim, K. Lim, W. Zhou, E. Waks, Z. Ma, J. Mater. Chem. C 2017, 5, 264.
dc.identifier.citedreferenceE. Swinnich, M. N. Hasan, K. Zeng, Y. Dove, U. Singisetti, B. Mazumder, J. H. Seo, Adv. Electron. Mater. 2019, 5, 1800714.
dc.identifier.citedreferenceY. Zheng, E. Swinnich, J.-H. Seo, ECS J. Solid State Sci. Technol. 2020, 9, 055007.
dc.identifier.citedreferenceJ. Lai, M. N. Hasan, E. Swinnich, Z. Tang, S.-H. Shin, M. Kim, P. Zhang, J.-H. Seo, J. Mater. Chem. C 2020, 8, 14732.
dc.identifier.citedreferenceY. Zheng, Z. Feng, A. A. U. Bhuiyan, L. Meng, S. Dhole, Q. Jia, H. Zhao, J.-H. Seo, J. Mater. Chem. C 2021, 9, 6180.
dc.identifier.citedreferenceM. Feneberg, R. A. Leute, B. Neuschl, K. Thonke, M. Bickermann, Phys. Rev. B 2010, 82, 075208.
dc.identifier.citedreferenceJ. Tsao, S. Chowdhury, M. Hollis, D. Jena, N. Johnson, K. Jones, R. Kaplar, S. Rajan, C. Van de Walle, E. Bellotti, Adv. Electron. Mater. 2018, 4, 1600501.
dc.identifier.citedreferenceG. A. Slack, R. A. Tanzilli, R. Pohl, J. Vandersande, J. Phys. Chem. Solids 1987, 48, 641.
dc.identifier.citedreferenceJ. Li, Z. Fan, R. Dahal, M. Nakarmi, J. Lin, H. Jiang, Appl. Phys. Lett. 2006, 89, 213510.
dc.identifier.citedreferenceT. Li, L. Long, Z. Hu, R. Wan, X. Gong, L. Zhang, Y. Yuan, J. Yan, W. Zhu, L. Wang, Opt. Lett. 2020, 45, 3325.
dc.identifier.citedreferenceY. Irokawa, E. A. G. Víllora, K. Shimamura, Jpn. J. Appl. Phys. 2012, 51, 040206.
dc.identifier.citedreferenceH. Fu, I. Baranowski, X. Huang, H. Chen, Z. Lu, J. Montes, X. Zhang, Y. Zhao, IEEE Electron Device Lett. 2017, 38, 1286.
dc.identifier.citedreferenceK. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Sens. Actuators, A 2006, 132, 658.
dc.identifier.citedreferenceM. D. Williams, B. A. Griffin, T. N. Reagan, J. R. Underbrink, M. Sheplak, J. Microelectromech. Syst. 2012, 21, 270.
dc.identifier.citedreferenceN. Jackson, L. Keeney, A. Mathewson, Smart Mater. Struct. 2013, 22, 115033.
dc.identifier.citedreferenceV. M. Mastronardi, F. Guido, M. Amato, M. De Vittorio, S. Petroni, Microelectron. Eng. 2014, 121, 59.
dc.identifier.citedreferenceX. Yang, J. Liang, Y. Jiang, X. Chen, H. Zhang, M. Zhang, W. Pang, IEEE Electron Device Lett. 2017, 38, 1125.
dc.identifier.citedreferenceA. Gao, K. Liu, J. Liang, T. Wu, Microsyst. Nanoeng. 2020, 6, 74.
dc.identifier.citedreferenceJ. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Science 2010, 327, 60.
dc.identifier.citedreferenceY. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. r. Christen, ACS Nano 2009, 3, 1663.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.