Show simple item record

Wind and Turbulence Observations With the Mars Microphone on Perseverance

dc.contributor.authorStott, Alexander E.
dc.contributor.authorMurdoch, Naomi
dc.contributor.authorGillier, Martin
dc.contributor.authorBanfield, Don
dc.contributor.authorBertrand, Tanguy
dc.contributor.authorChide, Baptiste
dc.contributor.authorDe la Torre Juarez, Manuel
dc.contributor.authorHueso, Ricardo
dc.contributor.authorLorenz, Ralph
dc.contributor.authorMartinez, German
dc.contributor.authorMunguira, Asier
dc.contributor.authorMora Sotomayor, Luis
dc.contributor.authorNavarro, Sara
dc.contributor.authorNewman, Claire
dc.contributor.authorPilleri, Paolo
dc.contributor.authorPla-Garcia, Jorge
dc.contributor.authorRodriguez-Manfredi, Jose Antonio
dc.contributor.authorSanchez-Lavega, Agustin
dc.contributor.authorSmith, Michael
dc.contributor.authorViudez Moreiras, Daniel
dc.contributor.authorWilliams, Nathan
dc.contributor.authorMaurice, Sylvestre
dc.contributor.authorWiens, Roger C.
dc.contributor.authorMimoun, David
dc.date.accessioned2023-06-01T20:48:59Z
dc.date.available2024-06-01 16:48:58en
dc.date.available2023-06-01T20:48:59Z
dc.date.issued2023-05
dc.identifier.citationStott, Alexander E.; Murdoch, Naomi; Gillier, Martin; Banfield, Don; Bertrand, Tanguy; Chide, Baptiste; De la Torre Juarez, Manuel; Hueso, Ricardo; Lorenz, Ralph; Martinez, German; Munguira, Asier; Mora Sotomayor, Luis; Navarro, Sara; Newman, Claire; Pilleri, Paolo; Pla-Garcia, Jorge ; Rodriguez-Manfredi, Jose Antonio ; Sanchez-Lavega, Agustin ; Smith, Michael; Viudez Moreiras, Daniel; Williams, Nathan; Maurice, Sylvestre; Wiens, Roger C.; Mimoun, David (2023). "Wind and Turbulence Observations With the Mars Microphone on Perseverance." Journal of Geophysical Research: Planets 128(5): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/176833
dc.description.abstractWe utilize SuperCam’s Mars microphone to provide information on wind speed and turbulence at high frequencies on Mars. To do so, we first demonstrate the sensitivity of the microphone signal level to wind speed, yielding a power law dependence. We then show the relationship between the microphone signal level and pressure, air and ground temperatures. A calibration function is constructed using Gaussian process regression (a machine learning technique) taking the microphone signal and air temperature as inputs to produce an estimate of the wind speed. This provides a high rate wind speed estimate on Mars, with a sample every 0.01 s. As a result, we determine the fast fluctuations of the wind at Jezero crater which highlights the nature of wind gusts over the Martian day. To analyze the turbulent behavior of this wind speed estimate, we calculate its normalized standard deviation, known as gustiness. To characterize the behavior of this high frequency turbulent intensity at Jezero crater, correlations are shown between the evaluated gustiness statistic and pressure drop rates/sizes, temperature and energy fluxes. This has implications for future atmospheric models on Mars, taking into account turbulence at the finest scales.Plain Language SummaryThe NASA Perseverance mission sent microphones to the surface of Mars. This microphone has recorded signals due to the wind. We examine how these recorded signals vary with other sensor data from Perseverance, which shows a link between the microphone signal, the dedicated wind speed sensor and air temperature. Based on this finding, we develop a way to predict the wind speed from the microphone data using a machine learning technique. The microphone records data at a very high rate compared with sensors so far sent to Mars. This means that the wind speed predicted from the microphone data can be used to study the chaotic and variable wind behavior on Mars to a level never seen before. We show that this chaotic and variable behavior has links to temperature and the number of whirlwinds observed. This will lead us to better weather models for Mars.Key PointsWind-induced noise is observed by the SuperCam Mars microphone on PerseveranceMicrophone and air temperature data are used to estimate the wind speed at high frequencies, using a machine learning modelThe wind speed estimate is used to examine the relationships between turbulent intensity, pressure drops, temperature, and energy flux
dc.publisherWiley Periodicals, Inc.
dc.publisherJGR: Planets
dc.subject.otherMars
dc.subject.otherhigh frequency winds
dc.subject.otherplanetary boundary layer
dc.subject.otherturbulence
dc.titleWind and Turbulence Observations With the Mars Microphone on Perseverance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176833/1/jgre22212.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176833/2/jgre22212_am.pdf
dc.identifier.doi10.1029/2022JE007547
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceRodriguez-Manfredi, J., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M., et al. ( 2023 ). The diverse meteorology of Jezero crater over the first 250 sols of perseverance on Mars. Nature Geoscience, 16 ( 1 ), 1 – 10. https://doi.org/10.1038/s41561-022-01084-0
dc.identifier.citedreferenceMartínez, G. ( 2022 ). Downwelling LW flux and aerosol opacity at Jezero Crater, Mars, as derived from MEDA/TIRS [Dataset]. USRA Houston Repository. Retrieved from https://repository.hou.usra.edu/handle/20.500.11753/1839
dc.identifier.citedreferenceMartínez, G., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2022 ). Surface energy budget, albedo and thermal inertia at Jezero crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128 ( 2 ), e2022JE007537. https://doi.org/10.1029/2022JE007537
dc.identifier.citedreferenceMaurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., et al. ( 2022 ). In situ recording of Mars soundscape. Nature, 605 ( 7911 ), 653 – 658. https://doi.org/10.1038/s41586-022-04679-0
dc.identifier.citedreferenceMaurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., et al. ( 2021 ). The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description. Space Science Reviews, 217 ( 3 ), 1 – 108. https://doi.org/10.1007/s11214-021-00807-w
dc.identifier.citedreferenceMimoun, D., Cadu, A., Murdoch, N., Chide, B., Sournac, A., Parot, Y., et al. ( 2023 ). The Mars microphone onboard SuperCam. Space Science Reviews, 219 ( 1 ), 5. https://doi.org/10.1007/s11214-022-00945-9
dc.identifier.citedreferenceMonin, A., Sergeevich, & Yaglom, A. M. ( 2013 ). Statistical fluid mechanics, volume II: Mechanics of turbulence (Vol. 2 ). Courier Corporation.
dc.identifier.citedreferenceMorgan, S., & Raspet, R. ( 1992 ). Investigation of the mechanisms of low-frequency wind noise generation outdoors. Journal of the Acoustical Society of America, 92 ( 2 ), 1180 – 1183. https://doi.org/10.1121/1.404049
dc.identifier.citedreferenceMunguira, A., Hueso, R., Sánchez-Lavega, A., Torre-Juarez, M. D. L., Martínez, G., Newman, C., et al. ( 2023 ). Near surface atmospheric temperatures at Jezero from Mars 2020 MEDA measurements. Journal of Geophysical Research: Planets, 128 ( 3 ), e2022JE007559. https://doi.org/10.1029/2022je007559
dc.identifier.citedreferenceMurdoch, N., Chide, B., Lasue, J., Cadu, A., Sournac, A., Bassas-Portús, M., et al. ( 2019 ). Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planetary and Space Science, 165, 260 – 271. https://doi.org/10.1016/j.pss.2018.09.009
dc.identifier.citedreferenceMurdoch, N., Stott, A., Gillier, M., Hueso, R., Lemmon, M., Martinez, G., et al. ( 2022 ). The sound of a Martian dust devil. Nature Communications, 13 ( 1 ), 7505. https://doi.org/10.1038/s41467-022-35100-z
dc.identifier.citedreferenceMurphy, J., Steakley, K., Balme, M., Deprez, G., Esposito, F., Kahanpää, H., et al. ( 2016 ). Field measurements of terrestrial and Martian dust devils. Space Science Reviews, 203 ( 1 ), 39 – 87. https://doi.org/10.1007/s11214-016-0283-y
dc.identifier.citedreferenceNewman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 8 ( 21 ), eabn3783. https://doi.org/10.1126/sciadv.abn3783
dc.identifier.citedreferencePetrosyan, A., Galperin, B., Larsen, S. E., Lewis, S., Määttänen, A., Read, P., et al. ( 2011 ). The Martian atmospheric boundary layer. Reviews of Geophysics, 49 ( 3 ), RG3005. https://doi.org/10.1029/2010rg000351
dc.identifier.citedreferencePla-García, J., Munguira, A., Newman, C., Bertrand, T., Martinez, G., Hueso, R., et al. ( 2022 ). Nocturnal turbulence at Jezero crater, as determined from MEDA measurements and modeling.
dc.identifier.citedreferenceRaspet, R., Webster, J., & Dillion, K. ( 2006 ). Framework for wind noise studies. Journal of the Acoustical Society of America, 119 ( 2 ), 834 – 843. https://doi.org/10.1121/1.2146113
dc.identifier.citedreferenceRaspet, R., Yu, J., & Webster, J. ( 2008 ). Low frequency wind noise contributions in measurement microphones. Journal of the Acoustical Society of America, 123 ( 3 ), 1260 – 1269. https://doi.org/10.1121/1.2832329
dc.identifier.citedreferenceRead, P., Galperin, B., Larsen, S. E., Lewis, S. R., Määttänen, A., Petrosyan, A., et al. ( 2017 ). The Martian planetary boundary layer. In R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of mars (pp. 172 – 202 ). Cambridge University Press. https://doi.org/10.1017/9781139060172.007
dc.identifier.citedreferenceRead, P., Lewis, S., & Mulholland, D. ( 2015 ). The physics of Martian weather and climate: A review. Reports on Progress in Physics, 78 ( 12 ), 125901. https://doi.org/10.1088/0034-4885/78/12/125901
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle [Dataset]. PDS Atmospheres Node. https://doi.org/10.17189/1522849
dc.identifier.citedreferenceRodriguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars environmental dynamics analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86. https://doi.org/10.1007/s11214-021-00816-9
dc.identifier.citedreferenceSánchez-Lavega, A., Rio-Gaztelurrutia, T. D., Hueso, R., Juárez, M. D. L. T., Martínez, G., Harri, A.-M., et al. ( 2022 ). Mars 2020 perseverance rover studies of the Martian atmosphere over Jezero from pressure measurements. Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007480. https://doi.org/10.1029/2022JE007480
dc.identifier.citedreferenceSebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’S Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968
dc.identifier.citedreferenceSebastián, E., Martínez, G., Ramos, M., Perez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’S perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006
dc.identifier.citedreferenceSmith, M. D. ( 2022 ). Perseverance MEDA/TIRS aerosol retrievals [Dataset]. Mendeley Data. https://doi.org/10.17632/48phhtkcj8.1
dc.identifier.citedreferenceSmith, M. D., Martínez, G. M., Sebastián, E., Lemmon, M. T., Wolff, M. J., Apéstigue, V., et al. ( 2023 ). Diurnal and seasonal variations of aerosol optical depth observed by MEDA/TIRS at Jezero crater, Mars. Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007560. https://doi.org/10.1029/2022je007560
dc.identifier.citedreferenceSpiga, A. ( 2019 ). The planetary boundary layer of Mars. In Oxford research encyclopedia of planetary science.
dc.identifier.citedreferenceSpiga, A., Murdoch, N., Lorenz, R., Forget, F., Newman, C., Rodriguez, S., et al. ( 2021 ). A study of daytime convective vortices and turbulence in the Martian planetary boundary layer based on half-a-year of insight atmospheric measurements and large-eddy simulations. Journal of Geophysical Research: Planets, 126 ( 1 ), e2020JE006511. https://doi.org/10.1029/2020je006511
dc.identifier.citedreferenceStott, A., Garcia, R., Chédozeau, A., Spiga, A., Murdoch, N., Pinot, B., et al. ( 2023 ). Machine learning and marsquakes: A tool to predict atmospheric-seismic noise for the NASA insight mission. Geophysical Journal International, 233 ( 2 ), 978 – 998. https://doi.org/10.1093/gji/ggac464
dc.identifier.citedreferenceStott, A. E. ( 2023 ). Perseverance SuperCam microphone wind speeds and gustiness catalogue [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7863219
dc.identifier.citedreferenceStrasberg, M. ( 1988 ). Dimensional analysis of windscreen noise. Journal of the Acoustical Society of America, 83 ( 2 ), 544 – 548. https://doi.org/10.1121/1.396148
dc.identifier.citedreferenceStull, R. B. ( 1988 ). An introduction to boundary layer meteorology.
dc.identifier.citedreferenceTemel, O., Senel, C. B., Spiga, A., Murdoch, N., Banfield, D., & Karatekin, O. ( 2022 ). Spectral analysis of the Martian atmospheric turbulence: Insight observations. Geophysical Research Letters, 49 ( 15 ), e2022GL099388. https://doi.org/10.1029/2022gl099388
dc.identifier.citedreferenceVan den Berg, G. ( 2006 ). Wind-induced noise in a screened microphone. Journal of the Acoustical Society of America, 119 ( 2 ), 824 – 833. https://doi.org/10.1121/1.2146085
dc.identifier.citedreferenceViúdez-Moreiras, D., Gómez-Elvira, J., Newman, C., Navarro, S., Marin, M., Torres, J., & de la Torre-Juárez, M. ( 2019a ). Gale surface wind characterization based on the Mars Science Laboratory rems dataset. Part I: Wind retrieval and gale’s wind speeds and directions. Icarus, 319, 909 – 925. https://doi.org/10.1016/j.icarus.2018.10.011
dc.identifier.citedreferenceViúdez-Moreiras, D., Gómez-Elvira, J., Newman, C., Navarro, S., Marin, M., Torres, J., & de la Torre-Juárez, M. ( 2019b ). Gale surface wind characterization based on the Mars Science Laboratory rems dataset. Part II: Wind probability distributions. Icarus, 319, 645 – 656. https://doi.org/10.1016/j.icarus.2018.10.010
dc.identifier.citedreferenceViúdez-Moreiras, D., Lemmon, M., Newman, C., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site: 1. Near-surface wind patterns at Jezero crater. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007522. https://doi.org/10.1029/2022je007522
dc.identifier.citedreferenceViúdez-Moreiras, D., Torre, M. D. L., Gómez-Elvira, J., Lorenz, R., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007523. https://doi.org/10.1029/2022JE007523
dc.identifier.citedreferenceWang, H., & Richardson, M. I. ( 2015 ). The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus, 251, 112 – 127. https://doi.org/10.1016/j.icarus.2013.10.033
dc.identifier.citedreferenceWiens, R. C., & Maurice, S. A. ( 2021 ). Mars 2020 perseverance Rover SuperCam Raw, calibrated, and derived data products [Dataset]. PDS Atmospheres Node. https://doi.org/10.17189/1522646
dc.identifier.citedreferenceWilliams, C., & Rasmussen, C. ( 1995 ). Gaussian processes for regression. In Advances in neural information processing systems (Vol. 8 ).
dc.identifier.citedreferenceWilson, D. K., Greenfield, R. J., & White, M. J. ( 2007 ). Spatial structure of low-frequency wind noise. Journal of the Acoustical Society of America, 122 ( 6 ), EL223 – EL228. https://doi.org/10.1121/1.2786608
dc.identifier.citedreferenceWu, Z., Richardson, M. I., Zhang, X., Cui, J., Heavens, N. G., Lee, C., et al. ( 2021 ). Large eddy simulations of the dusty Martian convective boundary layer with MarsWRF. Journal of Geophysical Research: Planets, 126 ( 9 ), e2020JE006752. https://doi.org/10.1029/2020je006752
dc.identifier.citedreferenceZurek, R. W., & Martin, L. J. ( 1993 ). Interannual variability of planet-encircling dust storms on Mars. Journal of Geophysical Research, 98 ( E2 ), 3247 – 3259. https://doi.org/10.1029/92je02936
dc.identifier.citedreferenceBalme, M., & Greeley, R. ( 2006 ). Dust devils on Earth and Mars. Reviews of Geophysics, 44 ( 3 ), RG3003. https://doi.org/10.1029/2005rg000188
dc.identifier.citedreferenceBanfield, D., Rodriguez-Manfredi, J., Russell, C., Rowe, K., Leneman, D., Lai, H., et al. ( 2019 ). Insight auxiliary payload sensor suite (APSS). Space Science Reviews, 215 ( 1 ), 1 – 33. https://doi.org/10.1007/s11214-018-0570-x
dc.identifier.citedreferenceBanfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., et al. ( 2020 ). The atmosphere of Mars as observed by insight. Nature Geoscience, 13 ( 3 ), 190 – 198. https://doi.org/10.1038/s41561-020-0534-0
dc.identifier.citedreferenceCharalambous, C., McClean, J., Baker, M., Pike, W., Golombek, M., Lemmon, M., et al. ( 2021 ). Vortex-dominated aeolian activity at insight’s landing site, part 1: Multi-instrument observations, analysis, and implications. Journal of Geophysical Research: Planets, 126 ( 6 ), e2020JE006757. https://doi.org/10.1029/2020je006757
dc.identifier.citedreferenceCharalambous, C., Stott, A. E., Pike, W., McClean, J. B., Warren, T., Spiga, A., et al. ( 2021 ). A comodulation analysis of atmospheric energy injection into the ground motion at insight, Mars. Journal of Geophysical Research: Planets, 126 ( 4 ), e2020JE006538. https://doi.org/10.1029/2020je006538
dc.identifier.citedreferenceChatain, A., Spiga, A., Banfield, D., Forget, F., & Murdoch, N. ( 2021 ). Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by insight on Mars. Geophysical Research Letters, 48 ( 22 ), e2021GL095453. https://doi.org/10.1029/2021gl095453
dc.identifier.citedreferenceChide, B., Bertrand, T., Lorenz, R. D., Munguira, A., Hueso, R., Sánchez-Lavega, A., et al. ( 2022 ). Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophysical Research Letters, 49 ( 21 ), e2022GL100333. https://doi.org/10.1029/2022gl100333
dc.identifier.citedreferenceChide, B., Maurice, S., Cousin, A., Bousquet, B., Mimoun, D., Beyssac, O., et al. ( 2020 ). Recording laser-induced sparks on Mars with the supercam microphone. Spectrochimica Acta Part B: Atomic Spectroscopy, 174, 106000. https://doi.org/10.1016/j.sab.2020.106000
dc.identifier.citedreferenceChide, B., Maurice, S., Murdoch, N., Lasue, J., Bousquet, B., Jacob, X., et al. ( 2019 ). Listening to laser sparks: A link between laser-induced breakdown spectroscopy, acoustic measurements and crater morphology. Spectrochimica Acta Part B: Atomic Spectroscopy, 153, 50 – 60. https://doi.org/10.1016/j.sab.2019.01.008
dc.identifier.citedreferenceChide, B., Murdoch, N., Bury, Y., Maurice, S., Jacob, X., Merrison, J. P., et al. ( 2021 ). Experimental wind characterization with the supercam microphone under a simulated Martian atmosphere. Icarus, 354, 114060. https://doi.org/10.1016/j.icarus.2020.114060
dc.identifier.citedreferenceCook, M. R., Gee, K. L., Transtrum, M. K., Lympany, S. V., & Calton, M. ( 2021 ). Automatic classification and reduction of wind noise in spectral data. JASA Express Letters, 1 ( 6 ), 063602. https://doi.org/10.1121/10.0005308
dc.identifier.citedreferenceDe la Torre Juárez, M., Rodriguez-Manfredi, J. A., & Sanchez-Lavega, A. ( 2022 ). The diurnal cycle of temperature fluctuations at Jezero crater. JGR: Planets.
dc.identifier.citedreferenceDundas, C. M., Becerra, P., Byrne, S., Chojnacki, M., Daubar, I. J., Diniega, S., et al. ( 2021 ). Active Mars: A dynamic world. Journal of Geophysical Research: Planets, 126 ( 8 ), e2021JE006876. https://doi.org/10.1029/2021je006876
dc.identifier.citedreferenceFarley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y
dc.identifier.citedreferenceGómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gómez, F., Haberle, R., et al. ( 2014 ). Curiosity’s rover environmental monitoring station: Overview of the first 100 sols. Journal of Geophysical Research: Planets, 119 ( 7 ), 1680 – 1688. https://doi.org/10.1002/2013je004576
dc.identifier.citedreferenceGómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., et al. ( 2012 ). Rems: The environmental sensor suite for the Mars Science Laboratory rover. Space Science Reviews, 170 ( 1 ), 583 – 640. https://doi.org/10.1007/s11214-012-9921-1
dc.identifier.citedreferenceGPy, since. ( 2012 ). GPy: A Gaussian process framework in python [Software]. Retrieved from http://github.com/SheffieldML/GPy
dc.identifier.citedreferenceHart, C. R., Nykaza, E. T., & White, M. J. ( 2018 ). Acoustic inversion for Monin-Obukhov similarity parameters from wind noise in a convective boundary layer. Journal of the Acoustical Society of America, 144 ( 3 ), 1258 – 1268. https://doi.org/10.1121/1.5053106
dc.identifier.citedreferenceHess, S., Henry, R., Leovy, C. B., Ryan, J., & Tillman, J. E. ( 1977 ). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82 ( 28 ), 4559 – 4574. https://doi.org/10.1029/js082i028p04559
dc.identifier.citedreferenceHueso, R., Newman, C., Río-Gaztelurrutia, T. D., Munguira, A., Sánchez-Lavega, A., Toledo, D., et al. ( 2022a ). Catalog of pressure drops, vortices and dust devils on jezero crater, Mars, Ls=6-213 plus large eddy simulation movie [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7315863
dc.identifier.citedreferenceHueso, R., Newman, C., Río-Gaztelurrutia, T. D., Munguira, A., Sánchez-Lavega, A., Toledo, D., et al. ( 2022b ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, 44 ( 3 ), e2022JE007516. https://doi.org/10.1029/2005RG000188
dc.identifier.citedreferenceKaimal, J. C., Wyngaard, J., Izumi, Y., & Coté, O. ( 1972 ). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98 ( 417 ), 563 – 589. https://doi.org/10.1002/qj.49709841707
dc.identifier.citedreferenceKurgansky, M. ( 2019 ). On the statistical distribution of pressure drops in convective vortices: Applications to Martian dust devils. Icarus, 317, 209 – 214. https://doi.org/10.1016/j.icarus.2018.08.004
dc.identifier.citedreferenceLemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126
dc.identifier.citedreferenceLighthill, M. J. ( 1954 ). On sound generated aerodynamically II. Turbulence as a source of sound. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 222 ( 1148 ), 1 – 32.
dc.identifier.citedreferenceLorenz, R. D. ( 2022 ). Turbulence for extraterrestrial aviation: Gust specification for dragonfly’s powered flights. Planetary and Space Science, 214, 105459. https://doi.org/10.1016/j.pss.2022.105459
dc.identifier.citedreferenceLorenz, R. D., Spiga, A., Lognonne, P., Plasman, M., Newman, C. E., & Charalambous, C. ( 2021 ). The whirlwinds of elysium: A catalog and meteorological characteristics of “dust devil” vortices observed by Insight on Mars. Icarus, 355, 114119. https://doi.org/10.1016/j.icarus.2020.114119
dc.identifier.citedreferenceLyons, G. W., Hart, C. R., & Raspet, R. ( 2021 ). As the wind blows: Turbulent noise on outdoor microphones. Acoustics Today, 17 ( 4 ), 20. https://doi.org/10.1121/at.2021.17.4.20
dc.identifier.citedreferenceMaki, J., Gruel, D., McKinney, C., Ravine, M., Morales, M., Lee, D., et al. ( 2020 ). The Mars 2020 engineering cameras and microphone on the perseverance rover: A next-generation imaging system for Mars exploration. Space Science Reviews, 216 ( 8 ), 1 – 48. https://doi.org/10.1007/s11214-020-00765-9
dc.identifier.citedreferenceMangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J., Sholes, S., et al. ( 2021 ). Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 374 ( 6568 ), 711 – 717. https://doi.org/10.1126/science.abl4051
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.